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Birkhäuser
Boston • Basel • Berlin



www.manaraa.com

Pierre Anglès
Laboratoire Emile Picard
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William K. Clifford (1845–1879), Mathematician and Philosopher. Portrait by John Collier
(by kind permission of the Royal Society).
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“The Angel of Geometry and the Devil of Algebra fight for the soul of any
mathematical being.”

Attributed to Hermann Weyl
(Communicated by René Deheuvels himself

according to a private conversation with H. Weyl)
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“C’est l’étude du groupe des rotations (à trois dimensions) qui conduisit Hamilton à
la découverte des quaternions; cette découverte est généralisée par W. Clifford qui,
en 1876, introduit les algèbres qui portent son nom, et prouve que ce sont des produits
tensoriels d’algèbres de quaternions ou d’algèbres de quaternions et d’une extension
quadratique.

Retrouvées quatre ans plus tard par Lipschitz qui les utilisa pour donner une
représentation paramétrique des transformations à n variables . . . ces algèbres et
la notion de ‘spineur’ qui en dérive, devaient aussi connaıtre une grande vogue à
l’époque moderne en vertu de leur utilisation dans les théories quantiques.”

Nicolas Bourbaki
Eléments d’histoire des Mathématiques

Hermann, 1969, p. 173.
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Foreword

It is not very often the case that a treatise and textbook is called to become a standard
reference and text on a subject. Generally a comprehensive treatment on a subject
is devoted to the specialist and a didactical textbook is a newer version of a series
of guiding monographs. This book by Pierre Anglès is all these things in one: a
good reference on the subject of Clifford algebras and conformal groups and the
subjacent spin structures, a textbook where students and even specialists of any one
of the subjects can learn the full matter, and a bridge between the basic approach of
Grassmann and Clifford of finding a linear form that corresponds to a given quadratic
form and all the structures which can be built from those algebras and in particular
the pseudounitary conformal spin structures.

The numerous references, starting in the foreword itself and within each chapter
supply the necessary connection to the state of the art of the subject as viewed by
numerous other authors and the creative contributions of Professor Anglès himself. A
fresh approach to the subject is found anyway and this characteristic is the basis for
this book to become, as we said, a standard text and reference.

Besides the rigorous algebraic approach a consistent geometrical point of view, in
the genealogy of Wessel, Argand, Grassmann, Hamilton, Clifford, etc. and of Cartan
and Chevalley is found throughout the book. In fact it would be desirable that this
transparency of presentation would be continued one day, by Professor Anglès, in the
field of mathematical physics and perhaps even in theoretical physics where a clear
connection between algebra, geometry and spin structures with physical theoretical
structures are always welcome. The same applies to the possibility of extending, in
the future, the numerous present exercises, which are a guidance for the study of the
subject, to applications in other branches of mathematics and theoretical physics.

We finally want to stress that the effort of the author to clearly present the devel-
opment from Clifford algebras through conformal real pseudo-euclidean geometry,
pseudounitary conformal spin structures and more advanced applications has resulted
in fact in abundant new concepts and material.

Jaime Keller
University of Mexico
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Foreword

During the second part of the 19th century a large number of important algebraic
structures were discovered. Among them, quaternions by Hamilton and the exterior
calculus or multilinear algebra by Sylvester, are by now part of standard textbooks
in algebra or geometry. Since its discovery by W.K. Clifford, the Clifford algebras, a
sort of mixture of the above-mentioned structures, very quickly emerged as a funda-
mental idea. In the same way as quaternions extend the dream of complex numbers
to dimensions three and four, the Clifford idea of adding a formal square root of a
quadratic quantity works marvellously in any dimension. Very soon it was the Clifford
construction is correlated to classical geometry. This relationship is now clearly ex-
plained mostly in terms of the spin group, which is the group counterpart of the
Clifford algebra.

Physicists also quickly recognized the importance of the spin group and its spin
representation, both in Euclidean and Minkowski signatures. The word “spin” is
almost a genetic term of the quantum theory, and of the physics of elementary particles.
More recently, the development of the idea of supersymmetry shows that vitality and
modernity are in perfect accord with the structures introduced by Clifford. Clifford,
spinors, and Poincaré algebras are at the heart of this fascinating idea.

The book of P. Anglès intertwines both the algebraic and geometric viewpoints.
The first half of this book is algebraic in nature, and the second half emphasizes the
differential-geometric side. Many books are devoted totally or in part to the Clifford
algebras with an algebraic viewpoint. Then the results are often corollaries of the
structure theorems of semisimple algebras, the Wedderburn theory. The point of view
of the present book is more pragmatic. The whole theory is explained in a concise
but very explicit manner, referring to standard textbooks for the general tools. A
whole battery of exercises helps the reader to master the intricacies of the numerous
structural results offered to the reader.

In the geometric chapters, dealing with vector bundles over manifolds with extra
structures, spinorial, conformal, and many others, the same pedagogic treatment is
proposed. I am convinced that this is a good point of view. It makes the presentation
of these rather subtle structures particularly clear and sometimes exciting. Numerous
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xii Foreword

exercises complete the text in many directions, adding supplementary material. All
this makes the book essentially self-contained.

The book of P. Anglès is neither a textbook of algebra, nor a treatise on differential
geometry, but a book of old and new developments concerning the puzzle around
Clifford’s ideas. I recommend this book to any student or researcher in mathematics
or physics who wants to master this exciting subject.

José Bertin
Institut Fourier

Grenoble, France
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Preface

Since 1910, has been well known not only that Maxwell’s equations are invariant
for the 10-dimensional Poincaré group (or inhomogeneous Lorentz group), but that
the maximal group of invariance is the 15-dimensional conformal group C(1, 3) of
the classical Minkowski standard space E1,3, which is the smallest semisimple group
containing the Poincaré group. We recall that the Poincaré group is the semidirect
product of the (homogeneous) Lorentz group by the group of the translations: T (E1,3).
Many attempts have been made to build up a new theory of relativity, to find a
cosmology, or to reveal classifications of elementary particles from the study of the
conformal groups. The twistor theory of Roger Penrose is such an example, and its
success is ever increasing.1

The structure of the classical pseudoorthogonal group SO+(2, 4) had been already
studied by Elie Cartan, who had shown2 the identity of the Lie algebras of C(1, 3)
and SU(2, 2). Physicists who need conformal pseudoorthogonal groups use only
their Lie algebras. The fundamental idea of the theory of Penrose is that SU(2, 2) is
a fourfold covering of the connected component of C(1, 3). A twistor is nothing but a
vector of the complex space C4 provided with the standard pseudo-hermitian form of
signature (2, 2), and the submanifold of the Grassmannian of complex spaces of C4

constituted by totally isotropic planes is identical to the conformal compactified space
of the Minkowski space E1,3. We can associate canonically with each n-dimensional
quadratic space (E, q) an associative unitary algebra: its Clifford algebra C(E, q).

Historically, the notion of Clifford algebras naturally appeared in many different
ways. Its destiny is closely joined to the development of generalized complex numbers
and the success of the theory of quadratic forms.

1 R. Penrose, Twistor algebra, J. of Math. Physics, vol. 8, no. 2, 1967; Ward and Wells,
Twistor Geometry and Field Theory, Cambridge University Press; H. Blaine Lawson and
M. L. Michelson, Spin Geometry, P. U. Press, 1989; N. Woodhouse, Geometry Quantization,
Clarendon Press, 1980, etc.

2 Elie Cartan, Annales de l’E.N.S., 31, 1974, pp. 263–365.
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xiv Preface

The story of complex imaginary numbers starts in the sixteenth century when
Italian mathematicians Girolamo Cardano (1501–1576), Raphaele Bombelli (born
in 1530, whose algebra was published in 1572), and Niccolo Fontana, called
“Tartaglia”—which means stammerer—realizing that a negative real number can-
not have a square root, began to use a symbol for its representation. Thus came into
the world the symbol i, such that i2 = −1, a very mathematical oxymoron, the success
of which is well known.3

The introduction of generalized complex numbers of order more than 2 is not
quite linked to the solution of equations of order two with real coefficients. Their
destiny is closely joined to the attempts is made by Gaspar Wessel in 1797 and by
J. R. Argand, J. F. Français, F. G. Servois from 1814 to 1815 in order to extend the
geometrical theory of imaginary numbers of the plane to the usual space.

We recall that, starting from the classical field R of real numbers, we can define
the three following generalized numbers of order two:4

Classical complex numbers (or elliptic numbers ): a + ib, a, b ∈ R, i2 = −1;

Dual numbers (or parabolic numbers): a + Eb, a, b ∈ R, E2 = 0;

Double numbers (or hyperbolic numbers): a + eb, a, b ∈ R, e2 = 1.

W. R. Hamilton,5 professor of astronomy in the University of Dublin, was the first
to introduce in 1842 a system of numbers of order 22 = 4, with a noncommutative
multiplicative law: the sfield H. The study of the group of rotations in the classical
3-dimensional space led W. R. Hamilton to his discovery.

Dual and double numbers were studied by two mathematicians: Eugène Study
(1862–1930) and William Kingdom Clifford (1845–1879). The applications of these
new objects belong to the increasing success of non-Euclidean geometries. Moreover,
W. K. Clifford introduced in 1876 the algebras that are called Clifford algebras in a
lecture published in 1882, after his death. The work of W. K. Clifford was completed
by that of R. O. Lipschitz in 1886. As for the term “spinor,” its destiny probably
begins with Leonhard Euler (1770) and Olinde Rodrigues (1840).6

3 The word was first used by the French mathematician and philosopher René Descartes
(Géométrie, Leyde, 1637, livre 3), and R. Bombelli (Algebra, Bologna, Italy, 1572, p. 172)
used the expression “piu di meno” for

√−1 and “meno di meno” for−√−1. We recall that
an oxymoron is a rhetorical figure that joins two opposite words such as: a dark clearness,
a deafening silence.

4 W. K. Clifford,Applications of Grassmann’s extensive algebra, American Journal of Mathe-
matics, 1 (1878), pp. 350–358; and W. K. Clifford, Mathematical Papers, London, Macmil-
lan, 1882.

5 W. R. Hamilton considered the set of numbers z, z = a + ib + jc + kd, where a, b, c, d

belong to R, with the usual addition and the following multiplicative table for the “units”
i, j, k: i2 = j2 = k2 = −1, ij = k, jk = i, ki = j , kj = −i, ji = −k, ik = −j .

6 Cf. E. Cartan, Nombres Complexes, Exposé d’après l’article allemand de E. Study, Bonn,
Œuvres Complètes. Partie II Volume 1, pp. 107–408, Gauthier Villars, Paris 1953; and Paolo
Budinich and Andrzej Trautman, An introduction to the spinorial chessboard, J.G.P., no. 3,
1987, pp. 361–390, and The Spinorial Chessboard, Springer-Verlag, 1968.
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Preface xv

According to B. L. Van der Waerden,7 the name “spinor” is due to Paul Ehrenfest.
The discovery of quaternions by William Rowan Hamilton8 led to a simple “spinorial”
representation of rotations. If q = ia+ jb+ kc is a “pure” quaternion and u is a unit
quaternion, then q → uqu−1 is a rotation and every rotation can be so obtained. The
way to spinors initiated by L. Euler, completed by W. K. Clifford and R. O. Lipschitz,9

is based on the fundamental idea of taking the square root of a quadratic form.
Among the various ways that lead to Clifford algebras, the most spectacular route

incontestably appears to be the solution given by P.A. M. Dirac10 to the problem of the
relativistic equation of the electron, when he sought and linearized the Klein–Gordon
operator, which is the restricted relativistic form of the equation of Schrödinger:

(�−m2)ψ =
(

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
−m2

)
ψ = 0, (I)

where ψ is a wave function and m a nonnegative real. Physical interpretation of ψ

needs to avoid the presence of ∂2/∂t2 in (I), and thus led P. A. M. Dirac to writing

�−m2 =
(
α

∂

∂t
+ β

∂

∂x
+ γ

∂

∂y
+ δ

∂

∂z
−m

)
×
(
α

∂

∂t
+ β

∂

∂x
+ γ

∂

∂y
+ δ

∂

∂z
+m

)
(II)

as a product of first-order linear operators.
By identifying both members of relation (II), one obtains

α2 = −β2 = −γ 2 = −δ2 = 1,

αβ + βα = αγ + γα = · · · = 0.

Moreover, a solution can be expected only if the coefficients α, β, γ, δ need to be
added, multiplied by real numbers, and multiplied between themselves, and, according
to (II), belong to a noncommutative algebra. Up to isomorphism, there exists a unique
solution obtained by taking forα, β, γ, δ complex square matrices of order 4: the Dirac
matrices. Mathematically speaking, the problem is a special case of the following

7 B. L. Van der Waerden, Exclusion principle and spin, in Theoretical Physics in the Twentieth
Century: A Memorial Volume to Wolfgang Pauli, ed. M. Fierz and V. F. Weisskopf, New
York: Interscience, 1960.

8 W. R. Hamilton, Lectures on Quaternions, London Edinburgh Dublin Philos. Mag. 25, 1884,
p. 36, p. 489, cf. also, W. R. Hamilton, Elements of Quaternions, London, 1866, edited by
his son W. E. Hamilton, 2nd edition published by Ch. J. Joly 1, London 1899, 2 London,
1901, translated into German by P. Glan, Leipzig, 1882.

9 The algebras considered by Clifford and Lipschitz were generated by n anticommuting
“units” eα with squares equal to −1.

10 P. A. M. Dirac, Proceedings of the Royal Society, vol. 117, 1917, p. 610 and vol. 118, 1928,
p. 351.
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xvi Preface

one: Let E be a space over a field K, endowed with a quadratic form q: how can one
express q as the square of a linear form ϕ, i.e., for all m ∈ E, how can one express
q(m) as q(m) = (ϕ(m))2 with ϕ belonging to the dual E∗ of E? And the special case
solved by the physicist Dirac is that of R4 endowed with the quadratic Lorentz form
defined for all m = (t, x, y, z) ∈ R4 by q(m) = t2−x2−y2− z2 and the search of a
linear form ϕ defined on R4, ϕ(m) = αt +βx+ γy+ δz such that q(m) = (ϕ(m))2.

The notion of spinor had been formulated by Elie Cartan11 while he was seeking
to determine linear irreducible representations of the proper orthogonal group or of
the corresponding Lie algebra. The algebraic presentation of the theory of spinors
was first developed in the neutral case by Claude Chevalley.12 Many other authors
such as Albert Crumeyrolle,13 René Deheuvels,14 and Pertti Lounesto15 have taken in
interest in such a theory. Besides, the algebraic theory of quadratic forms and Clifford
algebras for projective modules of finite type was formulated by Artibano Micali and
Orlando Villamayor.16 The links between Clifford algebras and K-theory have been
developed by M. Karoubi.17 We add that Ichiro Satake18 used these algebraic tools
in an important book. The work of J. P. Bourgignon in the application of Clifford
algebras to differential geometry and that of Rod Gover, as well as of the late Thomas
Branson must be recalled.

In Clifford analysis, the work initiated by Richard Delanghe and the Belgian
school, with F. Brackx and F. Sommen19 must be emphasized. Guy Laville, Wolfgang
Sprössig and John Ryan need also to be recalled together with the late J. Bures.

In addition, the Clifford community knows the work done by Paolo Budinich,
Roy Chisholm and William Baylis in mathematical and theoretical physics. David
Hestenes cannot be forgotten for his geometric calculus, his fundamental geometric
algebra and his part played in many other offshoots of Clifford algebras, together
with Jaime Keller and his elegant theory “START,” and Waldyr A. Rodrigues Jr. and

11 Elie Cartan, Leçons sur la Théorie des Spineurs I et II, edition Hermann, Paris, 1937; or
The Theory of Spinors, Hermann, Paris 1966.

12 Claude Chevalley, The Algebraic Theory of Spinors, Columbia University Press, New York,
1954.

13 A list of publications of the late A. Crumeyrolle is given at the end of the first chapter.
14 R. Deheuvels published two books: Formes Quadratiques et Groupes Classiques, P.U.F.,

Paris 1991, and Tenseurs et Spineurs, P.U.F., Paris 1993.
15 My friend the late Pertti Lounesto, who was called the Clifford policeman, published a book:

Clifford Algebras and Spinors, Cambridge University Press, 2nd edition, 2001.
16 A. Micali and O. Villamayor, Sur les algèbres de Clifford, Annales Scientifiques de l’Ecole

Normale Supérieure, 4◦ serie, tome 1, 1968, pp. 271–304.
17 M. Karoubi, Algèbres de Clifford et K-theorie, Annales de l’E.N.S., 4◦ serie, tome 1, 1968,

pp. 161–270.
18 I. Satake, Algebraic Structures of Symmetric Domains, Iwanani Shoten, Publishers and

Princeton University Press, 1980.
19 F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis, Pitman Publ., Boston-London-

Melbourne, 1982.
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Preface xvii

Y. Friedmann for their important work in fundamental physics. RafalAbłamowicz has
studied many applications of Clifford algebras such as in computing science and took
also an interest with Z. Oziewicz and J. Rzewuski in the study of twistors. Arkadiusz
Jadczyk came to the study of Clifford algebras after that of many other subjects. He
is an innovator for the links between Clifford algebra and quantum jumps.

The following self-contained book can be used either by undergraduates or by re-
searchers in mathematics or physics. Before each chapter a brief introduction presents
the aims and the material to be developed. Chapter 1 is also a chapter of reference.
Each chapter presents its own exercises with its own bibliography.

Pierre Anglès
Institut de Mathématiques de Toulouse
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Overview

The first chapter is devoted to the presentation of the necessary algebraic tools for the
study of Clifford algebras and to a systematic study of different structures given to the
spaces of spinors for even Clifford algebras C+r,s of quadratic regular standard spaces
Er,s and of the corresponding embeddings of associated spin groups and projective
quadrics. Many exercises are proposed.

The second chapter deals with conformal real pseudo-Euclidean geometry. First,
we study the classical conformal group of the standard Euclidean plane. Then, we
construct covering groups for the general conformal group Cn(p, q) of a standard
real space En(p, q). We define a natural injective map that sends all the elements of
the standard regular space En(p, q) into the isotropic cone of En+2(p + 1, q + 1),
in order to obtain an algebraic isomorphism of Lie groups between Cn(p, q) and
PO(p+1, q+1). The classical conformal orthogonal flat geometry is then revealed.
Explicit matrix characterizations of the elements of Cn(p, q) are given. Then, we
define new groups called conformal spinoriality groups. The study of conformal spin
structures on Riemannian or pseudo-Riemannian manifolds can now be made. The
conformal spinoriality groups previously introduced play an essential part. The links
between classical spin structures and conformal spin ones are emphasized. Then we
can study Cartan and Ehresmann connections and conformal connections. The study
of conformal geodesics is then presented. Generalized conformal connections are
then discussed. Vahlen matrices are presented. Many exercises are given.

The third chapter is devoted essentially to the study of pseudounitary confor-
mal spin structures. First, we present pseudounitary conformal structures over a
2n-dimensional almost complex paracompact manifold V and the corresponding pro-
jective quadrics H̃p,q associated with the standard pseudo-hermitian spaces Hp,q .
Then, we develop a geometrical presentation of a compactification for pseudo-
hermitian standard spaces, in order to construct the pseudounitary conformal group
of Hp,q , denoted by CUn(p, q). We study the topology of the projective quadrics
H̃p,q and the “generators” of such projective quadrics.

We define the conformal symplectic group associated with a standard real sym-
plectic space (R2r , F ), denoted by CSp(2r,R), where F is the corresponding
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xx Overview

symplectic form such that CUn(p, q) = CSp(2n,R)
⋂

C2n(2p, 2q), with the
notation of Chapter 2. The Clifford algebra Clp,q associated with Hp,q is defined.
The corresponding spin group SpinU(p, q) and covering groups RU(p, q) and
�U(p, q) are given associated with a fundamental diagram. The space S of cor-
responding spinors is defined and provided with a pseudo-hermitian neutral scalar
product. The embeddings of spin groups and corresponding quadrics are revealed.
Then, conformal flat pseudounitary geometry is studied. Two fundamental diagrams
are given. We introduce and give geometrical characterizations of groups called pseu-
dounitary conformal spinoriality groups. The study of pseudounitary spin structures
and conformal pseudounitary spin structures over an almost complex 2n-dimensional
manifold V is now presented. The part played by groups called conformal pseu-
dounitary spinoriality groups is emphasized. The links between pseudounitary spin
structures and pseudounitary conformal spin ones are given. Exercises are given.

Instructions to the reader

For convenience, we adopt the following rule: 1.2.2.3.2 Theorem means a theorem
of Chapter 1, Part 2 Section 2.3.2. At the end of each chapter, we present some
references. If we need some reference on a particular page, it will be mentioned by
a footnote such as, for example, S. Helgason, Differential geometry and symmetric
spaces, op. cit., p. 120. The Lie algebra of a Lie group G will be denoted by g or G
or Lie(G) or L(G). The derivative at x of a map f will be denoted either by (df )x
or by dxf. Sometimes the notation D for d will also be used. By a curve, or path, we
shall always mean a curve, or path of at least class C1. In Chapter 3 (Sym)e (resp.
(Sym)et) is sometimes denoted also as (Sym)s (resp. (Sym)st).
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1

Classic Groups: Clifford Algebras, Projective
Quadrics, and Spin Groups

The first chapter is a presentation of the necessary algebraic tools. We recall the
general classical results concerning general linear groups, unitary groups, symplectic
groups and their corresponding Lie algebras, and the same for classical groups over
noncommutative fields.

A review of elementary properties of quaternion algebras leads to the study of
Clifford algebras, the presentation of the main results concerning such algebras, and
the introduction of corresponding spinors and spinor groups (or briefly spin groups)
and spin representations. Then, systematically, we study the different structures given
to the spaces of the spinors for even Clifford algebras C+r,s of the quadratic standard
space Er,s , the embeddings of corresponding spin groups Spin(r, s) and of real pro-
jective associated quadrics Q̃(Er,s).

1.1 Classical Groups

A Summary of Classical Results

Hermann Weyl1 introduced the term “classical group” for summarizing the follow-
ing groups: linear groups, orthogonal, unitary and symplectic groups. We recall the
classical and necessary definitions and results.

1.1.1 General Linear Groups2

(a) LetE be a linear space of finite dimension n over a fieldK and let GL(E) denote the
set of all linear mappings fromE ontoE (we recall that sinceE isn-dimensional, these
mappings all are bijections). GL(E) is a group under the composition of mappings,

1 Hermann Weyl, The Classical Groups, Princeton University Press, 1936.
2 See the remarkable book by J. Dieudonné, La géométrie des Groupes Classiques, Springer-

Verlag, Berlin, 1971, third édition. See also the Encyclopedic Dictionary of Mathematics,
edited by Shôkichi Iyanaga and Yukiyosi Kuwada, Cambridge, MA, MIT Press, 1977.
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2 1 Classic Groups: Clifford Algebras, Projective Quadrics, and Spin Groups

called the general linear group (or full linear group) on E. Let {e1, e2, . . . , en} be a
basis of E over K and let [Aj

i ] be the matrix associated with the element f ∈ GL(E)

such that

f (ei) =
n∑

j=1

A
j
i ej .

Then the mapping f → [Aj
i ] determines an isomorphism from GL(E) onto the

multiplicative group GL(n,K) of all square invertible matrices of degree n, with
coefficients in K . The group GL(E) is often identified with GL(n,K). GL(n,K) is
called the general linear group of degree n over K . The mapping u→ det u (where
det u denotes the determinant of u) determines a homomorphism from GL(E) onto
the multiplicative group K∗ = K − {0}. The kernel of this homomorphism is a
normal subgroup of GL(E), denoted by SL(E) and called the special linear group or
unimodular group.

In the same way, SL(n,K) = {f ∈ GL(n,K), det f = 1} is called the special
linear group of degree n over K . The center z of GL(n,K) is identical with the set of
all scalar matrices λI , λ ∈ K∗, and the center of SL(n,K) is a finite group, namely
{λI , λ ∈ K∗ and λn = 1}.

(b) Let us introduce P(E), the projective classical (n − 1)-dimensional space
associated with the n-dimensional K-linear space E (we recall that P(E) can be
viewed as the set of all 1-dimensional linear subspaces of E). The projective general
linear group on P(E) denoted by PGL(E) is the group of all so-called projective
transformations on P(E), that is, PGL(E) = GL(E)/z. When E = Kn+1 3, such
a group is denoted by PGLn(K) or PGL(n, k). PGL(E) = GL(E)/z, where z is
the center of GL(E) and PGL(n, k) = GL(n,K)/z, is called the projective general
linear group of degree n. Similarly, PSL(n,K) = SL(n,K)/z0, the quotient group of
SL(n,K) by its center, z0 is called the projective special linear group of degree n.

If the ground field K is either the field R of real numbers or the field C of complex
numbers, all these groups are respectively Lie groups or complex Lie groups. Thus,
SL(n,C) is a simply connected simple and semisimple complex Lie group of type
An−1,4 and PSL(n,C) is the adjoint group of the complex simple algebra of type

3 We recall that when E = Kn+1, the projective associated space is also denoted by KPn.
4 We recall that the different structures of a compact connected simple Lie group are classically

denoted by Al(l ≥ 1), Bl(l ≥ 2), Cl(l ≥ 3), Dl(l ≥ 4), G2, F4, E6, E7, E8. Each
of these symbols represents a class of groups with isomorphic Lie algebras. The first four, the
classical structures, possess a linear well-known representative: forAl , SU (l+1), the unitary
unimodular group of (l + 1) complex variables; for Cl , SpU (l), often written Sp(l), the
unitary group of l quaternionic variables; for Bl , (respectively Dl), SO(2l+1) (respectively
SO(2l)), the unimodular orthogonal groups. The quotient group of SU (n), SpU (n) (or
Sp(n)), SO(2n) by their respective centers, which respectively are cyclic with respectively
n, 2, 2 elements, are respectively denoted by PU(n), PSpU (n) (or PSp(n)), PSO(2n). The
groups SU (n) and SpU (n) (or Sp(n)) are simply connected, while SO(n) (n ≥ 3) possesses
a twofold simply connected covering group Spin(n), the center of which is cyclic of order 2,
when n is odd, of order 4 when n = 2m, with m odd (i.e., n ≡ 2 (mod 4)), and isomorphic
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An−1. The group PSL(n,K), n ≥ 2 (K = R,C,H), is a noncommutative simple
group.

1.1.1.1 Unitary Groups2

The set denoted by U(n) of all square unitary matrices of degree n with complex
elements is a group under multiplication, called the unitary group of degree n. The
normal subgroup of U(n) consisting of all matrices with determinant 1 is called
the special unitary group and denoted by SU (n). U(n) and SU (n) are subgroups of
GL(n, C) and SL(n, C). They are both compact, connected Lie groups. SU (1) = {1},
and U(1) is the classical multiplicative group of all complex numbers λ such that
|λ| = 1. Classically, the center z of U(n) consists of all diagonal matrices λI , λ ∈ C,
|λ| = 1; z 	 U(1) 	 S1 and U(n)/SU (n) 	 U(1), z. SU (n) = U(n). For n ≥ 2,
SU (n) is a simple, semisimple and simply connected Lie group. PU(n) = U(n)/z

is called the projective unitary group. PU(n) 	 SU (n)/z ∩ SU (n), z ∩ SU (n) 	
Z/nZ (PU(n) is locally isomorphic to SU (n)). U(n) and SU (n) are compact Lie
groups.

1.1.1.2 Table of Principal Subgroups of GL(n, C)—cf. Fig. 1.1

Interpretation: “SL(n,C) → GL(n,C)” means that SL(n,C) is a subgroup of
GL(n,C). For a complex matrix α ∈ GL(n,C) we put

α∼ = (tα)−1 = t (α−1).

For all α ∈ GL(n,C), α = α if and only if α ∈ GL(n,R), α = α∼ iff α ∈ U(n,C),
α = α = α∼ iff α ∈ O(n,R), α = α∼ iff α ∈ O(n,C).

1.1.1.3 Orthogonal groups

Thus,O(n,C) = {α ∈ GL(n,C) : (tα)−1 = α∼ = α},O(n,R) = GL(n,R)∩U(n),
SO(n,R) = SL(n,C) ∩O(n,R). SO(n,R), denoted also by O+(n,R), is a normal
subgroup ofO(n,R) of index 2.O(n,R) and SO(n,R), often respectively denoted by
O(n) and SO(n), are both compact Lie groups, and SO(n) is the connected component
of the identity in O(n).

to Z2⊕Z2 when n ≡ 0 (mod 4), (Cf. E. Cartan, Annali di Matematica, t. 4, 1927, pp. 209–
256). As found out by E. Cartan (E. Cartan, op. cit.), the simply connected representatives of
the exceptional structures G2, F4, E6, E7, E8 possess centers that respectively are cyclic of
respective orders 1, 1, 3, 2, 1. Up to isomorphism, there exists only one group of respective
structure G2, F4, E8. At last we have the following classical isomorphisms (Cf. for example
Armand Borel, Collected Papers, Volume I, Springer-Verlag, 1983, p. 363) Spin 3	 SpU (1),
Spin 4 	 SpU (1) × SpU (1), Spin 5 	 SpU (2), Spin 6 	 SU (4). F4 ⊃ Spin 9 ⊃ Spin 8
⊃ T , where T is a four-dimensional torus, maximal in each of the other groups (A. Borel,
op. cit., p. 380).
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GL (n, R )

SO (n, R )

O(n, R )

U(n, C )

SU (n, C )

GL (n, C )

SL (n, R )

SL (n, C ) O(n, C )

Fig. 1.1. Classical groups

SO(n), n ≥ 3, is a connected Lie group, and not a simply connected group. As
mentioned before, SO(n) possesses a twofold simply connected covering group de-
noted by Spin n. We recall that SO(n,C), the subgroup of elements of O(n,C) with
determinant 1, is called the complex special orthogonal group.

1.1.2 Symplectic Groups: Classical Results

Let E be a 2n-dimensional linear space over a field K , endowed with a bilinear
non-degenerate skew-symmetric form [ ]: (x, y) ∈ E2 → [x|y] ∈ K . E is called
a symplectic space over K . The group consisting of linear automorphisms of E that
leave [ | ] invariant is called the symplectic group, denoted by Sp(E).

Let E be K2n; for all X, Y ∈ E, with respective coordinates xj , yk , with respect
to the standard basis of K2n,

[X | Y ] =
n∑

j=1

(xj yj+n − xj+nyj )

is called the standard symplectic product of K2n. Then, Sp(E) is called the standard
symplectic group and denoted by Sp(2n,K) in France, and often Sp(n,K) in other
countries. We choose the notation Sp(2n,K). Any matrix in Sp(2n,K) is always of
determinant 1 and the center z of Sp(2n,K) consists of I and−I . The quotient group
of Sp(2n,K) by its center z is called the projective symplectic group over K . For
n ≥ 1 and K = R,C, the group PSp(n,K) is always simple.

1.1.3 Classical Algebraic Results

1.1.3.1 Classical Lie Algebras of Principal Subgroups of GL(n, C)

We recall the following classical results: Let E be a finite n-dimensional vector space
over R. Let L(E) be the associated algebra of linear endomorphisms of V , and let
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GL(E) = {x ∈ GL(E), det x �= 0} be viewed as a Lie group. As usual, we denote the
Lie algebra of GL(E) by gl(E).

We can identify gl(E) with L(E) and we have [X | Y ] = XY − YX, for all
X, Y ∈ gl(E). Therefore, the Lie algebra of GL(n,R) is identical with M(n,R), the
classical algebra of all square real matrices of degree n. The dimension of M(n,R)

is n2 over R. In the same way we obtain the following list:5

GL(n,C) gl(n,C) 	 M(n,C), dimension: 2n2 over R.
SL(n,C) sl(n,C) 	 {X ∈ M(n,C),Tr X = 0}, dimension: n2 − 1 over C,

2(n2 − 1) over R.
U(n,C) u(n,C) 	 {X ∈ M(n,C),t X = −X} consisting of skew-hermitian

matrices, dimension n2 over R.
O(n,C) o(n,C) 	 {X ∈ M(n,C),t X = −X}, consisting of complex skew-

symmetric matrices, dimension: n(n− 1) over R.
SU (n,C) su(n,C) 	 {X ∈ M(n,C),t X = −X, T r(X) = 0} consisting of

skew-hermitian matrices with null trace.
GL(n,R) gl(n,R) 	 M(n,R), dimension n2 over R.
SL(n,R) sl(n,R) 	 {X ∈ M(n,R), T r(X) = 0} consisting of real matrices

with null trace, dimension n2 − 1 over R.
O(n,R) o(n,R) 	 {X ∈ M(n,R),t X = −X}, consisting of real skew-

symmetric matrices with null trace, dimension: n(n− 1)/2 over R.
SO(n,R) so(n,R) 	 {X ∈ M(n,R),t X = −X}, consisting of real skew-

symmetric matrices with null trace.

1.1.3.2 Other Groups and Their Lie Algebras

Let U(p, q) be the group of matrices in GL(p + q,C), which leave invariant the
hermitian form:

z1z1 + · · · + zpzp − zp+1zp+1 − · · · − zp+qzp+q

SU (p, q) = U(p, q) ∩ SL(p + q,C).

We remark that we have U(n) = U(n, 0) = U(0, n) and SU (n) = U(n) ∩
SL(n,C), SU ∗(2n): the group of matrices in SL(2n,C) which commute with the
transformationψ of C2n given by

(z1, . . . , zn, zn+1, . . . , z2n)→ (zn+1, . . . , z2n,−z1, . . . ,−zn)

SO(p, q): the group of matrices in SL(p + q,R) which leave invariant thequadratic
form

x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

p+q .

(We find again that SO(n) = SO(0, n) = SO(n, 0).)

5 This list found out by E. Cartan is given, pp. 339–359, in the following book: S. Helgason,
Differential Geometry and Symmetric Spaces, 1962,Academic Press, NewYork and London.
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SO∗(2n) the group of matrices in SO(2n,C) which leave invariant the skew-
hermitian form

−z1zn+1 + zn+1z1 − z2zn+2 + zn+2z2 − · · · − znz2n + z2nzn

In the original Elie Cartan’s list Sp(2n,C) (denoted there by Sp(n,C)) is defined
as the group of matrices in GL(2n,C) which leave invariant the exterior form

z1 ∧ zn+1 + z2 ∧ zn+2 + · · · + zn ∧ z2n

and Sp(2n,R), denoted there by Sp(n,R), is defined as the group of matrices in
GL(2n,R) which leave invariant the exterior form

x1 ∧ xn+1 + x2 ∧ xn+2 + · · · + xn ∧ x2n

SpU (p, q) the group of matrices in Sp(2(p + q),C), or in Sp(p + q,C) with
Cartan’s notations which leave invariant the hermitian form tZKpqZ where

Kpq =


−Iq 0 0 0

0 Ip 0 0
0 0 −Iq 0
0 0 0 Ip


By definition SpU (n) = SpU (0, n) = SpU (n, 0) and SpU (n) = Sp(2n,C) ∩

U(2n). The Lie algebras of these groups are respectively:

up,q =
(

Z1 Z2
tZ2 Z3

)
Z1, Z3 skew-hermitian of order q and p respectively,
Z2 arbitrary

sup,q =
(

Z1 Z2
tZ2 Z3

)
Z1, Z3 skew-hermitian of order q and p respectively,
Tr Z1 + Tr Z3 = 0, Z2 arbitrary

su∗(2n) =
(

Z1 Z2

−Z2 Z1

)
Z1, Z2 n× n complex matrices, Tr Z1 + Tr Z1 = 0

so(p, q) =
(

X1 X2
tX2 X3

)
All Xi real, X1, X3 skew-symmetric of order q and p

respectively, X2 arbitrary

so∗(2n) =
(

Z1 Z2

−Z2 Z1

)
Z1, Z2 n×n complex matrices,Z1 skew,Z2 hermitian.

sp(2n,C) =
(
Z1 Z2
Z3 −tZ1

)
Z1, Z2, Z3 complex n × n matrices, Z2 and Z3
symmetric.

sp(2n,R) =
(
X1 X2
X3 −tX1

)
X1, X2, X3 real n×n matrices, X2 and X3 symmetric.
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spu(p, q) =


Z11 Z12 Z13 Z14

−t Z̄13 Z22
tZ11 Z21

−Z13 Z14 Z11 −Z12
tZ14 −Z24 −tZ12 Z22


Zij complex matrix,Z11 andZ13
of order q, Z12 and Z14 q × p

matrices, Z11 and Z22 are skew-
hermitian, Z13 and Z24 are sym-
metric.

We recall the following result:

1.1.3.1.1 Theorem The groups SU (p, q), SU ∗(2n), SO∗(2n), Sp(2n,R), SpU (p, q)

are all connected. SO(p, q), 0 < p < p + q has two connected components.6

1.1.4 Classic Groups over Noncommutative Fields

1.1.4.1 Classic Results

Let E be a right linear space over a noncommutative fieldK . We recall that the set of
all linear transformations of E becomes a group under the classical composition of
mappings, called by definition the general linear group of E and denoted by GL(E).
Such a group is isomorphic to the multiplicative group of all invertible square matri-
ces of degree n, with coefficients in K . The corresponding commutator subgroups,
respectively denoted by SL(E) and SL(n,K), are called the special linear group of
degree n on E and over K , respectively. The center z of GL(n,K) is the set of all
scalar matrices associated with nonzero elements in the center of K .

Let C be the commutator subgroup of the multiplicative group K∗ of K . For
n ≥ 2, GL(n,K)/SL(n,K) is isomorphic to K∗/C.7 The center z0 of SL(n,K) is
the set {αI, αn ∈ C}.

The quotient group PSL(n,K) = SL(n, k)/z0 is called the projective special
linear group of degree n over K . Since K is a noncommutative field, if n ≥ 2,
PSL(n,K) is always a simple group.

1.1.4.2 U(n, K, f ): Unitary Group Relative to an ε-Hermitian Form

We recall some basic results. Let K be a field (commutative or noncommutative).
Let J be an antiautomorphism of K [for all α, β ∈ K , (α + β)I = αJ + βJ ,
(αβ)J = βJ αJ and J is a bijection from K onto K]. J is called an involution of K .
Let E be a right linear n-dimensional space on K . By definition, a sesquilinear form8

relative to J is a mapping f : E ×E→ K such that for all x, x1, x2, y, y1, y2 ∈ E,
for all λ,µ ∈ K ,

6 Helgason, op. cit. p. 346.
7 One defines forA ∈ GL(n,K) an element det A = K∗/C called the determinant ofA, which

leads to such an isomorphism. The theory developed by J. Dieudonné gives the ordinary
case for a classical field K. (Cf. J. Dieudonné, La Géométrie des Groupes Classiques,
op. cit.)

8 We choose the definition given by J. Dieudonné, La Géométrie des Groupes Classiques, op.
cit., p. 10.
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1. f (x1 + x2, y) = f (x1, y)+ f (x2, y);
2. f (x, y1 + y2) = f (x, y1)+ f (x, y2);
3. f (xλ, y) = λJ f (x, y);
4. f (x, yµ) = f (x, y)µ.

If, moreover, f (y, x) = f (x, y)J , then f is called a hermitian form relative to
J . If f (y, x) = −f (x, y)J , f is called a skew-hermitian form relative to J . If
J = 1K , then a hermitian form is a symmetric bilinear form, and a skew-hermitian
form is an antisymmetric bilinear form.

A linear space E endowed with a nondegenerate hermitian form f is called a
hermitian linear space, and f (x, y) is called the hermitian inner product of x, y ∈ E.

Suppose now E = ±1 and K is a field of characteristic zero and let A = R,C,
or H (or more generally a division algebra D over K) with centerA1 and with [A1 :
K] = d , [D : A1] = r2.9 Let E be an n-dimensional linear space over K with
the structure of a right A-module. Let us assume that A has a K-linear involution
J . An A-valued E-hermitian form f with respect to J is by definition a map f

from E × E → K such that f (x, yλ) = f (x, y)λ and f (y, x) = Ef (x, y)J ,
f (x1 + x2, y) = f (x1, y)+ f (x2, y), f (x, y1 + y2) = f (x, y1)+ f (x, y2).

Let A denote the algebra of D-linear transformations of V . For a fixed basis of E
we have A 	 M(n,D). Let e = {e1, . . . , en} be a fixed basis of E. Then f may be
expressed byF , a hermitian square matrix of degree n such that f (x, y) = (tX)J FY ,
where X, Y, F are respective the matrices of x, y, f relative to the basis e. To any
nondegenerate A-E-hermitian form f we can associate an involution∗, namely its
relative adjunction classically defined as follows: for any linear operator a of A,
f (ax, y) = f (x, a∗y), or in matrix notation, if A is the matrix of a relative to e, then
A∗ = (H−1)tAJ H . This result will be used later.

An involution J is of the first kind if it fixes all elements in the center of the
algebra, and of the second kind otherwise.

We have

dimA+1
A+ =

{
1
2 (r

2 + ηr) if J is of the first kind,

r2 if J is of the second kind,

where A± = {a ∈ A|aJ = ±a} and A±1 = A± ∩ A1 and η = ±1 is the sign of
the involution J . The sign of an involution ∗ of A is defined similarly. We will often
write that the sign of ∗ is = 0 if ∗ is of the second kind.

One can verify that if J is of the first kind with sign η and if ∗ is defined by an
(A, E)-hermitian form relative to J , then ∗ is of the first kind with sign Eη.

Let A denote the algebra of D-linear transformations on E. For the fixed basis
e = {ei}, one has A 	 M(n,D). We define A× = GL(E | A) = {the multiplicative
group of units of A},

A(1) = {a ∈ A×/N(a) = 1} = SL(E | D),

9 When K ′ is an extension field of a field K , the “degree” of the extension is denoted by
[K ′:K], and when K ′ | Kis a Galois extension, the Galois group is denoted by Gal(K ′ | K).
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where a unit is an invertible element and N denotes the reduced norm relative to its
centerK1. The corresponding matrix groups are respectively denoted by GL(n,A)

and SL(n,A). The Lie algebra of SL(n,A) is sl(n,A) = {X ∈ M(n,A)/Tr X = 0},
where Tr is the reduced trace of A relative to the center K1 of K .10

We define the unitary group and the special unitary group by

U(E, h) = {a ∈ GL(E|A)/h(ax, ay) = h(x, y), (x, y) ∈ E2}
= {a ∈ GL(E|A)/AJ A = 1},

SU (E, h) = U(E, h) ∩ SL(E|A)}.
The corresponding matrix groups are classically respectively denoted by U(n,A, h),
and SU (n,A, h). For instance,

SU (n,A, h) = {A ∈ SL(n,A)/tAJ HA = H }.
The corresponding Lie algebra is

su(n,A, h) = {X ∈ sl(n,A)/tXJ +X = 0}.
When A = K , an E-hermitian form is called E-symmetric, i.e., symmetric or alter-
nating according as the sign E = 1 or −1, and the corresponding unitary group is
called an orthogonal group or symplectic group. In this case the letter is respectively
replaced by O or Sp.

More precisely, we recall that for J = 1 and E = 1 a unitary transformation
is called an orthogonal transformation and the corresponding group is then denoted
by O(n,K, f ). For J = 1 and E = −1, in the same way, we obtain a symplectic
transformation, and the corresponding symplectic group is denoted by Sp(2n,K)

(or often Sp(n,K)). (One can verify that in these cases, the groups associated with
different choices of f are mutually isomorphic.) Let f be an E-hermitian form on
E; f is called an E-trace form |f | if for all x ∈ E, there exists λ ∈ K such that
f (x, x) = λ+ EλJ . If J = 1 and E = −1 (K commutative) or E = 1 and K is not
of characteristic 2, then any E-hermitian form is an E-trace form.

The classic Witt theorem can be proved in the following way: If f is an E-trace
form, a linear mapping v of any subspace F of E into E such that for all x, y ∈ F ,
f (v(x), v(y)) = f (x, y), can be extended to an element u of the unitary group
U(n,K, f ) associated with f . Thus, U(n,K, f ) acts transitively on the maximal
totally isotropic subspaces, and their common dimension is the index m of f . If the
field K is the classic skew field H (or more generally a quaternion algebra over a
Pythagorean ordered field P ) and f is a skew-hermitian form, according to a result
of J. Dieudonné, there exists an orthogonal basis ei of E such that f (ei, ei) = j

10 The following definitions can be found in A. A. Albert, Structure of algebras, op. cit., p. 122.
Let A be an algebra over K , L an algebraically closed scalar extension of K . Let ∧ be any
ν-rowed representation a → a∗ of A by A∗. The determinant of a∗ is called the reduced
norm N∧(a) and the sum of the diagonal elements of a∗ is called the reduced trace T∧(a),
for any a ∈ A.
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(quaternion unit), 1 ≤ i ≤ n. We will use this result later.11 (In this case, the unitary
corresponding group U(n,K, f ) is determined by only n and K .)

1.1.4.3 Results Concerning the Cases of K = R, C, H

Then GL(n,K), SL(n,K), and U(n,K, f ) are all Lie groups, and SL(n,K) and
U(n,K, f ) are simple Lie groups except for the following cases:

(α) n = 1, K = R or C,

(β) n = 2, K = R, J = 1, E = 1

(γ ) n = 4, K = R or C, J = 1, E = 1,m = 2.

In cases (α), (β), they are commutative groups; in case (γ ), they are locally direct
sums of two noncommutative simple groups.

1.1.4.4 Case of K = H

H contains C as a subfield and a vector spaceE of dimensionn over H has the structure
of a vector space of dimension 2n over C. Thus, GL(n,H) can be considered as a
subgroup of GL(2n,C) in a natural way.

Real Forms of GSL(n, C), SO(n, C), Sp(2n, C)

Each of these classical simple groups has the structure of an algebraic classical simple
group defined over R. The real forms ofG, i.e., the algebraic subgroups ofG, the scalar
extension of which to C is G, can be viewed as SL(n,K), U(n,K, f ) corresponding
to K = R,C,H.

A real form of a complex classical group G is conjugate in G to one of the
following groups:

(i) The real forms of SL(n,C): SL(n,R) (type AI), SL(k,H), only for n = 2k, (type
AII), and the special unitary group SU (n,m,C), 0 ≤ m ≤ [n/2], relative to a
hermitian form of index m (type AIII). ([x] denotes the integer part of the real
number x.)

(ii) The real forms of SO(2n+1,C): the proper orthogonal group SO(2n+1,m,R),
0 ≤ m ≤ n (type BI), relative to a quadratic form of index m on a space of
dimension 2n+ 1.

(iii) The real forms of SO(2n,C): SO(2n,m,R), 0 ≤ m ≤ n (type DI), and
U(n,H, f ) relative to a skew-hermitian form f on H (type DIII).

(iv) The real forms of Sp(2n,C): Sp(2n,R), type CI, the unitary group U(2n,
m,H), 0 ≤ m ≤ n, relative to a hermitian form of index m on H (type
CII); and SpU (n)—often denoted by Sp(n)—corresponds to the special case
m = 0.

11 Dieudonné J., La Géométrie des Groupes Classiques, op. cit., p. 16.
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The quotient groups of these real forms by their centers can be realized12 as the groups
of automorphisms of semisimple algebras with involutions J that commute with J .

1.2 Clifford Algebras

As pointed out by N. Bourbaki,13 in 1876 William Clifford introduced the algebras
known as Clifford algebras and proved that they are tensor products of quaternion
algebras or of quaternion algebras by a quadratic extension.14 Let us first recall some
classical results concerning quaternion algebras.

1.2.1 Elementary Properties of Quaternion Algebras

1.2.1.1 Definition Let K be a field of characteristic different from 2. A quaternion
algebra A over K is, by definition, a central simple associative algebra over K with
[A : K] = 4. If A is not a division, one has A 	 M(2,K), in which case A is called
a “split” quaternion algebra.

Let a1, a2 ∈ K×; one can define a quaternion algebra A(a1, a2) as an algebra
with unit element 1 over K generated by two elements e1, e2 that satisfy the following
relations: e2

1 = a1, e2
2 = a2, e1e2 = −e2e1. As usual, we set e0 = 1, e3 = e1e2,

a3 = −a1a2. Then {e0 = 1, e1, e2, e3} is a basis of A(a1, a2) over K with the
following table of multiplication:

second factor

first factor e1 e2 e3

e1 a1 e3 a1e2

e2 −e3 a2 −a2e1

e3 −a1e2 a2e1 a3

where e2
i = aie0, (1 ≤ i ≤ 3) and eiej = −ej ei . A(a1, a2) is often denoted by

( a1,a2
K

). We have the following statement.15

12 A. Weil, Algebras with involutions and the classical groups, Collected Papers, Vol. II, pp.
413–447 Springer-Verlag, New York, 1980.

13 N. Bourbaki, Eléments d’Histoire des Mathématiques, Hermann, Paris 1969, p. 173.
14 W. K. Clifford, Mathematical Papers, London, Macmillan, 1882, pp. 266–276. This fact

can be classically illustrated by the construction due to Brauer and Weyl of the Clifford
algebra associated with a standard complex regular space, which is for n even, n = 2r ,
isomorphic to m(2r ,C), the total matrix algebra of degree 2r with coefficient in C, and for
n odd, n = 2r+1 isomorphic to the direct sum m(2r ,C)

⊕
m(2r ,C) of two copies of such

an algebra (cf. exercises below).
15 Cf. I. Satake, op. cit. pp. 270–273.
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1.2.1.2 Proposition Let A be a quaternion algebra over K . There exists a unique
involutionJ0 ofA(a1, a2),q �→ qJ0 of the first kind satisfying the following mutually
equivalent conditions:

(1) {q ∈ A | qJ0 = q} = K .
(2) The sign of J0 is −1.
(3) The reduced trace of q ∈ A is given by Tr(q) = qJ0 + q.
(4) The reduced norm N(q) of q ∈ A is N(q) = qqJ0 . In the case of A(a1, a2) for

q = e0α0 + e1α1 + e2α2 + e3α3, qJ0 = e0α0 − e1α1 − e2α2 − e3α3 and

N(q) = qqJ0 = α2
0 −

3∑
i=1

aiα
2
i .

It is well known that Cl(A) denotes the Brauer class of A16 and if 2B(K) denotes
the subgroup of the Brauer group B(K) consisting of all elements of order at most
two, Cl(A(a1a2)) leads to a bilinear pairing

K×/(K×)2 ×K×/(K×)2 →2 B(K).

Moreover, Cl(A) = 1, (A(a1, a2) is a “split” quaternion algebra), iff the equation
a1x

2
1 + a2x

2
2 = 1 has a solution in K . Thus, the classical real quaternion algebra

16 We recall some classical definitions (T. Y. Lam, The algebraic theory of quadratic forms,
op. cit. chapter 4 for example): Let A be a finite-dimensional algebra over a field K: briefly
we will call it a K-algebra. Let S be a subset of a K-algebra; CA(S) = {a ∈ A : as = sa,
for all s ∈ S} is called by definition the centralizer of S: CA(A) = Z(A) is the center of
A. A is called K-central (or central over K) iff its center Z = K1. A is called simple iff A
has no proper two-sided ideals. A is called a central simple algebra (C.S.A.) over K iff A

is both K-central and simple. We have the following statements:

Theorem. If A, B are K-algebras, and A′ ⊂ A,B ′ ⊂ B are subalgebras, then
CA⊗B(A′ ⊗ B ′) = CA(A′) ⊗ CB(B ′). If A, B are K-central, A ⊗ B is K-central. If A

is a C.S.A. over K and B a simple algebra, A⊗ B is simple. If A, B are both C.S.A. over
K , A⊗ B is C.S.A. over K .

Definition. Let A, A′ be both C.S.A. over K . A is similar to A′ if there exist finite-
dimensional spaces V and V ′ such that A ⊗ EndV 	 A′ ⊗ EndV ′ as K-algebras. This
relation of similarity is an equivalence relation. The set of similarity classes of C.S.A.s
becomes a semigroup with [K] = [M(n,K)] as the identity, denoted by B(F).

Proposition and Definition. For any K-algebra A, let A0 denote the opposite algebra. If
A is a C.S.A., A0 is a C.S.A. and A ⊗ A0 	 End A (algebra of linear endomorphisms of
A). In particular, B(F) is an abelian group with [A]−1 = [A0] for any C.S.A. A. B(F) is
called the Brauer group of A. C.

C. T. C. Wall, as clearly pointed out by T. Y. Lam (op. cit. pp. 95–96), first “observed
that it is possible and (expedient) to define a “graded Brauer group” using similarity classes
of central simple graded K-algebras (CSGA). Wall’s ‘graded Brauer group’ has since been
known as the Brauer–Wall group (written BW(F)).” Example (T. Y. Lam, op. cit, p. 117):
BW(R) = Z/8Z.
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H = A(−1,−1), often denoted by (−1,−1
R ), is the unique division quaternion algebra

over the real field R.
When K is a local field or an algebraic number field of finite degree, the previous

pairing is surjective and complete. Therefore, a central division algebra B over such
a field K with an involution J of the first kind is necessarily a quaternion algebra,
and any involution of B of the first kind with sign η can be written as q → f−1qJ f ,
where f belongs to the multiplicative group of units of B and fJ = −ηf .

Let B = (a, b/K) be a quaternion division algebra over K and let K ′ = K(
√

a).
Then we have an isomorphism B ⊗K K ′ 	 M(2,K ′) determined by

M(e1) =
(√

a 0
0 −√a

)
,

M(e2) =
(

0 b

1 0

)
.

Let us denote by eij the corresponding units in B ⊗K K ′:

e11 = 1

2

(
1+ 1√

a
e1

)
, e12 = 1

2b

(
e2 + 1√

a
e1e2

)
,

e21 = 1

2

(
e2 − 1√

a
e1e2

)
, e22 = 1

2

(
1− 1√

a
e1

)
.

Let Gal(K ′ | K) = {1, l0}, where l0 is the nontrivial automorphism of K ′ over K

determined by
√

a
l0 = −√a. We have the following relations: e

l0
12 = e22, e

l0
12 =

b−1e21, and

M(D) =
{(

u bv

−vl0 ul0

)/
u, v ∈ K ′

}
.17

1.2.2 Clifford Algebras

1.2.2.1 Definitions and Basic Results

Let K be a field of characteristic different from 2. Let E be a vector space of dimension
n over K . Let q denote a regular quadratic form on E and let B be the corresponding
nondegenerate symmetric bilinear form such that for any x ∈ E, q(x) = B(x, x).
(E, q) is called a regular quadratic space. Hence, we have q(x) = B(x, x) = tXBX,
where X and B denote respectively the matrices of x ∈ E and of B with respect to a

17 Thus we find the classical representation of H = (−1,−1
R ) as the real algebra of matrices

H =
(
u −v

v u

)
,

where for v = β + iγ , vl0 = v = β − iγ is the classical conjugate of v (cf. exercises).
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given basis e of E. As is well known, there exists an orthogonal basis e = {e1, . . . , en}
of E such that for any

x =
n∑

i=1

eixi ∈ E,

we have

q(x) =
n∑

i=1

aix
2
i ,

or equivalently, B(ei, ej ) = δij ai (1 ≤ i, j ≤ n). By definition,

�(q) = (−1)
n(n−1)

2

n∏
i=1

ai (mod(K×)2)

is the “discriminant” of q.

The construction of a Clifford algebra associated with a quadratic regular space
(E, q) is based on the fundamental idea of taking the square root of a quadratic form,
more precisely of writing q(x) as the square of a linear form ϕ on E such that for any
x ∈ E, q(x) = (ϕ(x))2.

1.2.2.2 Clifford Mappings

Let A be any associative algebra with a unit element 1A.

1.2.2.2.1 Definition A Clifford mapping f from (E, q) into A is a linear mapping f

such that for any x ∈ E, (f (x))2 = q(x)1A. By polarization, we obtain f (x)f (y)+
f (y)f (x) = 2B(x, y)1A, for any x, y ∈ E.

1.2.2.3 Clifford Algebra C(E, q)

1.2.2.3.1 Definition For a given quadratic regular space (E, q) we define a Clifford
algebra associated with (E, q) to be any pair (C, fC), where C is an associative
algebra over K with a unity 1C and fC is a Clifford mapping from (E, q) into
C such that:

(1) 1C and fC(E) linearly generate C.
(2) For any Clifford mapping f from (E, q) into the associative algebra A with unity

1A, there exists an algebra homomorphismF fromC intoA such that f = F ◦fC .

We recall the following classical theorems:

1.2.2.3.2 Theorem Any quadratic regular space (E, q) possesses a Clifford algebra
which can be defined as the quotient of the tensor algebra T (E) ofE1 by the two-sided
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ideal I (q) of T (E) generated by the elements x ⊗ x − q(x)1, for any x ∈ E.
The resulting quotient associative algebra T (E)/I (q) is then denoted by C(E, q)

and called the Clifford algebra of the quadratic regular quadratic space (E, q). The
composite of the canonical injective mapping E → T (E) and of the projection
T (E) → C(E, q) is a linear injection fC : E → C(E, q). It becomes a Clifford
mapping from E into C(E, q) and leads to the identification of E with fC(E).

If the dimension of E over K is n, then C(E, q) is 2n-dimensional over K . If
{e1, . . . , en} is a basis of E, then 1, ei, eiej , (i < j), . . . , e1e2 · · · en, form a basis of
C(E, q). In particular, if {ei}1≤i≤n is an orthogonal basis of E relative to q, we have

(α) eiej = −ej ei , (ei)
2 = q(ei)1 (i, j = 1, 2, . . . , n, i �= j ). (Furthermore,

x2 = q(x)1C for any x ∈ E.) In this case C(E, q) may be defined as an associative
algebra (with a unit element) generated by the {ei} together with the relations (α).18

The case q = 0 leads to C(E, q = 0) 	 ∧E (the Grassmann or exterior algebra
over E).

1.2.2.4 The Principal Automorphism π and
the Principal Antiautomorphism τ of C(E, q)

1.2.2.4.1 Theorem There exists a unique automorphism π of the algebra C(E, q)

such that π(x) = −x for any x ∈ E. This automorphism π is called the principal
automorphism of C(E, q), and π2 = 1.

There exists a unique antiautomorphism τ of the algebraC(E, q) such that τ(x) =
x for any x ∈ E. This antiautomorphism τ is called the principal antiautomorphism
of C(E, q), and we have τ 2 = 1.

ν = π ◦ τ = τ ◦ π is the unique antiautomorphism of C(E, q) such that for any
x ∈ E, ν(x) = −x. For any a ∈ C(E, q) we often write ν(a) = a∗ or ã; ν is often
called the conjugation of C(E, q).

1.2.2.5 The Even Clifford Algebra C+(E, q)

1.2.2.5.1 Theorem Let e = {e1, . . . , en} be an orthogonal basis relative to q. With
the above notation, we have the following relations:{

(ei)
2 = ai (1 ≤ i ≤ n),

eiej + ej ei = 0 (1 ≤ i, j ≤ n, i �= j).

We put C+ = {ei1 · · · eim(i1 < · · · < im),m even}K (i.e., the linear space over K

generated by the (ei1 · · · eim), m even), C− = {ei1 · · · eim(i1 < · · · < im),m odd}K .
Since the two-sided ideal I (q) is generated by “even” elements, the definition of

C± is independent of the basis.

18 Regularity is not required in the definitions above, but only quadratic regular spaces will be
considered.
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C = C+⊕C− as a vector space, (C+)2 = (C−)2 = C+,C+C− = C−C+ = C−.
Thus C(q) = C+ ⊕ C− has the structure of a graded algebra with the index group
{±1}. The elements of C+ (respectively C−) are called respectively even elements
and odd elements. C+ and C− are both linear subspaces of C(E, q) with the same
dimension 2n−1, as respective eigenspaces of C(E, q) for the eigenvalue 1, respec-
tively−1, of the principal automorphism π of C(E, q). C+ is a subalgebra of C with
the same unit element 1C(E,q).

If q �= 0, the subalgebra C+ of C can be expressed as the Clifford algebra of any
subspace E1 = u⊥ of E, the orthogonal space of a regular vector u for the quadratic
form q1 = −q(u)q. For such a structure of C+ the conjugation ν1 is the restriction of
the conjugation ν of C, and the principal automorphism π1 is the inner automorphism
of C+ directed by u.

If for a fixed p ∈ N we call Cp the
(
n
p

)
-dimensional subspace of C spanned by the

products eA = eα1eα2 · · · eαp , 1 ≤ α1 < α2 < · · · < αp ≤ n, with exactly p factors,
then C is the direct sum of the subspaces Cp. C0 is identified with the field K , and
C1 with the vector space E. Thus19,20

C+ =
∑

p even

Cp, C− =
∑
p odd

Cp.

1.2.2.5.2 Proposition C and C+ are semisimple algebras over K , and the centers of
C and C+ are given as follows:

Cent C Cent C+

n even K {1, eN }K
n odd {1, eN }K K

where eN = e1 · · · en.21

Then C (n even) and C+ (n odd) are central simple algebras over K .
The anticenter A of C(E, q) is defined as the linear space of the elements a of

C(E, q) that anticommute with any x ∈ E, or equivalently, that commute with even
elements of C and anticommute with odd elements of C(E, q).

If n is odd, A = {0}. If n is even A = KeN with eN = e1 · · · en. Furthermore, C
(n even) and C+ (n odd) both are in the Brauer class of ⊗i<j ((−1)i+1ai, (−1)j aj ).

Moreover, [1, eN ]K is a field if and only if e2
N = 
(q) /∈ (K×)2, and if n is odd,

C is then a central simple algebra over the field extension K̃ = K[
√


(q)] of the
field K .

Thus, if 
(q) /∈ (K×)2, then C (n odd) and C+ (n even) are simple. Otherwise,
they are the direct sum of two isomorphic central simple algebras. In either case, it

19 Cf. for example, R. Deheuvels, Tenseurs et Spineurs, op. cit., pp. 235–238; or I. Satake,
Algebraic Structures of Symmetric Domains, op. cit., pp. 231–287.

20 The grading C =∑
p Cp = C+ ⊕ C−1 moreover C = C+ ⊕ C− is a graded Z2 algebra.

21 For a subset A of K-vector space E, AK = {· · · } denotes the linear subspace of E generated
by A.
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is known that C ∼ C+ over K(
√


(q)) where the meaning of ∼ is that all simple
components of both sides belong to the same Brauer class over K(

√

(q)).

More precisely, we have the following statement:

1.2.2.5.3 Theorem
• If dimK E is even, the Clifford algebra C(E, q) is a central simple algebra over K .
The principal automorphism π is then an inner automorphism of C.

• If dimKE is odd and if e2
N = 
(q) /∈ (K×)2, then C(E, q) is a central simple

algebra over K̃ = K(
√


(q)) = {λ1C + µeN/λ,µ ∈ K}, a quadratic extension of
K , and C = C+⊕eNC+ is an extension of C+. Finally, π(λ1C+µeN) = λ1C−µeN
is the unique automorphism of K̃ different from the neutral element, which leaves K

invariant in the Galois group of K̃:

π(a+ + eNb+) = a+ − eNb+ with a+, b+ ∈ C+.

• If dimK E is odd and if e2
N = 
(q) ∈ (K×)2, then C(E, q) is the direct sum of

two isomorphic central simple algebras both isomorphic to C+. Let e2
N = α2 ∈ K .

Let E1 = 1
2 (1 + 1

α
eN) and E2 = 1

2 (1 − 1
α
eN). We have E2

1 = E1, E2
2 = E2, E1E2 =

E2E1 = 0, E1 + E2 = 1 and eN = α(E1 − E2).

C = C+E1⊕C+E2, the two components are both simple algebras, isomorphic to
C+, and π is the automorphism of C that interchanges the units E1 and E2 and leaves
invariant the elements of C+, and then interchanges C1 = C+E1 and C2 = C+E2.

Classical example:
Let us assume that K = R and that the signature of q is (r, s).

1.2.2.5.4 Proposition

C+(r, s) ∼


R
C
H

according as

r − s ≡


0,±1
±2 (mod 8)
±3, 4

Since eτN = (−1)
n(n−1)

2 eN , the principal antiautomorphism τ is of the first kind for
C(r, s) if and only if n ≡ 3 (mod 4) and for C+(r, s) if and only if n ≡ 2 (mod 4).
As pointed out by I. Satake, when τ is of the first kind, the sign εη can be determined
by an easy computation of the dimension of the subspace of τ -stable elements.

We have the following statement:22

1.2.2.5.5 Proposition When C+(r, s) is not simple, i.e., when n is even and 
(q) ∈
(K×)2, either (in the case n ≡ 2 (mod 4)) τ interchanges the two simple components

22 I. Satake: Algebraic Structures of Symmetric Domains, op. cit, pp. 280–281.
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of C+(r, s) or (in the case n ≡ 0 (mod 4)) τ leaves the simple components fixed and
induces on each of them an involution of the first kind with the same sign.

1.2.2.6 The Clifford Groups

1.2.2.6.1 Definitions

Let G be the set of all invertible elements g in C(E, q) such that gEg−1 = E. Then
G forms a group relative to the multiplication of C(E, q). This group G is called
the Clifford group. The subgroup G+ = G ∩ C+(E, q) is called the special Clifford
group.

The linear transformation ϕ(g) : x → gxg−1 of E induced by g ∈ G belongs to
the orthogonal group O(q) of E relative to q. Furthermore, the mapping g → ϕ(g)

is a homomorphism from G into O(q). Therefore, ϕ is a representation of G on E.
This representation is called the vector representation of G. The kernel of ϕ is the
set of invertible elements in the center Z of C(E, q). If x ∈ E ∩ G, then q(x) �= 0
and −ϕ(x) is the classical reflection mapping of E relative to x⊥, the hyperplane
orthogonal to x.

If n = dim E is even, G = G+ ∪ G−, ϕ(G+) = SO(q) = O+(q), ϕ(G−) =
0−(q). G+ is a subgroup of index 2 in G.

If n = dim E is odd, ϕ(G) = ϕ(G+) = SO(q). Any elements g ∈ G can be
written as g = za1 · · · a2p with ai, 1 ≤ i ≤ 2p, regular vectors of E and z =
α1+ βeN . We note that g ∈ G+ iff β = 0 and g ∈ G− iff α = 0.

The mapping N : G+ → K∗ (the multiplicative group of K) defined by N(g) =
gτg, for any g ∈ G+, is a homomorphism and N(g) is called the spinorial norm of
g ∈ G+. The normal subgroup of G+ defined as the kernel of N is called the reduced
Clifford group and denoted by G+0 .

The subgroup ϕ(G+0 ) of SO(q) is denoted by O+0 (q) and called the reduced
orthogonal group.

Example:
Let us assume that the ground fieldK is R, the field of real numbers. Then,O+0 (Q)

coincides with the identity component of the Lorentz group O(q).

1.2.2.6.2 Definitions

The Clifford regular group G̃ is the multiplicative group of invertible elements g in
C(E, q) that satisfy, for any x ∈ E, π(g)xg−1 = y ∈ E.

The linear transformation ψ(g) : x → π(g)xg−1 induced by g ∈ G̃ belongs
to the orthogonal group O(q) of E relative to q. The mapping g → ψ(g) is a
homomorphism from G̃ into O(q). Therefore, ψ is a representation of G̃ on E, called
the regular vector representationof G̃. The kernel of ψ is K∗. G̃ is identical to the
subset of C(E, q) consisting of products of regular (or nonisotropic) vectors of E,
and G̃ can be, equivalently, defined as the multiplicative group formed, with the unit
element 1C(E, q), by products of regular vectors of E.
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If G̃+ = G̃ ∩ C+(E, q), G̃− = G̃ ∩ C−(E, q), G̃ = G̃+
⋃

G̃−, we have
G̃+ = G+, G̃− = G−, where G̃ = G if dim E is even, G̃ is the subgroup G̃+

⋃
G̃−

of G if dim E is odd. ψ is ϕ on G̃+ = G+ and ψ is −ϕ on G̃− = G−, and
ψ(G̃+) = O+(q) and ψ(G̃−) = O−(q).

The mapping N ′ : G̃→ K∗ defined by N ′(g) = ν(g).g = gνg = (π ◦τ)g ·g is a
homomorphism from G̃ into the multiplicative groupK∗ that applies the centerK∗·1C

of G̃ onto (K∗)2. N ′ is called the graded norm.
For g ∈ G̃, g = a1 · · · ak with aj , 1 ≤ j ≤ k, regular vectors of E, we have

N(g) =
k∏

i=1

q(ai)

and N ′(g) = (−1)kN(g) and g−1 = gτ /N(g) = gν/N ′(g). N ′ is N on G̃+ and N ′
is −N on G̃−. The reduced Clifford group G̃+0 = G+0 appears as the kernel of the
homomorphism N or N ′ from G̃+ into K∗.

1.2.2.7 The Spin Group Spin (E, q)

We present the following general definition of Spin(E, q).23

1.2.2.7.1 Definition For any quadratic regular space (E, q), the spin group is defined
to be the normal subgroup of the even Clifford group defined as the kernel of the norm
homomorphism24 according to the following exact sequence:

1→ Z2 → Spin(E, q)→ O+0 (q)→ 1.

If q is positive, O+0 	 SO(n,R). Then G+0 = Spin(E, q) is denoted by Spin n and
called the classical spinor group of degree n.

We recall the following classical result.25

1.2.2.7.2 Proposition (a) Let (E, q) be a quadratic regular n-dimensional complex
space or Euclidean real space. The spin group Spin(E, q) is the group consisting
of products in the Clifford algebra C(E, q) of an even number of unitary vectors in
E. Spin(E, q) is connected and simply arcwise connected and constitutes a twofold
covering of SO(E, q).

(b) Let (E, q) = Er,s be a standard pseudo-Euclidean space of type (r, s),
Spin(Er,s) = Spin (r, s), the corresponding spin group is the group consisting of
products in the Clifford algebra C(Er,s) of an even number of ai ∈ E such that
q(ai) = 1 and of an even number of bj such that q(bj ) = −1.

23 Cf., for example, R. Deheuvels, Tenseurs et Spineurs, op. cit., pp. 249–255.
24 In 1.2.2.6.1 such a subgroup was called the reduced Clifford group and denoted by G+0 .
25 Cf., for example, R. Deheuvels, Tenseurs et Spineurs, op. cit., p. 254.
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Spin(r, s) is connected and simply arcwise connected if (r, s) �= 1. Spin(r, s)
is a twofold covering of SO+(r, s) = O++(r, s), the identity component of the
“generalized Lorentz group O(r, s),” consisting of proper rotations in O(r, s) that
preserve the complete orientation of Er,s . On the other hand, Spin(1, 1) has two
connected components.26

1.2.2.7.3 Proposition Let us assume that K = R,C. The Lie algebra spin(E, q) of
Spin(E, q) is the Lie subalgebra of the Lie algebra associated with the associative al-
gebra C(E, q)27 consisting of the space C2(E, q) defined above. spin(E, q) operates

26 Following Deheuvels (R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit.),
we denote by RO(q), for a quadratic regular complex or Euclidean real space, the twofold
covering group of O(q) (according to the exact sequence 1→ Z2 → RO(q)→ O(q)→
1); RO(r, s) the twofold covering group of the standard pseudo-Euclidean real space Er,s

with (r, s) �= (1, 1) (according to the exact sequence 1 → Z2 → RO(r, s)→ O(r, s)→
1). We have the following classical exact sequences:

1→ Z2 → Spin n→ SO(n)→ 1,

1→ Z2 → Spin(r, s)→ SO+(r, s)→ 1 (with SO+(r, s) = O++(r, s)).

Some authors, such as Max Karoubi and A. Crumeyrolle and I. Satake, for example, often
introduce the following groups: Pin(r, s)—respectively Spin(r, s)—as the subgroup of the
regular Clifford group G̃—respectively even Clifford group G̃+—consisting of elements
of G̃, respectively G̃+, such that |N ′(g)| = |gνg| = 1. According to their notation, we have

1→ Z2 → Spin n→ SO(n)→ 1,

1→ Z2 → Pin(r, s)→ O(r, s)→ 1, (r, s) �= (1, 1),

1→ Z2 → Spin(r, s)→ SO(r, s)→ 1.

(We again clarify the definitions above. When (E, q) is a quadratic regular complex or
Euclidean real space, RO(E, q) is the subgroup of the regular Clifford group G̃ consisting
of elements g ∈ G̃ such that N(g) = 1 and RO+(E, q) = Spin(E, q). If (E, q) is a
pseudo-Euclidean standard space Er,s ,RO(r, s) denotes the group—previously denoted by
Pin(r, s)—of elements g ∈ G̃ such that N ′(g) = ±1 or equivalently N(g) = ±1. But with
our notation Spin(r, s) is the identity component in RO(r, s)).

Subsequently, we choose the previous convention according to the following exact se-
quences:

1→ Z2 → Spin n→ SO(n)→ 1,

1→ Z2 → Spin(r, s)→ O++(r, s)→ 1.

In the case (r, s) = (1, 1), E11 is a hyperbolic real plane. Each component of RO(1, 1)
possesses two arcwise connected components, and thus RO(1, 1) has eight connected
components.

27 It is well known that one can associate with any associative algebra A a Lie algebra by
setting [a | b] = ab − ba for any a, b ∈ A.
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in E by means of the bracket product of C(E, q):

If x ∈ E, a =
∑
i<j

λij eiej ∈ C2(E, q), then [a, x] = ax − xa ∈ E.

The linear space Spin (E, q) = C2(E, q) is isomorphic to the space ∧2(E), and
its dimension over K is 1

2n(n − 1). The linear representation of Spin(E, q) onto
C2(E, q) by inner automorphisms of C(E, q) is naturally the adjoint representation
of Spin(E, q) in its Lie algebra.

Classical examples:28

Spin 2 	 S1;
Spin3 	 SU (2) 	 SpU (1) {group consisting of classical quaternions with norm 1};
Spin 4 	 SU (2)× SU (2) 	 S3 × S3;
Spin 5 	 SpU (2);
Spin 6 	 SU (4);
Spin(1, 3) 	 SL(2,C) (cf. below, exercises).

1.2.2.8 Spinors and Spin Representations

We recall the following important statement:

1.2.2.8.1 Theorem (structure theorem of Wedderburn29) Any simple algebra30 is
isomorphic to the algebra of endomorphisms of a right vector space M over a field—
not necessarily commutative—� that is an extension of the ground field K of A. In
other words, A is isomorphic to the algebra of square matrices of degree p over the
field �, where p = dim�M . Therefore dimKA = p2dimK�.

1.2.2.8.2 Structure of Clifford Algebras for Regular Quadratic Spaces

Let E be a K-n-dimensional space. According to Proposition 1.2.2.5.2, the Clifford
algebra C(E, q) of a quadratic regular space is a central simple algebra if n is even,
the direct sum of two isomorphic central simple algebras both isomorphic to the
even Clifford algebra C+(E, q) if n is odd and if e2

N = (e1 · · · en)2 ∈ (K∗)2, and a

central simple algebra over the field K̃ = K(
√


(q)) = K(

√
e2
N) if n is odd and if

e2
N = 
(q) /∈ (K∗)2. Then the Clifford algebra is always isomorphic to an algebra

of square matrices or to the direct sum of two copies of such algebras over a field that
is not necessarily commutative.

28 We recall the following classical definition: The set of unit vectors a ∈ Rn is by definition
the unit sphere Sn−1.

29 Cf. for example: R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit., p. 340.
30 We recall that a simple algebra is an algebra A of finite dimension, with a unit element,

which has only A and {0} for two-sided ideals. A semisimple algebra A an algebra direct
sum of a finite number of simple algebras Ai . (Each Ai is a two-sided ideal of A and A is
the direct sum of the spaces Ai .)
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1.2.2.8.3 Definition Let (E, q) be a quadratic regular space and C(E, q) its Clifford
semisimple algebra. By definition we call any minimal faithful module over C(E, q)

the space of spinors associated with C(E, q). When S is the direct sum of two simple
nonisomorphic modules, (S = S1 ⊕ S2), Si(i = 1, 2) are called the spaces of half-
spinors.

1.2.2.8.4 Spin-Representations in the Case K = C(n = dim E ≥ 3)

In this caseO+0 	 SO(n,C), then we denoteG+0 by Spin(n,C) and call it by definition
the complex spinor group of degree n.

Spin(n,C) is a simply connected covering group via the covering homomorphism
ϕ. Spin(n,C) is the complexification of the compact Lie group Spin(n) and is a
complex analytic subgroup of the complex Lie group C(E, q)∗ consisting of all
invertible elements of C(E, q).

The spin representations of the group Spin(n,C)31 are defined as follows:

Case n = 2r , (n even)
C(E, q) is a central simple algebra.C(E, q) is isomorphic to a total matrix algebra

of degree 2r over C. C(E, q) possesses, up to an equivalence, a unique irreducible
representation ρ of degree 2r . We call the corresponding space S of this representation
the space of spinors for C. The representation of C+, ρ+ induced by ρ, is called the
spin representation of C+. ρ induces a representation of the Clifford group G̃ of the
even Clifford group G̃+ = G+, and of the reduced Clifford group G̃+0 , which are
respectively denoted by ρ, ρ+, and ρ+0 and are also called spin representations.

Thus, the restriction ρ+ of ρ to Spin(n,C) = G+0 (or eventually Spin n) defines
a representation ρ of degree 2r of Spin(n,C) (or eventually Spin n). Since C+ is not
simple,ρ+ is not irreducible:ρ+ is the sum of two inequivalent simple representations
both of degree 2r−1, ρ++ , and ρ+− , and the same is true for ρ+0 , the spin representations
of Spin(n,C). Thus, S can be represented in one and only one way as the sum of two
subspaces each of which yields a irreducible (or simple) representation: S = S+⊕S−.

By taking a suitable minimal left ideal P of C(E, q) as the representation space of
the representation ρ, one obtains the representation of ρ++ by putting P+ = P ∩ C+
and P− = P ∩ C−.

As pointed out by C. Chevalley, we usually choose for ρ the representation u ∈
C(E, q)→ ρ(u) such that ρ(u). vf = uvf , where f = y1y2 · · · yr with {xi}1≤i≤r
and {yj }1≤j≤r two respective bases of the respective maximal totally isotropic sub-
spaces F,F ′ such that E = F + F ′ (Witt’s decomposition) with, 2B(xi, yj ) = δij
and for P the space C(E, q)f with basis {xi1xi2 · · · xihf }1≤i1<i2<···<ih≤r . Thus
P+ = C+ ∩ S et P− = C− ∩ S. The representations ρ+ and ρ− are respectively
called the even (or odd) half-spin representations. ρ+0+ and ρ+0− are not well defined on
SO(n,C) (or eventually SO(n)). They are of valence 2 on these groups. The represen-
tations of the Lie algebra so(n,C), a complex Lie algebra of type Dr , corresponding

31 Cf., for example, C. Chevalley, op. cit., pp. 55–58.
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to ρ+0+ and ρ+0− are also called half-spin representations of this Lie algebra so(n,C).

Case n = 2r + 1 (n odd)
C(E, q) is semisimple and C+ is central simple. C+ is isomorphic to a total

matrix algebra of degree 2r over C. C+ possesses a unique—up to an equivalence—
irreducible representationρ+ that is of degree 2r , which we call the spin representation
of C+. The space S of this representation will be called the space of spinors. The
induced representations of G+, G+0 induced by ρ+ are called the spin representations
of G+, respectively G+0 , and denoted by ρ+ and ρ+0 , respectively.

Thus, ρ+0 is the spin representation of degree 2r of G+0 = Spin(n,C) (or even-
tually of Spin n). The corresponding representation of the Lie algebra so(n,C), a
complex Lie algebra of type Br , is also called the spin representation of so(n,C). We
note that ρ is not well defined on SO(n,C) (or eventually SO(n)); ρ is of valence 2
on SO(n,C) or on SO(n). As pointed out by C. Chevalley, it is possible in exactly two
ways to extend the spin representation of C+ on S to an irreducible representation of
C on S. The two representations of C that extend ρ+ are called the spin representa-
tions of C, and the induced representations of G are called the spin representations
of G.

1.3 Involutions of Algebras

We recall briefly the main results that can be found in the remarkable book of A. A.
Albert.32

1.3.1 Classical Definitions

Let A be a unitary algebra over K , K being a commutative field with characteristic
different from 2.

1.3.1.1 Definition A nonsingular linear transformation J over K of A is called a K-
involution or briefly an involution of A if J 2 = 1, (ab)J = bJ aJ , for any a, b ∈ A,
and whenever such a J exists, A is called a J -involutorial algebra.

1.3.1.2 Theorem The product S = T J of any two involutions of A is an automor-
phism over K of A.

1.3.2 J -Symmetric and J -Skew Quantities33

1.3.2.1 Definition A quantity s of A is called J -symmetric, respectively J -skew, iff
s = sJ, respectively s = −sJ .

32 A. A. Albert, Structure of Algebras, op. cit. chapter X.
33 We take the word used by A. A. Albert: “quantity” stands for “element.”
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1.3.2.2 Theorem The set SJ (A) of all J -symmetric quantities of A is a linear subset
over K of A and is a subalgebra of A iff all J -symmetric quantities are commutative
with one another.

If A = SJ (A), the algebra A is a commutative algebra. Let Z be the center of A.
Then SJ (Z) is a subalgebra of Z. The set CJ (A) of all J -skew quantities of A is a
linear subset over K of A.

For any J -involutorial algebra over K,A is the supplementary sum:A = SJ (A)⊕
CJ (A).

Let A be a J -involutorial algebra over K and let Z be the center of A. If Z contains
a regular J -skew quantity q = −qJ , then the set CJ (A) = qSJ (A), q2 is in SJ (A)

and A = SJ (A)⊕ qSJ (A).

1.3.2.3 Definition Let A be J -involutorial over K and Z be the center of A. We
call A J -involutorial of the first kind, respectively of second kind, according as
SJ (Z) = Z or SJ (Z) �= Z respectively.

We will now be particularly interested in the case that A is a simple algebra, and
we will assume that the center of A is a field R.

Every quantity q �= 0 of a field R is regular. Moreover, the subset G of all J -
symmetric quantities of R is a subfield over K of R by Theorem 1.3.2.2. Hence either
A is J -involutorial of the first kind or R contains a quantity q as in Theorem 1.3.2.2.

We have the following theorem (A. A. Albert, op. cit. Theorem 10, p. 153):

1.3.2.4 Theorem Let the center of a J -involutorial algebra A of the second kind be
a field R such that R ⊃ G (G the subfield over K of all J-symmetric quantities of
R). Then R = G(θ) is a separable quadratic field over G such that

(i) θJ = 1− θ, θ2 − θ = β in G.

(ii) A = GJ (A) ⊕ θGJ (A) = {u1, . . . , un} over R with ui = uJ
i in GJ (A).

Moreover, we can replace θ in (ii) by q = θ − 1/2 and obtain R = G(q),

(iii) qJ = −q, q2 = α in G.

1.3.3 Involutions over G of a Simple Algebra

We assume henceforth that A is a simple algebra over K . Then the center R of A is
always a field, and the subfield GJ (R) of all J -symmetric quantities of R is uniquely
determined by J . We recall the following definition given before.

1.3.3.1 Definition Let G be a subfield over K of the center R of a simple algebra A.
Then we call an involution J of A an involution over G of A if GJ (R) = G, that
is, k = kJ for k in R if and only if k is in G.

The result of Theorem 1.3.2.2 now implies that we may limit our study of the
existence of involutions over G of a normal simple algebra A over R to the discussion
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of the case that R has an automorphism C over G as follows: Either R = G, C is
the identity automorphism I , or R = G(θ) is a separable quadratic extension over
the set G consisting of all quantities of R unaltered by C, C2 = I, θ2 − θ is in G,

(iv) θC = 1− θ = θJ .

We will adopt this notation here and henceforth. If T is an involution over G of
A, then we have seen that necessarily kT = kC for every k of R. If also J is an
involution over G, we have kJ = kC = kT ;C2 = I gives kTJ = k. Combining
this result with that of Theorem 1.3.1.2 we have the following result:

1.3.3.2 Lemma Let T and J be involutions over G of A over K . Then T J is an
automorphism over the center R of A.

Complete information on the relation between any two involutions over the same
G of A is now given by the following theorem:

1.3.3.3 Theorem Let R be the center of a simple algebra A and T an involution over
G of A. Then a self-correspondence a → aJ is an involution J over G of A if and
only if there exists a regular quantity y = ±yT in A such that

(v) aJ = y−1aT y (a in A).

The correspondence S given by a ↔ y−1ay is an automorphism of A over R. If
y = ±yT then the resulting J of (v) is clearly the product J = T S and hence is a non-
singular linear transformation over G of A. Now as−1 = yay−1, aST = (y−1ay)T =
yT aT (yT )−1 = yaT y−1 = aT S−1

, ST = T S−1. Then J 2 = T ST S = T 2S−1

S = I . Also, (ab)J = (ab)ST = (aSbS)T = bST aST , so that J is an involution of
A. It is an involution over G since kT is in R, kT S = (kT )S = kT for every k of R,
S is an automorphism over R.

Conversely, let J be an involution over G. By Lemma 1.3.3.2 and a corollary of
the classical theorem of Skolem–Noether,34 S = T J is an inner automorphism of
A, aS = g−1

0 ag0 for g0 a regular quantity of A. Then aT = aSJ = (gJ
0 )aJ (gJ

0 )−1,

aJ = g−1aT g, where g = gJ
0 is regular. We apply J to aJ = g−1aT g and obtain

a = gJ (aT )J (gJ )−1 = g−1gT gg−1aT 2
g(g−1gT g)−1 = (g−1gT )a(g−1gT )−1 for

every a of A. Then γ = g−1gT is in the center R of A, gT = γg. If γ = −1 the

34 Theorem of Skolem–Noether (A. A. Albert, op. cit. p. 51, for example, or J. P. Serre,
Seminaire H. Cartan, E.N.S. 1950–1951, 2e exposé 7-01: W. A. Benjamin, Inc, 1967, New
York, Amsterdam).

Theorem: Let A be a central simple algebra finite over K , and let f and g be two
K-isomorphisms from a simple algebra B into A. Then, there exists an invertible element
x ∈ A such that for any b ∈ B, f (b) = xg(b)x−1.

Corollary: Any K-automorphism of a central simple algebra finite over K is an inner
automorphism.
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quantity y = g = −gT has the property we desire. Otherwise, y = g+gT = (1+γ )g

is a T -symmetric quantity and is regular, y−1aT y = g−1aT g = aJ as desired.
It is clear, that if J is any involution over G of A defined by a quantity y of A

satisfying (v), the multiples αy of y by nonzero quantities α of R have the property
(αy)−1aT (αy) = aJ and define the same involution J of A as y. Conversely, if
aJ = y−1aT y = y−1

0 aT y0 for every a of A, then y0y
−1aT = aT y0y

−1 for every a

of A. But a = (aT )T , y0y
−1a = ay0y

−1 for every a of A, y0y
−1 = α in R, y0 = αy.

We have shown that the quantity y of (v) is uniquely determined by J up to a nonzero
factor in R.

We remark also that if yT = y, then yJ = yT = y, and that if yT = −y, then
yJ = yT = −y.

Two involutions J and J0 are called cogredient if there exists an automorphism
S over R of A such that J0 = S−1J S. Then S is an inner automorphism of A over
R and aS = z−1az for a regular quantity z of A. But then aS−1 = zaz−1,

(vi) aJ0 = z−1y−1(zaz−1)T yz = (zT yz)−1aT (zT yz) = y−1
0 aT y0,

where y0 = zT yz. The argument above shows that the two involutions J and J0
over G are cogredient if only if the defining y0 is T -congruent to a multiple of y by
a quantity in the center.

The automorphisms S of an algebra may be thought of as replacing any fixed
representation a of its abstract arbitrary quantity by another representation aS . Now
J0 is the involution aS ↔ (aS)J0 = aSS−1J S = (aJ )S . Thus cogredient involutions
are essentially merely different representations of the same abstract involution.

1.4 Clifford Algebras for Standard Pseudo-Euclidean Spaces
Er,s and Real Projective Associated Quadrics

1.4.1 Clifford Algebras Cr,s and C+
r,s: A Review of Standard Definitions

Let V = Er,s be the standard m-dimensional pseudo-Euclidean space of type (r, s),
r+ s = m. Let (x|y) = x1y1+· · ·+xryr −xr+1yr+1−· · ·−xr+syr+s be its scalar
product, relative to an orthogonal basis ofV , namely e = {e1, . . . , en}with q(ei) = 1,
1 ≤ i ≤ r and q(ej ) = −1, r+1 ≤ j ≤ m. C(V ) = Cr,s denotes its Clifford algebra.
Cr,s is an associative algebra with a unit element 1C , 2m-dimensional over R. π is its
principal automorphism, τ its principal antiautomorphism (main involution of Cr,s),
ν = π ◦ τ = τ ◦ π the conjugation in Cr,s . C+r,s = C+(V ) denotes its even Clifford
subalgebra, 2m−1-dimensional over R. G denotes the regular Clifford groupof Cr,s .
N , respectively N ′, denotes the usual spinorial norm and the graded norm.

We recall that for q = x1 · · · xp ∈ G, the product of p regular vectors of V ,
N ′(g) = (−1)pN(g) and g−1 = gτ /N(g) = gν/N ′(g). Let J = e1 · · · em. If
m = 2k, J 2 = (−1)k+s , J τ = J ν = (−1)kJ , J −1 = (−1)k+sJ . If m = 2k + 1,
J 2 = (−1)k+s , J τ = (−1)kJ , J ν = (−1)k+1J , J −1 = (−1)k+sJ .
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SpinV = Spin(r, s) is the kernel of the restriction of the homomorphism N to
G+ = C+(V )∩G. (We recall that G+ consists of elements that can be written as the
products of an even number of regular vectors of V .) For m > 2, SpinV is connected
and included into the G++ subgroup of G+ consisting of g ∈ G+ that can be written
as the product of an even number of positive vectors of V and of an even number of
negative vectors of E.

The group Spin V linearly generates C+(V ) = C+(r, s)—(subalgebra of even
elements)—in which it is embedded. Now we are going to study in detail the nature
of the algebras Cr,s and C+r,s .

1.4.2 Classification of Clifford Algebras Cr,s and C+
r,s

According to Theorem 1.2.2.5.1, we know that the subalgebra C+ of C can be ex-
pressed as the Clifford algebra of any subspace E1 = u⊥ of E, orthogonal space to
a regular vector u for the quadratic form q1 = −q(u)q.

Thus, let us take a vector u of V such that (u | u) = ε = ±1. The mapping ϕ

from u⊥ into C+(V ) : y ∈ u⊥ → uy = ϕ(y) is such that (ϕ(y))2 = −(u | u)(y |
y) = −ε(y | y) and represents C+(V ) as the Clifford algebra of the vector space u⊥
endowed with the quadratic form induced from that of V by multiplying by (−ε) and
thus of signature (r, s − 1) if ε = −1 or (s, r − 1) if ε = 1. All such structures of
Clifford algebras for C+(V ) corresponding to different choices of u define the same
conjugation, which is identical to the restriction of τ to C+(V ).

One can establish the classifying Table 1.1, which gives explicitly the nature of
Cr,s and C+r,s , according to r − s modulo 8. Such a result is due to the nature of
the Brauer–Wall group:35 BW(R) = Z/8Z. We agree to denote by m(n, F ) the real
algebra of square matrices of degree n with coefficients in the field F = R, C, or H
(the usual noncommutative field of real quaternions). We denote by [k] the integer
part of the real k.

Proof. The construction of such a table entails the knowledge of some properties of
periodicity modulo 8 of real quadratic regular spaces.36

Let us first recall the following well-known results given in the above reference:
Cr,s⊗C1,1 	 Cr+1,s+1 (one can even use a tensor product of Z2-graded algebras);
Cr,s ⊗ C0,2 	 Cs,r+2; C1,0 	 R ⊕ R, C0,1 	 C;
Cr,s ⊗ C0,2 	 Cs,r+2; C2,0 	 C1,1 	 m(2,R), C0,2 	 H;
m(n,R)⊗m(n,R) 	 m(nm,R); C⊗ C 	 C ⊕ C;
m(n,R)⊗ R 	 m(n,R);
m(n,C)⊗ C 	 m(n,C);37

m(n,R)⊗H 	 m(n,H); H⊗ C 	 m(2,C), H⊗H 	 m(4,R);

35 C. T. C. Wall, Graded algebras anti-involutions, simple groups and symmetric spaces, op.
cit.

36 Cf., for example, T. Y. Lam, The Algebraic Theory of Quadratic Forms, op. cit., chapter 5.
37 Cf. J. P. Serre, Applications algébriques de la cohomologie des groupes, op. cit., p. 603.
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Table 1.1. Fundamental Table

r + s r − s

(mod 2) (mod 8) C+r,s Cr,s

0 0 m(2[ m−1
2 ],R)⊕m(2[ m−1

2 ],R) m(2
m
2 ,R)

1 1 m(2
m−1

2 ,R) m(2[ m
2 ],R)⊕m(2[ m

2 ],R)

0 2 m(2[ m−1
2 ],C) m(2

m
2 ,R)

1 3 m(2
m−1

2 −1,H) m(2[ m
2 ],C)

0 4 m(2[ m−1
2 ]−1,H) m(2

m
2 −1,H)

⊕m(2[ m−1
2 ]−1,H)

1 5 m(2
m−1

2 −1,H) m(2[ m
2 ]−1,H)⊕m(2[ m

2 ]−1,H)

0 6 m(2[ m−1
2 ],C) m(2

m
2 −1,H)

1 7 m(2
m−1

2 ,R) m(2[ m
2 ],C)

C0,n+8 	 C0,n ⊗ C0,8, C0,8 	 m(16,R); hence we can deduce that if C0,n 	
m(m,F), where F is the field R, C, or H, we obtain that C0,n+8 	 m(16m,F),
which leads us to the following table first given in Atiyah et al.,38 and now
classical.39

n Cn,0 C0,n CC
n = Cn,0 ⊗ C 	 C0,n ⊗ C

1 R ⊕ R C C⊕ C

2 m(2,R) H m(2,C)

3 m(2,C) H⊕H m(2,C)⊕m(2,C)

4 m(2,H) m(2,H) m(4,C)

5 m(2,H)⊕m(2,H) m(4,C) m(4,C)⊕m(4,C)

6 m(4,H) m(8,R) m(8,C)

7 m(8,C) m(8,R)⊕m(8,R) m(8,C)⊕m(8,C)

8 m(16,R) m(16,R) m(16,C)

Thus, for example, C14,0 	 m(64,H) since 14 ≡ 6 (mod 8) and C6,0 	 m(4,H).
Since Cr,s ⊗ C1,1 	 Cr+1,s+1, if we assume that r > s, we obtain

Cr−s,0 ⊗ C1,1 ⊗ · · · ⊗ C1,1︸ ︷︷ ︸
s factors

,

38 M. F. Atiyah, R. Bott, and A. Shapiro, Clifford Modules, op. cit., p. 12.
39 Cf., for example, D. Husemoller, Fibre Bundles, op. cit., p. 161.
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and furthermore C1,1 	 m(2,R)40, whence we deduce that Cr,s 	 Cr−s,0⊗m(2s ,R)

and if Cr−s,0 is isomorphic to m(m,F), we find that Cr,s 	 m(m,F)⊗m(2sm, F ),
which leads us to a previous case.

If we assume that r < s, the study of the nature of Cr,s leads to that of C0,s−r ,
whence we can deduce the nature of Cr,s in a similar way. As for the nature of C+r,s ,
it is sufficient to recall that according as a fundamental remark (1.2.2.e), C+r,s , can be
realized as the Clifford algebraC(E1), withE1= u⊥, with (u | u)= ε=±1 and there-
fore endowed with a quadratic form of signature (r, s − 1) if ε = −1 or (s, r − 1)
if ε = 1.

For example, the even Clifford algebra C+4,7 is isomorphic to m(24,H) as

4− 7 ≡ −3 ≡ 5 (mod 8), and the Clifford algebra C4,7 is isomorphic to m(24,H)⊕
m(24,H).

1.4.3 Real Projective Quadrics Q̃(Er,s)

We recall some classical results that will be developed in every detail in Chapter 2.
Let us consider again the standard pseudo-Euclidean regular space of type

(r, s), V = Er,s , with m = r + s = dim V , with its standard scalar product
(x|y) = x1y1 + · · · + xryr − xr+1yr+1 − · · · − xr+syr+s in an orthogonal basis
e = {e1, . . . , em}with q(ei) = 1 for 1 ≤ i ≤ r and q(ej ) = −1 for r+1 ≤ j ≤ r+s.

1.4.3.1 Definition The isotropic cone Q, minus its origin, is a differentiable singular
submanifold of V = Er,s . If P denotes the projection from V \{0} onto its associated
projective space P(V ), Q̃ = P(Q\{0}) is naturally provided with a pseudo-
Riemannian conformal structure of type (r − 1, s − 1). Q̃ = Q̃(Er,s) is called,
by definition, the standard real projective quadric of type (r, s).

1.4.3.2 Theorem (Definition) Let F = V ⊕H , where H is the standard real hyper-
bolic plane equipped with an isotropic basis {ε, η} such that 2(ε, η) = 1. Therefore,
F is a standard regular pseudo-Euclidean vector space of type (r + 1, s + 1). Let
Q(F), (m + 1)-dimensional, denote its isotropic cone. M = P(Q(F)\{0}), im-
age into P(F) of the isotropic cone minus its origin of F , is m-dimensional and
called the compactification of V = Er,s . M is identical to the homogeneous space
PO(F )/Sim(V ),41 quotient group of PO(F) = O(r + 1, s + 1)/Z2 by the group
SimV of similarities of V .

40 Directly for C11, there are four basis elements 1, e1, e2, and e1e2 with e2
1 = 1, e2

2 =
−1, e1e2 = −e2e1, (e1e2)

2 = 1, (e1e2)e1 = −e2, (e1e2)e2 = −e1. If we map 1 →(
1 0
0 1

)
, e1 →

(
0 1
1 0

)
, e2 →

(
0 −1
1 0

)
, and then e1e2 →

(
1 0
0 −1

)
, we get an algebra

isomorphism between C11 and m(2,R).
41 It will be shown in Chapter 2 that in fact PO(F) = O(r + 1, s + 1)/Z2 can be called the

conformal group of V = Er,s .
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Then, we have the following statement:

1.4.3.3 Proposition There is a natural mapping from Sr × Ss onto the projective
quadric M = Q̃(F ) that leads to the identification of M with the quotient of the
manifold Sr×Ss by the equivalence relation (a, b) ∼ (−a,−b), and thus Sr×Ss be-
comes a twofold covering space ofM , connected if r and s both are different from zero.

If r and s are both≥ 2, Sr × Ss is simply connected and is the universal covering
space of M , the fundamental group of which is Z2.

If r or s = 1, Sr × Ss is not simply connected and the fundamental group of
M is infinite. The special case of s = 0 is studied below. Let F = V ⊕ H . Let
{e1, . . . , er , er+1, . . . , er+s} be the standard orthonormal basis of V and {e0, en+1}
be a basis of H such that for any x in H, x = x0e0 + xn+1en+1, (x|x) = (x0)2 −
(xn+1)2.

The equation of the cone Q(F) is the following

x = (x0, x1, . . . , xn+1) ∈ Q(F) if and only if
r∑

i=0

(xi)2 −
n+1∑

l=r+1

(xl)2 = 0.

The Euclidean sphere of radius
√

2 associated with the basis {e0, . . . , en+1} of F has
the following equation:

r∑
i=0

(xi)2 +
n+1∑

l=r+1

(xl)2 = 2.

x belongs to the intersection of Q(F) and of the sphere if and only if

r∑
i=0

(xi)2 =
n+1∑

j=r+1

(xj )2 = 1,

that is, if and only if x belongs to the product of the unit sphere Sr of the stan-
dard Euclidean space Er+1, with the basis {e0, . . . , er}, by the unit sphere Ss of the
standard Euclidean space Es+1, with the basis {er+1, . . . , en+1}. Let y be any point
belonging to Q(F) \ {0}. Necessarily

∑r+1
j=0(yi)

2 = ∑n+1
j=r+1(y

j )2 = l > 0. The

generator line to which y belongs cuts Sr × Ss at the two points ± 1√
l
y. Conversely

any couple of points (a, b) ∈ Sr × Ss belongs to generator line of Q(F), which it
determines.

We have found a natural mapping from Sr × Ss onto the projective quadric
M = P(Q(F) \ {0}) which leads to the identification of M with the quotient of
the manifold Sr × Ss by the equivalence relation: (a, b) ∼ (−a,−b). Therefore
Sr × Ss becomes a two–fold covering of M , and is connected if r and s are both
different from zero. If r or s is equal to zero, M is not simply connected.
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Let a1 and a2 be two orthogonal vectors of Sr, and b1 and b2 two other orthogonal
vectors of Ss.Then, for any θ ∈ R, the point xθ = (a1 cos(θ)+a2 sin(θ), b1 cos(θ)+
b2 sin(θ)) belongs to Sr × Ss.

When θ continuously describes the segment [0, π ], xθ describes, in Sr × Ss, a
couple of half big-circles which join (a1, b1) to (−a1,−b1) and its image by the
projection P in M describes a continuous closed path ({xθ }), with origin and end-
point P((a1, b1)), which cannot be continuously deformed into a point, with keeping
fixed its origin and its endpoint. P({xθ }), which is the image in P(F ) of the plane
{(a1, b1), (a2, b2)}, is a projective line belonging to M, and any generator line of M
is of such a type.

If r and s are more than 2, Sr × Ss is simply connected and is the universal
covering of M, the fundamental group of which is Z2 (any line in M is a “generator”
of the group).

If r or s = 1, Sr × Ss is not simply connected and the fundamental group of M

is infinite.
Suppose s = 0. The equation of the cone Q(F) is then (x0)2 + · · · + (xn)2 −

(xn+1)2 = 0, and that of Sn is (x0)2 + · · · + (xn)2 = 1. Let π̃ be the mapping from
the projective quadric M onto Sn defined by

x̃ = (x0, . . . , xn+1) ∈ M �→ π̃x =
(

x0

xn+1
, . . . ,

xn+1

xn+1

)
∈ Sn.

The restriction to Sn×{1} of the projection from Q(F )\{0} onto M and the mapping
π̃ are inverse to each other.

The group π̃ ◦ PO(n + 1, 1) ◦ π̃−1 is called by definition the Möbius group of
the sphere, in agreement with the introduction to Chapter 2. It is classically the group
of conformal isometries of Sn onto Sn for n ≥ 2, and is classically generated by
inversions of En+1, which leave globally invariant Sn, and orthogonal symmetries of
En+1. The conformal group of Sn is strictly larger than its subgroup of isometries;
the difference of their dimensions is (n+1)(n+2)

2 − n(n+1)
2 = n + 1. This property is

specific for the spheres. In fact, any compact Riemannian manifold, whose conformal
group is strictly larger than its subgroup of isometries is necessarily isometric to a
sphere (cf. below Chapter 2).

In a recent paper,42 Arkadiusz Jadczyk has found another way to study the con-
formal group of the sphere Sn. His method uses transformers of Gilbert and Murray
and the properties of the trace in Clifford algebras to construct a two-fold covering
group Spin+(1, n+ 1)—called also Spoin by other authors—of the conformal group
of the sphere Sn. His results are in complete agreement with the results given below
in Chapter 2.

42 A. Jadczyk, Quantum Fractals on n–spheres. Clifford Algebra Approach, Advances in Ap-
plied Clifford Algebra, Vol. 17 no 2, December 2006.
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1.5 Pseudoquaternionic Structures on the Space S of Spinors
for C+

r,s , m = 2k + 1, r − s ≡ ±3 (mod 8). Embedding
of Corresponding Spin Groups SpinEr,s and Real
Projective Quadrics Q̃(Er,s)

43

1.5.1 Quaternionic Structures on Right Vector Spaces over H

1.5.1.1 Structure of the Principal Automorphism of H

Let H be the usual R-associative algebra of real quaternions with “units”: 1, i, j , k (cf.
1.2.1 above). Let ν denote the usual conjugation defined for q = α+iβ+jγ+kδ ∈ H
by qν = α − iβ − jγ − kδ. H can be identified with the Clifford algebra C0,2 (cf.
1.4.2 above).

According to the general Theorem 1.2.2.5.1 above, we know that H is a central
simple algebra over R with center R.

Furthermore, we can apply the fundamental Theorem 1.3.3.3 concerning invo-
lutions of simple central algebras to H. Then, any involution α of H is the com-
posite of the conjugation ν and of an inner automorphism directed by an element
u, determined up to a nonzero factor in R, which is either ν-symmetric or ν-skew:
qα = u−1qνu with uν = u or uν = − u. If uν = u, we have uα = uν = u. If uν = − u,
then uα = uν = − u.

Moreover, the principal automorphismπ of the real Clifford algebra H is naturally
the mapping q → k−1qk = −kqk since k−1 = −k, according to Theorem 1.2.2.5.3
above. H = (−1,−1)

R and if e1, e2 are the elements of the orthogonal basis of E0,2

such that e2
1 = e2

2 = −1, the four “units” of H are 1, e1 = i, e2 = j , and e1e2 = k,
and k = e1e2 belongs to the anticenter of C0,2. Thus π is an inner automorphism
“directed” by k.

1.5.1.2 The Groups SpU(p, q) and SO∗(2n)

1.5.1.2.1 Algebraic Remark

Let us take E, a right vector space over H with dimHE = n, with basis ε =
{ε1, . . . , εn}.

Let b be a sesquilinear form on E.44

43 All the main results of the following sections were given in the following paper: P. Anglès,
Algèbres de Clifford Cr,s des espaces quadratiques pseudo-euclidiens standards Er,s et
structures correspondantes sur les espaces de spineurs associés. Plongements naturels des
quadriques projectives Q(Er,s) associés aux espaces Er,s , op. cit.

44 We recall briefly that b is a mapping from E × E into H such that for any x, y, xi , yi ∈ E

(i = 1, 2), for any q ∈ H, b(x, yq) = b(x, y)q; b(xq, y) = qνb(x, y); b(x1 + x2, y) =
b(x1, y) + b(x2, y); b(x, y1 + y2) = b(x, y1) + b(x, y2). b(x, y) = (tX)νBY , where B,
X, Y are the respective matrices relative to ε for b, x, and y.
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By restriction of the noncommutative field H to C, E naturally becomes a C-vector
space with basis ε̃ = {ε1, . . . , εn, ε1j, . . . , εnj}, and an easy computation shows that
the components of b, with respect to the complex structure of E, are respectively the
complex forms h and a defined for any x, y ∈ E by b(x, y) = h(x, y) + ja(x, y),
where a is a complex bilinear form and h is a sesquilinear form, linear in the second
argument and antilinear in the first one.

By using the fundamental Theorem 1.3.3.3 we can lead the study of H-skew
sesquilinear forms on E back to that of H-symmetric ones by changing the involu-
tion of H.

If b is H-skew for ν, i.e., for any x, y ∈ E, b(y, x) = −(b(x, y))ν let us put
g(x, y) = b(y, x)k,45 id est b(x, y) = g(x, y)k−1. Then,

g(y, x) = b(y, x)k = −((b(x, y))ν)k = −(g(x, y)k−1)νk = (g(x, y)k)νk

= kν(g(x, y))νk = −kg(x, y)νk = π(g(x, y))ν = (π ◦ ν)(g(x, y))
= (g(x, y))τ

since π ◦ ν = τ and according to 1.5.1.1. Then g is H-symmetric for the involution
τ of H.

1.5.1.2.2 The Group SpU(p, q)

Let E be a right n-dimensional vector space over H.

1.5.1.2.2.1 Definition A sesquilinear H-symmetric form denoted by { | } on E such
that for any x ∈ E − {0}, {x | x} > 0, is called a quaternionic scalar product on E.
An easy computation shows that the components of { | } are respectively a hermi-
tian scalar product denoted by 〈 | 〉 and a symplectic scalar product denoted by [ | ].
Therefore, for any x, y ∈ E, {x | y} = 〈x | y〉 + j[x | y].

If ε = {ε1, . . . , εn} is the standard basis of E over H, which is orthonormal for
the quaternionic scalar product, let us put

x =
n∑

i=1

εix
i and y =

n∑
i=1

εiy
i .

We put xi = ξ i + jξn+i and yi = ηi + jηn+i . We observe that for any z ∈ C,
jz = z̄j , where for z = α + iβ, z̄ = α − iβ is the classical conjugate of z. Then

{x|y} =
n∑

i=1

(xi)νyi =
2n∑
k=1

ξ̄ kηk + j

n∑
i=1

(ξ iηn+i − ξn+iηi).

b is H-symmetric (or H-hermitian) iff for any x, y ∈ E we have b(y, x) = b(x, y)ν and
thus for any x ∈ E, b(x, x) ∈ R, the field of real numbers. b is H-skew (or H-anti-hermitian)
iff b(y, x) = −b(x, y)ν .

45 k is the classical “unit element” of H.
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Thus we have the following theorem:

1.5.1.2.2.2 Definition (Theorem46) The symplectic unitary group of degree n is, by
definition, the group consisting of automorphisms of a quaternionian right space E

over H, that leave invariant the quaternonian scalar product of E, the group law being
the classical composition. We have SpU (E) = U(E,C) ∩ Sp(E,C).

Example:
Let Hn be the classical standard n-dimensional right space over H. We put

{x | y} =
n∑

i=1

(xi)νyi, where x =
n∑

i=1

εix
i and y =

n∑
i=1

εiy
i, ε = {ε1, . . . , εn}

being the standard canonical basis.
Then we find that SpU (n) = U(2n) ∩ Sp(2n,C), where U(2n) is the standard

unitary group of C2n and Sp(2n,C) the standard symplectic group on C2n. If we
assume that E is provided with a pseudoquaternionian scalar product of type (p, q),
which can be written in an orthogonal basis ε = {ε1, . . . , εn} as

{x|y} =
p∑

i=1

(xi)νyi −
p+q∑

i=p+1

(xi)νyi

with p+q = n, we find again, by the same method that the pseudoquaternionic group
of type (p, q) associated with the pseudoquaternionic scalar product of type (p, q),
namely SpU(p, q) appears as

SpU (p, q) = U(2p, 2q) ∩ Sp(2(p + q),C).

Since classically,U(2p, q) = SO(2p, 2q)∩Sp[2(p+q),R], we obtain the following
result:

1.5.1.2.2.3 Proposition SpU (p, q) = SO(4p, 4q) ∩ Sp(2(p + q),C) ∩ Sp(4(p +
q),R).

Thus, E becomes a vector space over R, the field of real numbers, of dimension
4n = 4(p + q) over R, a basis of which over R is

{ε1, . . . , εn, ε1i, . . . , εni, ε1j, . . . , εnj, ε1k, . . . , εnk}.

46 Another proof is the following:

u ∈ SpU (E)⇔ ∀ x, y ∈ E, {u(x) | u(y)} = {x | y}

⇔
{
∀ x, y ∈ E, 〈u(x) | u(y)〉 = 〈x | y〉
and [u(x) | u(y)] = [x | y]

⇔ SpU (E) = U(E,C) ∩ Sp(E,C).
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Let us consider the antilinear operator of the complex 2n-dimensional space E de-
fined for any x ∈ E by T (x) = xj . (The antilinearity comes from the fact that for
any x ∈ E, (xi)j = −(xj)i.) We have clearly T 2 = −I . Conversely, the datum of
such an operator T on a complex vector space E implies that the dimension of E is
even47 and allows us to define a quaternionian structure by putting

x · q = x(z+ jz′) = xz+ (xj)z′ = xz+ T (x) · z′.
We can now formulate the following statement.

1.5.1.2.2.4 Theorem SpU (p, q) is the set of elements u ∈ U(2p, 2q) such that
u ◦ T = T ◦ u. SpU (p, q) is the set of elements u ∈ Sp(2(p + q),C) such that
u ◦ T = T ◦ u.

For this purpose, let us write first the fact that h ∈ U(2p, 2q) and that
u ◦ T = T ◦ u. Then, h(u(x), u(y))=h(x, y) for any x, y ∈ E is equivalent to u ∈
U(2p, 2q). Ifu◦T = T ◦ u, since we have classically for any x, y;h(xj, y)= a(x, y),
then a(u(x), u(y))=h(u(x)j, u(y))=h(T ◦u(x), u(y))=h(u◦T (x), u(y)), which
implies that a(u(x), u(y))=h(T (x), y) since u ∈ U(2p, 2q) and therefore

a(u(x), u(y)) = h(T (x), y) = h(xj, y) = a(x, y) and u ∈ Sp(2(p + q),C).

Conversely, let us assume that u ∈ Sp(2(p + q),C) and that u ◦ T = T ◦ u.
Then, a(u(x), u(y)) = a(x, y) for any x, y ∈ E. Thus, classically,48 h(u(x), u(y)) =
−a(u(x)j, u(y)) = −a(T ◦u(x), u(y)) = −a(u◦T (x), u(y)) = −a(T (x), y) since
u ∈ Sp(2(p + q),C). Thus we obtain that h(u(x), u(y)) = −a(T (x), y) = h(x, y)

and then u ∈ U(2p, 2q).

1.5.1.2.3 The Group SO∗(2n) as a Quaternionic Group

Let us take b an H-skew sesquilinear form on E such that b(x, y) = h(x, y) +
ja(x, y), where h is a C-skew hermitian form on the 2n-dimensional complex space
E, and a is a symmetric bilinear complex form on E. According to 1.1.5.2, we know
that there exists an orthonormal basis {εl}1≤l≤n of E such that b(εl, εl) = j (“unit”
quaternion with j2 = −1). Therefore we can deduce according to another result of
J. Dieudonné49 that all nondegenerate H skew-hermitian on E are equivalent with
maximal index [n2 ], where n is the dimension of E over H ([r] is the integer part of

47 The proof is easy and the same used for the following classical result: The study of complex
n-dimensional spacesE is identical to the study of real finite-dimensional spacesF provided
with a linear operator J such that J 2 = −I . If E denotes a complex n-dimensional space,

RE, the real associated space obtained by restriction of C to R, we have that E is identical
to (RE,J ).

48 Cf. R. Deheuvels, Formes quadratiques et groupes classiques, op. cit., p. 441.
49 J. Dieudonné, On the structure of unitary groups, op. cit., p. 383.
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the real number r). We put

x =
n∑

l=1

εlx
l, y =

n∑
l=1

εly
l

with xl = ξ l + jξn+l , yl = ηl + jηn+l with ξ l and ηl belonging to C. We obtain that

b(x, y) =
n∑

l=1

(ξ̄ l − jηn+l )j (ηl + ξjn+l ) =
n∑

l=1

(−ξ̄ lηn+l + ξ̄ n+lηl)+ j

n∑
l=1

ξ lηl.

1.5.1.2.3.1 Definition (Theorem) The unitary group of automorphisms of E that
leave b invariant is denoted by Un(E, b), which we agree to call, by definition, the
symplectoquaternionic group Un(E, b) = U2n(h,C) ∩O(2n,C), where U2n(h,C)

denotes the unitary group for the skew-hermitian complex form E.
According to a previous definition given in 1.1.3.2, the special unitary correspond-

ing group SUn(E, b), the group consisting of elements of Un(E, b) with determinant
equal 1, is SUn(E, b) = SU 2n(h,C)∩SO(2n,C), and can be identified with SO∗(2n),
SO∗(2n) = SUn(E, b).

1.5.2 Invariant Scalar Products on Spaces S of Spinors

We want to present a general method initiated by R. Deheuvels50 for the special case
m = r + s = 4k + 2, r − s = 4l + 2 following another general idea of André
Weil.51 The Ariadne’s thread is the following one for the case that the ground field K
is commutative.

1.5.2.1 Definition Let E be vector space over a commutative field K . By definition
we call a scalar product on E any K-symmetric or K-skew nondegenerate bilinear
form b on E.

As already said (1.1.5.2), with any K-linear operator u belonging to the algebra
LK(E) of linear operators of E we can associate its adjoint operator u∗ defined by
b(ux, y) = b(x, u∗y) for any x, y in E. The adjunction, with respect to b, ∗ : u→ u∗
is an involution of LK(E).

An easy computation shows that we also have b(x, uy) = b(u∗x, y). Moreover, if
λ ∈ K∗, the mapping (x, y)→ λb(x, y) is another “scalar product” that determines
the same adjunction as b on LK(E), with the same invariance group and the same
linear subspaces of symmetric operators u (such that u = u∗) or skew operators (such
that u = −u∗) (cf. exercises).

Conversely, one can verify that if we assume that b and b′, both scalar prod-
ucts on E, have the same adjunction on LK(E), then there exists λ ∈ K∗ such that
b′(x, y) = λb(x, y) for any x, y in E.

50 R. Deheuvels, (a) Groupes conformes et algèbres de Clifford, Rend. Sem. Mat. Univer.
Politecn. Torino, vol 43, 2, 1985, pp. 205–226. (b) Tenseurs et spineurs. P.U.F. Paris, 1993.

51 A. Weil, Algebras with involutions and the classical groups, Collected papers, vol. II, pp.
413–447, Springer-Verlag, New York, 1980.
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Furthermore, since the field of complex numbers C often plays an important role,
let us consider E a vector space over a commutative field L provided with an involu-
tive automorphism J : λ→ λ̄ = J (λ).52 Let K be the subfield of elements µ of K
such that µ̄ = µ and let be q ∈ L be such that J (q) = q̄ = −q �= 0. Then the subset
K− of elements z ∈ L such that z̄ = −J (λ) is a vector subspace of the K-vector
space L, and we have L = K ⊕ K− = K ⊕ qK (compare with Theorems 1.3.2.2
and 1.3.2.4 for involutions of algebras).

1.5.2.2 Definition By definition a hermitian scalar product respectively skew-
hermitian—relative to J on E—is any sesquilinear nondegenerate form b on E that
satisfies b(y, x) = εb(x, y)J with ε = 1 in the case of a hermitian form and ε = −1
in the case of a skew-hermitian form. The corresponding adjunction ∗ : u→ u∗ is an
involution of the algebra LK(E) : (uv)∗ = v∗u∗, u∗∗ = u, (λu)∗ = λ̄u∗ = λJ u∗.53

Then we have the following result:

1.5.2.2.1 Proposition If b is a hermitian scalar product on E, then qb is a skew-
hermitian scalar product onE, whereq is defined above in 1.5.2.1, so that q̄ = −q �= 0.
If b is a skew-hermitian scalar product on E, then qb is a hermitian scalar product on
E. Both b and qb have the same corresponding adjunction. The proof is immediate
and is left as a simple exercise.

1.5.2.2.2 Theorem Let E be a space over the field K, let ( | ) denote any nonde-
generate scalar product on E, and let ∗ be the corresponding adjunction defined on
LK(E). Let u be any invertible element in LK(E). The following two statements are
equivalent to each other

(i) The inner automorphism a �→ u−1au of LK(E) commutes with ∗.
(ii) u is a similarity of E relative to ( | ), i.e., there exists λ ∈ K∗ such that

(ux|uy) = λ (x|y) for any x, y ∈ E.

Note: Classically the statement (ii) is equivalent to (ii)’: u preserves the orthogonal-
ity id est for any x, y ∈ E if (x|y) = 0, then (ux|uy) = 0. (cf. exercise (V) at the
end of this chapter). To prove the above theorem, let θu be the inner automorphism
a �→ u−1au of Lk(E). We put u = v−1. Then θu commutes with ∗ if and only if
(vav−1)∗ = v−1∗a∗v∗ = va∗v−1. Then, setting β = va∗v−1 = α = v−1∗a∗v∗,
we compute v∗va∗ = v∗βv = v∗αv = v∗v−1∗a∗v∗v = a∗v∗v. Thus we find
that v∗va∗ = a∗v∗v. Conversely, if v∗va∗ = a∗v∗v, then, with β1 = a∗v∗v and
α1 = v∗va∗, we have v−1∗a∗v∗ = v−1∗β1v

−1 = v−1∗α1v
−1 = v−1∗v∗va∗v−1 =

va∗v−1, which explains the fact that θu commutes with ∗.
Thus θu commutes with ∗ if and only if v∗va∗ = a∗v∗v id est if and only if

v∗v = λI, λ ∈ K∗, where I denotes the identity element of LK(E) or, equivalently
if and only if u∗u = µI, µ ∈ K∗. Moreover, by definition of the adjunction ∗, we
have that (vx|vy) = (x|v∗vy) for any x, y ∈ E. Therefore (i) implies (ii) since if

52 Since the field L is commutative, J is also an involution (antiautomorphism) of L.
53 Cf. 1.1.5.2
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v∗v = λI — that is equivalent to (i) —, then we have (ii)’: If v∗v = λI,

(vx|vy) = λ(x|y) and (x|y) = 0 implies that (vx|vy) = 0 and therefore (ux|uy) = 0.
Conversely, since ( | ) is nondegenerate, if, by assumption, (ux|uy) = µ(x|y) and on
the other hand (ux|uy) = (x|u∗uy) we find that we have: (x|λy − u∗uy) = 0 and
therefore u∗u = µI with µ ∈ K∗.

We know that all the Clifford algebras have two fundamental involutions: the
principal antiautomorphism τ and the conjugation ν = π ◦ τ = τ ◦ π . We can now
ask the following problem:

Do there exist scalar products on the space of spinors for which τ and ν are possi-
ble adjunctions? (One can show that such scalar products are unique up to a nonzero
scalar.)

We are going to study in detail the case m = r + s = 2k + 1, r−s ≡ ±3 (mod 8).

1.5.3 Involutions on the Real Algebra LH(S) where S is a Quaternionic
Right Vector Space on H, with dimHS = n

1.5.3.1 Introductory Notes

Let S be a quaternionic right space over H with dimHS = n. According to (1.5.1.2),
we know that by changing the involution of H, if b is an H skew-hermitian form for
ν the classical conjugation of H, then b is an H-hermitian form for τ = π ◦ ν the
principal antiautomorphism of the Clifford algebra H = (−1,−1)

R
. Thus, we are led to

the study of H-hermitian scalar products or pseudoquaternionic scalar products on
S. With such a general pseudoquaternionic scalar product b on S, we can associate
the adjunction a→ a∗ in the real algebra A = LH(S) such that (a+ b)∗ = a∗ + b∗,
(a∗)∗ = a, (ab)∗ = b∗a∗, (λ.1)∗ = λ.1, for any λ ∈ R and for any a, b ∈ A.

The real algebra m(n,H)—isomorphic to LH(S)—of square matrices of degree
n on the field H is provided with the structure of a right quaternionic space of di-
mension n2 on H. A suitable basis for such a structure consists of the n2 matrices εij ,
1 ≤ i, j ≤ n, such that the only nonzero coefficient of the matrix εij is that of the
row i and column j , which is 1. The adjoint of A is then A∗ =t Aν , where Aν , is the
conjugate of A.

We are now going to show that any involution α of the real algebra LH(S) can
be considered as the adjunction for a nondegenerate sesquilinear form on S.

If A is a central simple algebra over a commutative field K according to Wedder-
burn’s theorem,54 A is isomorphic to L�(S), where S is a right vector space on the

54 We present again the result already given (1.2.2.8.1)
Wedderburn’s theorem: Let A be a simple algebra with a unit element over a commu-

tative field K, of finite dimension over K. Then A is isomorphic to an algebra of matrices
on a not necessarily commutative field �, extension of K, that contains K in its center and
is finite over K.

Thus, any simple algebra A, with a unit element, is isomorphic to the algebra of endo-
morphisms of a right vector space M over a not necessarily commutative field �, extension
of K , which means that A is isomorphic to the algebra of all square matrices of degree
p (p = dim�M) with coefficients in �. Then dimKA = p2dimK�. Cf., for example,
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field �, a not necessarily commutative finite extension of K . Since there K = R, ac-
cording to a general classical result of Weierstrass and Frobenius,55 � = C or � = H.

According to the fundamental table of 1.4.2 (case r − s ≡ ±3 (mod 8)), for the
study of corresponding C+r,s , the corresponding field with which we are concerned is
therefore that where � = H, the noncommutative field of quaternions.

According to previous remarks (1.2.2.8), A possesses a simple A-module and
can be identified56 with the real algebra of linear operators of the right quaternionic
space S.

Let ε = {ε1, . . . , εn} be an arbitrary basis of S. Such a basis determines on S a
quaternionic standard scalar product57 and ε is an orthonormal basis for this standard
quaternionic scalar product.Any element a in A is represented by its matrix A relative
to the basis ε, and the adjunction∗ is such thatA∗ =t Aν.According to the fundamental
Theorem 1.3.3.3, if α is an involution of A we have for any matrix A associated with
a with obvious notations, Aα = U−1(tAν)U with tUν = U or tUν = −U .

Moreover, if tUν = U , then U is the matrix, in the basis ε, of a nondegenerate
H -symmetric sesquilinear form that determines on S a pseudoquaternionic scalar
product, the adjunction of which is precisely α.

If tUν = −U , then U is the matrix, in the basis ε, of a nondegenerate H -skew
sesquilinear form on S of maximal index [n2 ], according to (1.5.1.2), the adjunction
of which is precisely α.

Furthermore, we know that in such a case, by changing the involution of H , we
are led to the first case.

Now we are going to study the following problem:
If the involution α on the central simple algebra A = LH(S) is associated with

a pseudoquaternionic scalar product of signature (p, q), determine the signature of
such a pseudoquaternionic scalar product for which α is precisely the adjunction.

1.5.3.2 Associated Form with an Involution α on A = LH (S)

A = LH(S) is a real central simple algebra. Since dimHS = n, and dimRH = 4,
according to Wedderburn’s theorem (1.5.2.8.1) dimRA = 4n2. As in a paper of André

J. P. Serre: Seminaire H. Cartan. E.N.S., 1950–1951, exposé 6-01, W. A. Benjamin Inc.
1967, New York, Amsterdam.

55 Cf., for example, Marcel Riesz, Lecture Series, Clifford numbers and spinors: Lectures deliv-
ered, October 1957, January 1958, the institute for fluid dynamics and applied mathematics,
University of Maryland, 1957–1958, p. 21. The result of Weierstrass and Frobenius is more
general: All finite associative division algebras over the real field are isomorphic to either
the real or complex field or to the quaternion algebra.

56 For more precisions; cf. R. Deheuvels, Formes quadratiques et groupes classiques, op. cit.,
chapitre VIII.

57 Such a scalar product { | } is such that {εi | εj } = δij , 1 ≤ i, j ≤ n, and thus for any

x, y ∈ S, {x | y} =
n∑

i=1

(xi)νyi with x =
n∑

i=1

εix
i and y =

n∑
i=1

εiy
i .
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Weil,58 let us consider l(a) the endomorphism x → ax of the underlying vector space
to A. Then Tr(l(a)) is well defined as the trace of the regular representation of A.

The trace Tr(l(a)) is invariant under all automorphisms of A, and since A is
semisimple, Tr(l(a)) is also invariant under all antiautomorphisms of A. If λ is such
an antiautomorphism of A, Tr(l(xλy)) is a nondegenerate bilinear form on A × A.
Since (xλy)λ = yλxλ2

, and therefore Tr(l(xλy)) = Tr(l(yλxλ2
), the bilinear form

(x, y) → Tr(l(xλy)) is symmetric if and only if λ2 = 1, i.e., if and only if λ is an
involution of A. Thus, we are led to the following definition:

1.5.3.2.1 Definition Let α be an involution of A = LH(S). The mapping (x, y)→
Tr(l(xαy)) is a nondegenerate symmetric bilinear form on A called the form associ-
ated with the involution α.

1.5.3.3 Signature of the Quadratic Form x → Tr(l(xαx))

m(n,H) is a right vector space of dimension n2 over H with a standard basis con-
sisting of the n2 matrices εul (cf. above 1.5.3.1) (1 ≤ u, t ≤ n) over H and a basis ε′
over R consisting of the 4n2 elements {εut , εut i, εut j, εut k} (cf. 1.5.1.2.2.3).

Let us assume that there exists on S a pseudoquaternionic scalar product of type
(p, q), the adjunction of which is α. We want to determine the signature of the
quadratic real form, defined on A = LH(S) by x → Tr(l(xαx)).59

We have just seen (1.5.3.1) that there exists on S a pseudoquaternionic scalar
product of signature (p, q) the adjunction of which is precisely α. Let us take for ε

an orthogonal basis for such a scalar product. One can verify immediately that the
corresponding basis ε′ is an orthogonal basis for the bilinear symmetric real form

58 A. Weil, op. cit., p. 601.
59 Let us add some supplementary remarks. Let m(n,H) be provided with its structure of a ring

and of a quaternionic right vector space of dimension n2 over H. Let l(A) : B ∈ m(n,H)→
AB; l(A) is a linear mapping from m(n,H) into m(n,H). As pointed out by J. Dieudonné
(J. Dieudonné, Les determinants sur un corps non commutatif, Bull. Soc. Math. de France,
71, 1943, pp. 27–45), one can define Tr(l(A)) = nTr A ∈ H. Moreover, T r(tAν) =
(T r A)ν . Then Tr(l(tAν)) = (Tr(l(A)))ν .

Let us take α, an involution of A such that for any a, b ∈ A, for any λ ∈ R, (ab)α =
bαaα , (aα)α = a, (λ.1)α = λ.1, for any λ ∈ R. The translation of these facts in m(n,H)

is the following: (AB)α = BαAα , (Aα)α = A, (λ.Id)α = λ.Id for any A,B ∈ m(n,H)

and for any λ ∈ R.
In other words, α is an R-linear mapping from m(n,H) into m(n,H) and α is an anti-

automorphism for the ring structure of m(n,H). One can easily verify that Tr(lt (Aα)ν) =
Tr(l(A)). As pointed out by A. Weil (op. cit, p. 601), if A is semisimple the right-hand
and left-hand regular representations are equivalent, and then the trace is invariant un-
der all antiautomorphisms of A. Then consider the mapping A →t (Aα)ν . Therefore,
Tr(l(Aα)) = (Tr(l(A)))ν . Thus the mapping f from m(n,H) × m(n,H) into H de-
fined by f (A,B) = T r(l(AαB)) is such that f (B,A) = (f (A,B))ν , f (A + A′, B) =
f (A,B)+f (A′, B), f (A,B+B ′) = f (A,B)+f (A,B ′) for any A, B, A′, B ′ in m(n,H)

and f (λA,B) = λf (A,B) = f (A, λB) for any λ ∈ R.
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(x, y)→ Tr(l(xαy)). Let H = diag(α1, . . . , αn) be the matrix of the pseudoquater-
nionic scalar product relative to ε, with α1, . . . , αp > 0 and αp+1, . . . , αp+q < 0
with p + q = n. Aα = H−1(tAν)H . If

A =
∑
i,j

εij aij ,

we find that

Tr(l(AαA)) =
∑
i,j

λi

λj

|aij |2,

where |akl | = (aν
klakl)

1/2 is the classical absolute value of the quaternion akl (for
akl = α + iβ + jγ + kδ, |akl |2 = α2 + β2 + γ 2 + δ2). Then we have obtained the
following statement:

1.5.3.1 Theorem The signature of the quadratic real form defined on LH(S) by
A → Tr(l(AαA)) is (4(p2 + q2) + 8pq). (We observe that 4(p2 + q2) + 8pq =
4n2 = dimRLH(S).)

1.5.4 Quaternionic Structures on the Space S of Spinors for
C+

r,s , r + s = m = 2 k+ 1, r − s ≡ ±3 (mod 8)

We know how to get a realization of C+r,s , by the choice of a vector u ∈ Er,s such
that (u|u) = ε = ±1: we consider the Clifford algebra C(E1) with E1 = u⊥, E1 the
standard space of type (r, s − 1) if ε = −1 or (s, r − 1) if ε = 1.

According to the fundamental theorem (1.3.3.3), any involution α of A = C+r,s
can be written with notation in terms of matrices: Aα = U−1(tAν)U with (tUν) = U

or (tUν) = −U . If (tUν) = U , then Uα = (tUν) = U , and if (tUν) = −U , then
Uα = (tUν) = −U .

We can now specify the element U that is determined up to a nonzero scalar fac-
tor. According to Theorem 1.2.2.5.1, if we realize C+r,s as C(E1) = C(u⊥) such that
(u | u) = −1, we can take J1 ∈ C+r,s to be the product of the elements of the basis of
E1 chosen, and U is proportional to J1.

If we realize C+r,s as C(u⊥) such that (u | u) = 1, we can take J ′1 to be the product
of the elements of the basis of E1 chosen, and U is proportional to J ′1. We obtain the
following table:

Realization of C+r,s :
C(u⊥), (u|u) = −1 C(u⊥), (u|u) = 1
u⊥ of type (r, s − 1) u⊥ of type (s, r − 1)
J 2

1 = (−1)k+s−1 J ′21 = (−1)k+s

J τ
1 = (−1)kJ1 J ′τ1 = (−1)kJ ′1
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m = r + s = 2k + 1, r − s ≡ 3 (8), k ≡ s + 1 (4)
J 2

1 = 1 J ′2
1 = −1

s even (and r odd)
J τ

1 = −J1, N(J1) = −1 J ′τ
1 = −J ′

1, N(J ′
1) = 1

J1 /∈ Spin(Er,s) J ′
1 ∈ Spin(Er,s)

s odd (and r even)
J τ

1 = J1, N(J1) = 1 J ′τ
1 = J ′

1, N(J ′
1) = −1

J1 ∈ Spin(Er,s) J ′
1 /∈ Spin(Er,s)

m = r + s = 2k + 1, r − s ≡ −3 (8), k ≡ s + 2 (4)
J 2

1 = −1 J ′2
1 = 1

s even (and r odd)
J τ

1 = J1, N(J1) = −1 J ′τ
1 = J ′

1, N(J ′
1) = 1

J1 /∈ Spin(Er,s) J ′
1 ∈ Spin(Er,s)

s odd (and r even)
J τ

1 = −J1, N(J1) = 1 J ′τ
1 = −J ′

1, N(J ′
1) = −1

J1 ∈ Spin(Er,s) J ′
1 /∈ Spin(Er,s)

The cases k even and k odd appear naturally. Let us take for the involution α the
principal antiautomorphism τ of C+r,s . J τ

1 = J1 (respectively J ′τ
1 = J ′1) if and only

if k is even, and J τ
1 = −J1 (respectively J ′τ

1 = −J ′1) if and only if k is odd.

1.5.4.1 Case That k Is Even

Then C+r,s is a central simple real algebra isomorphic to m2(2
m−1

2 −1,H) accord-
ing to the fundamental table (1.4.2), and the minimal module of C+r,s is the space
S of spinors associated with C+r,s . (We recall that C+r,s can be identified with the
real algebra LH(S), with dimH S = 2k−1.) According to Wedderburn’s theorem,
dimR C+r,s = 22k = (dimH S)2 × dimR H = (2k−1)2 × 4.

Furthermore, we have seen that with any involution α of C+r,s 	 LH(S) we can
associate the bilinear symmetric real form (x, y)→ Tr(l(xαy)). Since V = Er,s is a
quadratic regular space of type (r, s), let us take an orthogonal basis ofV : {e1, . . . , em}.
We know that the 22k elements ei1 · · · ei2k with 1 ≤ i1 < i2 < · · · < i2k ≤ 2k consti-
tute a basis of C+r,s .

If we take eI = ei1 · · · ei2k and eL = ej1 · · · ej2L both elements of this basis of
C+r,s , eτI .eL is also an element of this basis and is a nonscalar element if I �= L. In such
a case the translation l(eτI eL) is a permutation of the elements of this basis without
any fixed element and with trace zero.

Moreover, such a basis of C+r,s is also an orthogonal basis for the above bilinear
symmetric real form associated with τ . eτI .eI = N(eI ) = (ei1 | ei1) · · · (ei2k | ei2k ).
Then Tr(l(eτI .eI )) = 22kN(eI ) and Tr(l(eτI .eI )) is positive if and only if eI contains
an even number of negative vectors of the basis of V and therefore an even number
of positive vectors of this basis.
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Moreover, if p(m), respectively i(m) denotes the number of subsets of the set
{1, . . . , m} that have even cardinality, respectively odd cardinality, we have p(m) =
i(m) = 2m−1. Let us assume that C+r,s is realized as C(E1) with E1 = u⊥, where
(u | u) = ε = ±1. If ε = 1, E1 = Es,r−1 and if ε1 = −1, E1 = Er,s−1. We put E1 =
Em1,m2 . The number of positive vectors of the basis of C+r,s = C(E1) = C(Em1,m2)

is p(m1)p(m2), and the number of negative vectors of this basis is i(m1)i(m2).
Since p(m1)p(m2) = i(m1)i(m2), the quadratic form x → Tr(l(xτ x)) is a neutral
form.

Since we have seen that the signature of this quadratic form is (4(p2+q2), 8pq),

we find that p2+q2 = 2pq, i.e., p = q = 1
2 dimH S = 2k−2 = 2

m−1
2 −2. The pseudo-

quaternionic scalar product is also a neutral one. Furthermore, the pseudounitary
symplectic group of automorphisms of S that leave invariant this pseudoquaternionic
scalar product consists of elements u of LH(S) 	 C+r,s such that uτu = 1. We have
obtained the following theorem:

1.5.4.1.1 Theorem The space of spinors S associated with the Clifford algebras C+r,s
(r + s = 2k+ 1, k even and r − s ≡ ±3 (mod 8)) is provided with a natural pseudo-
quaternionic structure and a pseudoquaternionic neutral scalar product, determined
up to a nonzero scalar factor, invariant under the spin group Spin V = Spin Er,s . For

m ≥ 7 we have the following embedding: Spin Er,s ⊆ SpU
(
2

m−1
2 −2, 2

m−1
2 −2).

Since SpU
(
2

m−1
2 −2,2

m−1
2 −2) is embedded intoU

(
2

m−1
2 −1,2

m−1
2 −1) (cf. 1.5.1.2.2.2

above), we are led to prove that in fact, Spin Er,s is embedded in SU
(
2

m−1
2 −1, 2

m−1
2 −1),

i.e., that all the elements of Spin Er,s have determinant = 1, as linear operators of S.
We give a general demonstration that can be applied in any case.

Any element g of Spin Er,s can be written as g = u1u2 · · · u2h, a product of an
even number of vectors ui in Er,s with N(ui) = (ui | ui) = 1 and of an even number
of vectors uj in Er,s with N(uj ) = (uj | uj ) = −1. Since u1u2 = u2(u

−1
2 u1u2) and

classically y1 = u−1
2 u1u2 ∈ Er,s with N(y1) = N(u1), we can always assume that

the elements ui with N(ui) = −1, if they exist, are taken first in the writing of g.
Moreover, if two such elements ui are linearly dependent, by using such permu-

tations as above, we are led to a factor ±1. Then, we can assume that g = u1 · · · u2h
with ui two by two linearly independent, with ui such that N(ui) = −1 are taken
first, if they exist. If ui satisfy u2

i = 1 = N(ui), ui is an involutive linear operator of S
with determinant= ±1. Then, let u1 and u2 be two consecutive linearly independent
vectors with N(u1) = N(u2) = −1 and let P be the plane that they generate. Now,
there exists, if r ≥ 2, z ∈ Er,s such that (z | z) = 1, (z | u1) = (z | u2) = 0 and
(zu1)

2 = 1, (zu2)
2 = 1, zu1zu2 = −u1u2. Thus zu1 and zu2 are involutive linear

operators of S with a determinant = ±1 (cf. Appendix).
Therefore, any element g of Spin Er,s is the product of elements that have de-

terminant = ±1. Spin Er,s is thus contained into the subgroup of the unitary group

U
(
2

m−1
2 −1, 2

m−1
2 −1) consisting of elements ±1. But since Spin Er,s is connected

(m > 2), all these elements have necessarily determinant 1.
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We have obtained the following result:

1.5.4.1.2 Theorem For m ≥ 7, r + s = 2k + 1, k even, r − s ≡ ±3 (mod 8),
Spin Er,s ⊆ SU

(
2

m−1
2 −1, 2

m−1
2 −1).

1.5.4.2 Case That k Is Odd

In this case, the space S of spinors for C+r,s is provided with a nondegenerate H-skew

sesquilinear form b of index 1
2 dimH S = 2

m−1
2 −2. The group of automorphisms of

S that leave b invariant consists of elements u of C+r,s 	 LH(S) such that uτu = 1.
Spin Er,s is included in this group. The same demonstration as above leads to the

following conclusion: Spin Er,s ⊆ SO∗(2p), where p = 2
m−1

2 −2, by showing that
all the elements of Spin Er,s have as linear operators of S determinant 1. Moreover,
SO∗(2p) is naturally included in SU (p, p), as pointed out by I. Satake.60 We have
thus obtained the following result:

1.5.4.2.1 Theorem The space of spinors S for Clifford algebras C+r,s , r+ s = 2k+1,
r − s ≡ ±3 (mod 8), k even, is provided with a nondegenerate H-skew sesquilinear

form. Moreover, Spin Er,s ⊆ SO∗(2m−1
2 ) ⊆ SU (2

m−1
2 −1, 2

m−1
2 −1) for m ≥ 7.

With r + s = 2k+ 1, one can verify that one can always find a realization of C+r,s
such that for r − s = 3 (mod 8), r and k odd, and s even, there exists an operator
J ′1 ∈ Spin(Er,s) of S such that J ′21 = −1. Similarly, for r − s = −3 (mod 8),
k and s odd, and r even, there exists J1 with the same properties. The above justifies,
in each case, the structure obtained: SO∗.

1.5.5 Embedding of Projective Quadrics

1.5.5.1 Review of General Results61

Let us take again the space S0 of spinors for the standard Clifford algebra C(E, q) of
a quadratic regular space (E, q). Let ( | ) denote the associated scalar product. Any
vector x in E is represented by a linear operator of S0. If x is an isotropic vector, we
have x2 = 0 inside C(E, q), and then Im x ⊂ Ker x.

If x is isotropic and different from zero, as classically, one can find y, an isotropic
vector such as 2(x|y) = 1 or, equivalently, in C(E, q) such as xy + yx = 1. We
notice that

(i) (xy)2 = (1− yx)xy and (yx)2 = yx,

(ii) (xy)(yx) = 0 = (yx)(xy).

60 Ichiro Satake: Algebraic structures of symmetric domains, op. cit., p. 278.
61 The method has been initiated for the case r − s ≡ 2 (mod 4), r and s even, which is

equivalent to m = r + s = 4k + 2 and r − s = 4l + 2, by R. Deheuvels, Rend. Sem. Mat.
Univer. Politecn. Torino, vol. 43, 2, 1985, pp. 205–226.
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The two supplementary idempotents (xy) and (yx) depend only on the hyperbolic
oriented plane H = {x, y}. Any orthogonal symmetry of H interchanges them. They
both belong to C+(E, q) and are represented in any space on which C+(E, q) oper-
ates, in S1 for example, by two supplementary projections.

Let x′ and y′ be two other isotropic vectors such that 2(x′|y′) = 1, which generate
the hyperbolic plane H ′ assumed different from H . At least one of the vectors x, y,
for example x, does not belong to H ′. The two decompositions of the unit element
associated with H and H ′, 1 = xy+yx = x′y′+y′x′, are therefore different. If xy =
x′y′ we have xx′y′ = 0 in C(E, q) and if xy = y′x′ we have xy′x′ = 0 in C(E, q).

Classically, we know that the product of three linearly independent vectors of
E is always different from zero in C(E, q). Moreover, in S1, if s ∈ Ker x, we have
s = (xy+yx)s = (xy)s ∈ Im x. Therefore we obtain that Im x = Ker x = Im(xy) =
Ker(xy) is a linear subspace of dimension 1

2 dim S1.
Let us now consider the space S of spinors for C+(E, q), which is a subspace

(proper or not) of S1, invariant under the action of C+(E, q). Let us denote by (xy)S ,
respectively (yx)S , the respective projections of S defined by the respective ele-
ments (xy) and (yx) in C+(E, q). Then, we put S(x) = Im (xy)S = Ker ((yx)S) =
(Im x) ∩ S = (Ker x) ∩ S. For any λ �= 0, S(λx) = S(x).

Let { | } be a scalar product on S associated with the involution τ , i.e., such that for
any a ∈ C+(E, q) the linear operators that represent respectively a and aτ in S are
adjoint to each other with respect to { | }. We have (xy)τ = (yx) and (yx)τ = (xy).
Therefore, for any s, t in S, {(x, y)s | (xy)t} = {s | (yx)(xy)t} = 0. The subspace
S(x) = Im(xy)S is totally isotropic for { | }. Since S = Im(xy)S⊕Im(yx)S is a direct
sum, S = S(x)⊕ S(y) is a direct sum of two totally isotropic subspaces; then these
subspaces are maximal totally isotropic both of dimension 1

2 dim S. Such a demon-
stration shows that the scalar product { | } is necessarily neutral if there exist isotropic
nonzero vectors in E.

If x and x′ are two isotropic vectors of E that generate a regular plane, the results
above show that we have S = S(x)⊕S(y) and then S(x)∩S(y) = 0, and moreover,
S(x) is different from S(y). Furthermore, if x and x′ are two linearly independent
isotropic vectors that generate a totally isotropic plane, there exist classically62 two
isotropic vectors y and y′ that generate a totally isotropic plane orthogonal to {x, x′}
such that xy+yx = 1 = x′y′+y′x′, while xy′+y′x = x′y+yx′ = 0 = xx′+x′x =
yy′ + y′y. We put p = (xy)S , q = (yx)S , p′ = (x′y′)S , q ′ = (y′x′)S . We can now
deduce the following obvious results: pq ′ = q ′p, p′q = qp′, pp′ = p′p, qq ′ = q ′q.
If we assume S(x) = S(x′), i.e., Im p = Im p′, then q ′p = 0 and qp′ = 0, whence
p = p(p′ + q ′) = pp′ = p′p = p′ and then q = q ′, and since C+(E, q) ⊂ L(S),
xy = x′y′ and yx = y′x′, a contradictory result. Thus we have obtained the following:

1.5.5.1.1 Theorem The mapping

{isotropic line Kx of E} → maximal totally isotropic subspace S(x) of (S, { | })

62 Cf., for example, C. Chevalley, The Algebraic Theory of Spinors, op. cit., or R. Deheuvels,
Formes Quadratiques et Groupes Classiques, op. cit.
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in injective and realizes a natural embedding of Q̃(E), the projective quadric associ-
ated with E, into the Grassmannian G(S, 1

2 dim S) of subspaces of S of dimension =
1
2 dim S.

Now we are going to specify such an embedding in the case that E = Er,s is a
pseudo-Euclidean space of type (r, s) with m = dim E = r+s = 2k+1, r−s ≡ ±3
(mod 8).

1.5.5.2 Case That k Is Even

We know that there exists on S a pseudoquaternionic neutral scalar product of type

(p, p) with p = 1
2 dimH S = 2k−2 = 2

m−1
2 −2, associated with the involution τ and

C+(E, q) 	 LH(S). As is known,63 the Grassmannian of maximal totally isotropic
subspaces of dimension k, denoted here by Gk(S), of S a right vector space of di-
mension n = p + q, over H, provided with a pseudoquaternionic scalar product of
type (p, q) is homeomorphic to (SpU (p) × SpU (q))/(SpU (k) × SpU (p − k)×
SpU (q − k)). Then we obtain here that G(S, 1

2 dim S) is homeomorphic to
SpU ( 1

2 dimH S), whence we deduce the following result:

1.5.5.2.1 Theorem For m ≥ 7, m = r + s = 2k + 1, k even, r − s ≡ ±3 (mod 8),
the projective quadric Q̃(Er,s) is naturally embedded into SpU (2

m−1
2 −2).

The set of subspaces of S that are positive maximal and then of dimension
1
2 dimH S = 2k−2 is an open set of the Grassmannian G(S, 1

2 dim S), which 64 we
agree to call the semi-Grassmannian of (S, { | }) and which we denote by G+(S).
G+(S) is the classical simply connected symmetric space of type CII in Elie Cartan’s
list,65

SpU (2k−2, 2k−2)/SpU (2k−2)× SpU (2k−2),

and Q̃(Er,s) is embedded into the “boundary” of G+(S) in G(S, 2k−2).

G+(S) can be identified with the symmetric space of involutions of LH(S) 	
C+(r, s) that commute with τ : ατ = τα and that are strictly positive, which by defi-
nition66 means that the real corresponding quadratic form on C+(r, s), Tr(l(xαx)),
is positive definite. As a matter of fact, if α is an involution, there exists (Theorem
1.3.3.3) an element u ∈ LH(S) determined up to a nonzero scalar factor such that

63 Cf., for example. I. R. Porteus, op. cit., p. 237, Theorem 12-19 and p. 350, Proposition
17–46.

64 R. Deheuvels, Rend. Sem. Mat. Univers. Politecn. Torino, op. cit.
65 Cf., for example, S. Helgason, Differential Geometry and Symmetric Spaces, op. cit., or

J. A. Wolf, Spaces of Constant Curvature, op. cit.
66 Cf. A. Weil, op. cit.; I. Satake, op. cit.; R. Deheuvels, op. cit.
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1. aα = u−1aτu, for any a in LH(S),
2. uτ = uα = u.

Now, ατ = τα implies that u2 = λ.1, with λ a real number since (u2)τ = λ.1 =
u2 = λ.1. Since u2 = uαu and since α is a positive involution, λ is a positive real
number. Replacing u by λ−1/2u, we obtain an involutive element u ∈ LH(S) such
that uτ = uα = u (with u2 = 1), associated with the involution α of LH(S).

An associated scalar product [ | ] on S is given by [x|y] = {ux|y}, corresponding
to the involution α. The eigenspace of u for the eigenvalue 1 is then a maximal strictly
positive subspace Pα of (S, { | }), since for any nonzero element x in Pα we have

{x|x} = {ux|x} = [x|x] > 0.

Then Pα is an element of G+(S). Conversely, the datum of such a subspace P de-
termines its orthogonal Q, which is maximal and strictly negative. P and Q are, in
fact, the eigenspaces relative to the eigenvalues 1 and −1 of an involutive element u
of LH(S), which determines a strictly positive involution α by putting for any x in S,
xα = xτj (u) with ατ = τα. We recall that as usual, we put for any x, xj (u) = u−1xu

such that j (u)j (v) = j (uv).

1.5.5.3 Case There k Is Odd

If k is odd, we know (1.5.1.2.3) that there exists on S a nondegenerate H-skew

sesquilinear form b on S of maximal index 2
m−1

2 −2, and the corresponding special

unitary group SU
2
m−1

2 −1 = SO∗(2m−1
2 ).67 It is known68 that the Grassmannian of

maximal totally isotropic subspaces of dimension 2
m−1

2 −2 of the complex vector

space S provided with the skew-hermitian form h is homeomorphic to U(2
m−1

2 −1)

and according to results recalled by Porteous69 the Grassmannian of maximal totally

isotropic subspaces of dimension 2
m−1

2 −2 of the complex vector space S provided with

the symmetric complex bilinear form a is homeomorphic to O(2
m−1

2 )/U(2
m−1

2 −1).
Thus we can deduce that the Grassmannian of maximal totally isotropic subspaces of

dimension 2
m−1

2 −2 of the quaternionic right vector space S provided with the form b

is homeomorphic to O(2
m−1

2 ). Then we have the following result:

1.5.5.3.1 Theorem For m ≥ 7, m = r + s = 2k + 1, k odd, r − s ≡ ±3 (mod 8),
the projective quadric Q̃(Er,s) is naturally embedded into O(2

m−1
2 ).

67 The unitary group of b is U
2
m−1

2
(C, h) ∩O(2

m−1
2 ,C), n = dimH S = 2

m−1
2 −1.

68 I. R. Porteus, op. cit., Theorem 12-12 p. 233, and Proposition 17-46, p. 350.
69 Ibid., Theorem 12-19, p. 237.
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1.6 Real Structures on the Space S of Spinors for C+
r,s , m = 2k + 1,

r − s ≡ ±1 (mod 8). Embedding of Corresponding
Spin Groups and Associated Real Projective Quadrics

1.6.1 Involutions of the Real Algebra LR(S), where S is a Real Space
over R of Even Dimension

1.6.1.1 Introductory Notes

Let S be a real vector space of even dimension n. Let b be a pseudo-Euclidean or
symplectic scalar product on S. We know, (1.1.5.2), that we can define the adjunction
∗ in LR(S)—relative to b—such that for any a, b in LR(S), for any λ in R, we have

(a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, (λI)∗ = λI, (a∗)∗ = a.

Now we want to show that any involution α of the real algebra LR(S) can be con-
sidered as the adjunction relative to a nondegenerate real symmetric or skew bilinear
form on S.

Let ε = {ε1, . . . , εn} be an arbitrary basis of S. Such a basis determines a pseudo-
Euclidean scalar product on S, according to which ε is an orthonormal basis. Any
element a in LR(S) = A is represented by its matrix A in ε, and the adjunction ∗ is
such that A∗ =t A.

If α is an involution of A, according to 1.3.3.3, α can be written as Aα =
U−1(tA)U with tU = U or tU = −U . If tU = U , then tU = Uα = U and if
tU = −U , then tU = Uα = −U . U is determined up to a nonzero scalar factor
and represents in the basis ε the matrix of a nondegenerate bilinear form, symmetric
(respectively skew) if tU = U (respectively tU = −U ), the adjunction of which is
precisely α.

It is well known that a real symplectic vector space, the scalar product of which is
denoted by [ | ], is provided with a pseudo-Euclidean structure, the scalar product of
which is denoted by ( | ), if and only if there exists a transfer symplectic operator T ,
with T 2 = −I . S is then provided with a pseudo-hermitian structure, the scalar prod-
uct of which is denoted by 〈 | 〉 and for anyx, y ∈ S we have 〈x | y〉 = (x | y)−i[x | y]
with (x | y) = −[T x | y], or, equivalently, [x | y] = (T x | y). T is an orthogonal
and symplectic operator.70 Therefore we find that, as usual,

U(p, q) = SO(2p, 2q) ∩ Sp(2(p + q),R).

1.6.1.2 Properties of the Trace

Then the problem that appears is the following one: Since in 1.5.3, the form
(x, y) → Tr(l(xαy) is a nondegenerate symmetric bilinear form associated with
the involution α of A. Mutatis, mutandis, the demonstration is the same. Let ε′ be

70 Cf., for example, R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit., pp.
429–430.
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the basis of LR(S) associated with the basis ε of S, ε′ = {εij , 1 ≤ i, j ≤ n}, where
εij is the linear operator on S, the matrix of which in ε has all elements equal to zero
except for that row i and column j , which is equal to 1.

If we choose an orthogonal basis ε for the pseudo-Euclidean scalar product onS, ε′
is an orthogonal basis for the bilinear form Tr(l(xαy) on A. If H = diag(λ1, . . . , λn)

is the matrix of the pseudo-Euclidean scalar product in ε with λ1, . . . , λp > 0 and
λp+1, . . . , λp+q < 0 (p + q = n), we find easily that Xα = H−1(tX)H , and if
X = [xij ], we find that

Tr(l(XαX) =
∑ λi

λj

|xij |2,

and that the signature of the quadratic form X→ Tr(l(XαX) on A is (p2+q2, 2pq).

1.6.2 Real Symplectic or Pseudo-Euclidean Structures on the Space S

of Spinors for C+
r,s , m = r + s = 2k + 1, r − s ≡ ±1 (mod 8)

Now, according to the fundamental table (1.4.2), C+(r, s) 	 LR(S), where dimR S =
2

m−1
2 . Following the method used in 1.5 and according to the results above (1.6.1),

Aτ = U−1(tA)U with tU = Uτ = U or tU = Uτ = −U , where U is determined
up to a nonzero scalar. As in 1.5, U is proportional to J1, the product of the elements
of a basis of E1 = u⊥, where u is a vector of Er,s such that (u | u) = ±1 and E1 is
a pseudo-Euclidean space Er,s−1 if (u | u) = −1 or Es,r−1, if (u | u) = 1; C+(r, s)
is then represented as the Clifford algebra C(u⊥). We obtain the following table:

Realization of C+
r,s:

C(u⊥), (u | u) = −1 C(u⊥), (u | u) = 1

E1 = u⊥ of type (r, s − 1) E1 = u⊥ of type (s, r − 1)

J1 product of the elements of J ′1 product of the elements of

the chosen basis of E1 the chosen basis of E1

J 2
1 = (−1)k+s−1 J ′2

1 = (−1)k+s

m = r + s = 2k + 1, r − s = 1 + 8l, k ≡ s (mod 4)
J 2

1 = −1 J ′2
1 = −1

s even
J τ

1 = J1, N(J1) = −1 J ′τ
1 = J ′1, N(J ′1) = 1

J1 /∈ Spin(Er,s) J ′1 ∈ Spin(Er,s)

s odd
J τ

1 = −J1, N(J1) = 1 J ′τ
1 = −J ′1, N(J ′1) = −1

J1 ∈ Spin(E, r) J ′1 /∈ Spin(E, r)

m = r + s = 2k + 1, r − s = −1 + 8l, k ≡ s − 1 (mod 4)
J 2

1 = −1 J ′2
1 = −1
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s even
J τ

1 = −J1, N(J1) = −1 J ′τ
1 = −J ′1, N(J ′1) = 1

J1 /∈ Spin(Er,s) J ′1 ∈ Spin(Er,s)

s odd
J τ

1 = J1, N(J1) = 1 J ′τ
1 = J ′1, N(J ′1) = −1

J1 ∈ Spin(Er,s) J ′1 /∈ Spin(Er,s)

We deduce the following result:

1.6.2.1 Theorem The space S of spinors associated with the Clifford algebras C+r,s ,
with m = r + s = 2k + 1, r − s ≡ ±1 (mod 8), possesses a natural real pseudo-
Euclidean or symplectic structure according as k is even or odd, the scalar product
of which is invariant by the spin group Spin Er,s . For m ≥ 7 we have the embedding

of Spin Er,s into SO(p, p) or Sp(2p,R) with p = 2
m−1

2 −1 = 2k−1 according as k is
even or odd.

The dichotomy k even or k odd results from the fact that J τ
1 = J1 (or J ′τ

1 = J ′1),

respectively J τ
1 = −J1 (or J ′τ

1 = −J ′1), according as k is even or odd, which de-
termines the choice of the pseudo-Euclidean, respectively symplectic, scalar product
on S.

1.6.2.1 The Case of k Even

If k is even, the same technique as in 1.5 shows that the quadratic form defined on
C+(r, s) = LR(S) is neutral and that S is a pseudo-Euclidean neutral vector space

of type (2
m−1

2 −1, 2
m−1

2 −1). The unitary group of automorphisms of S that leave this
scalar product invariant consists of elements u ∈ C+(r, s) such that uτu = 1 and
thus contains Spin Er,s . Moreover, we want to show that Spin Er,s is embedded into

SO(2
m−1

2 −1, 2
m−1

2 −1), for m ≥ 7, i.e., that the elements of Spin Er,s have a determi-
nant equal to 1, as linear operators of S.

If r − s = 1 + 8l, s is even, and u is such that (u | u) = −1, we can take again
the above demonstration of 1.5 for the case r − s ≡ ±3 (mod 8), which shows that
any element g in Spin Er,s is the product of elements that have determinant equal to
±1 in S. Spin Er,s is then embedded into the subgroup of O(2k−1, 2k−1) consisting
of elements with determinant equal to±1 in S, but according to the connectedness of
Spin Er,s all these elements necessarily have determinant equal to 1. If (u | u) = 1
we again use the same method.

If r − s = −1+ 8l, s is odd, and if u is such that (u|u) = −1, we can also take
the following route. Since m is odd, J = e1 . . . er+s belongs to the center of Cr,s and
J 2 = (−1)k+s = −1. Let us take a vector u1 such that u2

1 = −1. Then (J u1)
2 = 1,

J u1 is an involution of S, and then has determinant equal to ±1.
If u1 and v1 belong to V = Er,s , then J u1J v1 = u1J 2v1 = −u1v1, whence we

can deduce that any elementg of Spin Er,s is a product of elements with determinant=
±1 in S and the connectedness of Spin V yields the result. If (u | u) = 1, we take the
same route.
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1.6.2.2 The Case of k Odd

(b) If k is odd, the symplectic structure comes naturally.

1.6.2.3 Remark According to the table above (1.6.2), we can always find a realization
of C+(r, s) such that J1 or J ′1 is in the symplectic case an element of Spin Er,s , the
square of which is equal to−1, and thus a symplectic automorphism of S with square
equal to−1. If r− s = 1+8l and s is odd, this element is J1. If r− s = −1+8l and
s is even, this element is J ′1. J1 (respectively J ′1) is a transfer operator that provides
S with a pseudo-Euclidean neutral structure associated with the symplectic structure
(the neutrality of the structure can be shown as in 1.5.3).

Furthermore, J1 belongs to the anticenter of a Clifford algebra Cr,s−1 of a
vector space of precise dimension 2k = r + s − 1 and J ′1 belongs to the anti-
center of a Clifford algebra Cs,r−1 of a vector space of dimension 2k. Thus, J1
and J ′1 commute with any element in Spin V . Then, the pseudo-Euclidean scalar
product ε classically defined for any x, y in S by ε(x, y) = −[J1x | y], respec-
tively ε(x, y) = −[J ′1x | y], is such that for any g in Spin V , for any x, y in S,
ε(gx, gy) = −[J1gx | gy] = −[gJ1x | gy] = −[J1x | y] = ε(x, y), since g is
in Spin V and leaves [ | ] invariant (and the same is true with J ′1). Thus, if k is odd
and r − s = 1+ 8l (s odd) and if k is odd and r − s = −1+ 8l (s even), Spin V is
embedded into SU (2k−2, 2k−2), for m ≥ 7, which is a refinement of the result above.

1.6.3 Embedding of Corresponding Projective Quadrics

We obtain the following result:

1.6.3.1 Theorem For m ≥ 7, m = r+s = 2k+1, r−s ≡ ±1 (mod 8), the projective
quadric Q̃(Er,s) is embedded into the group O(2k−1) if k is even and into the group
U(2k−1)/O(2k−1) and even into U(2k−1) if k is odd.

The embedding can be made as in 1.5.5. If k is even we know71 that the Grassmann-
ian Gk′(S) of a totally isotropic subspaces of dimension k′ of the pseudo-Euclidean
space S of type (p, q) is homeomorphic to (O(p) × O(p))/(O(k′) × O(p − k′)×
O(q − k′)), which gives a homeomorphism of G(S, 1

2 dim S) with O(2k−1) (with
notation of 1.5.5). If k is odd, we know72 that the Grassmannian G(S, 1

2 dim S)

is homeomorphic to U(2k−1)/O(2k−1) and even in U(2k−1) according to the re-
mark of 1.6.2.3 above. If k is even, the same approach as in 1.5.5 shows that the
set of subspaces of S that are maximal and strictly positive, and thus of dimension
2k−1, is an open set of the Grassmannian G(S, 2k−1) called, by definition, the semi-
Grassmannian of (S, ( | ) and denoted by G+(S). G+(S) is the classical symmetric
space SO+(2k−1, 2k−1)/SO(2k−1)× SO(2k−1) of type BDI in Elie Cartan’s list.73

71 For example, I. R. Porteous, op. cit., p. 237 and p. 350.
72 Ibid., p. 233.
73 S. Helgason, op. cit., p. 394, for example.



www.manaraa.com

52 1 Classic Groups: Clifford Algebras, Projective Quadrics, and Spin Groups

As in 1.5.5, G+(S) can be identified with the symmetric space of involutions α of
C+(r, s) that commute with τ and that are strictly positive. If k is odd, according to the
existence of the pseudo-Euclidean structure associated with the symplectic structure,
we obtain analogous conclusions with respect to a previous remark (1.6.2.3).

1.7 Study of the Cases r − s ≡ 0 (mod 8) and r − s ≡ 4 (mod 8)

According to the fundamental table (1.4.2), if r−s ≡ 0 (mod 8)C+(r, s) is a semisim-

ple algebra, isomorphic to the direct sum of two algebras isomorphic to m(2
[m−1]

2 ,R),
and if r−s ≡ 4 (mod 8), C+(r, s) is isomorphic to the direct sum of two algebras iso-

morphic to m(2
[m−1]

2 −1,H). Now,74 if m is even and m ≡ 2 (mod 4), τ interchanges
the two simple components of C+(r, s), and if m ≡ 0 (mod 4), τ leaves invariant
each of the two components of C+(r, s) and induces on each of them an involution
of the first type,75 i.e., fixes all elements in the center of the algebra. Let us put for the
algebra A, Pτ (A) = {x, x ∈ A | xτ = x}, Jτ (A) = {x, x ∈ A | xτ = −x}, spaces
of even elements, respectively odd elements, for the involution τ of the algebra A. We
recall that for any element eI = ei1 · · · eip (1 ≤ i1 < i2 < · · · < ip ≤ m) of the basis
of Cr,s associated with the basis {ei}1≤i≤m of Er,s we have eτA = (−1)p(p−1)/2eA.
One easily verify that

Pτ (Cr,s) = ⊕Cp(Er,s) Jτ (Cr,s) = ⊕Cp(Er,s)

p ≡ 0 or 1 (mod 4) p ≡ 2 or 3 (mod 4)

Pτ (C
+
r,s) = ⊕Cp(Er,s) Jτ (C

+
r,s) = ⊕Cp(Er,s)

p ≡ 0 (mod 4) p ≡ 2 (mod 4)

where as usual, Cp(Er,s) denotes the subspace of p-vectors of Er,s .76 Accord-
ing to Weil,77 if (x, y) → Tr(l(xτ y)) is the nondegenerate symmetric bilinear
form defined on C+r,s , C+r,s is the direct orthogonal sum of Pτ (C

+
r,s) and Jτ (C

+
r,s):

C+r,s = Pτ (C
+
r,s) ⊕ Jτ (C

+
r,s). We are going to use classical results concerning the

structure of Clifford algebras.78

1.7.1 Study of the Case r − s ≡ 0 (mod 8)

The even Clifford algebra C+r,s for a standard pseudo-Euclidean space Er,s , m =
r + s = 2k, r − s ≡ 0 (mod 8) is the direct sum of two simple algebras C1 and C2

74 I. Satake, op. cit., p. 281.
75 Ibid., p. 268.
76 Cf., for example, R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit.,

p. 327.
77 A. Weil, op. cit. lemma 1, p. 603.
78 Cf. R. Deheuvels, Formes Quadratiques et Groupes Classiques, chapter VII (“theorem

VIII-8” p. 317 and “proposition VII-18” p. 334, chapters VIII-13 and VIII-14).
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isomorphic to its even subalgebra (C+r,s)+, isomorphic itself to m(2k−1,R) according
to the fundamental table (1.4.2).79

More precisely, C+r,s = C1 ⊕ C2 with C1 = (C+r,s)+ε1, C2 = (C+r,s)+ε2, where

ε1 = 1
2 (1+J1), ε2 = 1

2 (1−J1), if we denote by J1 the product of the elements of the
basis of u⊥ = E1, chosen for the realization of C+r,s ,80 with ε1 + ε2 = 1, ε1ε2 = 0.
C1 and C2 are both two-sided ideals of C+r,s . Now let us consider S, the space of
spinors for C+r,s , the minimal faithful module, defined up to an isomorphism, of the
algebra C+r,s . According to Deheuvels,81 since C+r,s is semisimple, S is a direct sum of
two nonisomorphic submodules, spaces of spinors called semispinors, S = S1 ⊕ S2.
We obtain the following table:

m = r + s = 2k, r − s = 8l, k ≡ s(mod 4);

Realization of C+r,s:

C(E1) = C(u⊥) C(E1) = C(u⊥)

(u | u) = −1, C(E1) = C(Er,s−1) (u | u) = 1, C(E1) = C(Es,r−1)

J1 product of the elements of J ′1 product of the elements of

the chosen basis of E1 = u⊥ the chosen basis of E1 = u⊥

J 2
1 = (−1)k+s , J τ

1 = (−1)k−1J1 J ′2
1 = (−1)k+s , J ′τ

1 = (−1)k−1J ′1

1.7.1.1 k even (r and s even), m ≡ 0 (mod 4)

J 2
1 = 1, J τ

1 = −J1, N(J1) = −1 J ′2
1 = 1, J ′τ

1 = −J ′1, N(J ′1) = −1

J̃ τ
1 = −J̃1 J̃ ′τ

1 = −J̃ ′1
Let us write the two-sided ideals C1 and C2 of C+r,s :

C1 = (C+r,s)+ε1, respectively (C+r,s)+ε′1,
C2 = (C+r,s)+ε2, respectively (C+r,s)+ε′2

with

εi or ε′i =
1

2

1± J1

J ′1

 for i = 1, 2.

79 An elementary calculation shows that if we realizeC+r,s asCr,s−1, (C+r,s )+ realized asCr,s−2
or Cs−1,r−1, in both cases (C+r,s )+ is isomorphic to m(2k−1,R), and if we realize C+r,s as
Cs,r−1, (C+r,s )+ realized as Cs,r−2 or Cr−1,s−1, in both cases (C+r,s )+ is isomorphic to
m(2k−1,R).

80 Cf. R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit., “théorème VIII-8,”
p. 317.

81 Ibid., “chapitre VIII-14.”
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We know that τ leaves invariant C1 and C2. We are going to use classical results
concerning faithful representations of semisimple algebras.82 We put S1 as a C1-
simple module, S2 as C2-simple module, and for j �= i, (i, j = 1, 2), CjSi = 0, and
Si is isomorphic as a Ci-simple module, with a simple left ideal of C1: Hi = Ciẽi ,
where ẽi is an idempotent of Hi . C1 is a central simple algebra, the C1-simple module
of which is S1, and C1 can be identified with the real algebra LR(S) 	 m(2k−1,R),
to which the results of 1.6 can be applied.

Let τ be chosen for involution of C1. Let ε1 = {ε1
i }1≤i≤n (n = dimR S1) be an

arbitrary basis of S1. This basis determines on S1 a standard Euclidean scalar prod-
uct, according to which ε1 is an orthogonal basis. Any element of C1 = LR(S1)

is represented by its matrix in ε1, and the corresponding adjunction ∗ is such that
A∗ = tA. As in 1.6, Aτ = U−1(tA)U with tU = U or tU = −U . If tU = U ,
then tU = Uτ = U , and if tU = −U , then tU = Uτ = −U . The element U

that conducts the inner automorphism is determined up to a nonzero scalar factor, as
above (1.6), and is proportional to J̃1 (or J̃ ′1), the product of the elements of the basis
chosen for the realization of (C+r,s)+ isomorphic to C1. Now we have J̃ τ

1 = −J̃1,

respectively J̃ ′τ
1 = −J̃ ′1, and then U determines on S1 a symplectic scalar product

the adjunction of which is τ . Moreover, the nondegenerate symmetric bilinear form
(x, y)→ T r(l(xτ y)) defined on C1 is a neutral form. The demonstration is the same
as in 1.6 and can be also made for C2 and S2.

Furthermore, S = S1 ⊕ S2 is provided with a symplectic scalar product defined
for any z = z1+z2 (with zi ∈ Si for i = 1, 2), z′ = z′1+z′2 (with z′i ∈ Si for i = 1, 2),
by [z | z′] = [z1 | z′1] + [z2 | z′2]. Since any element g ∈ Spin(Er,s) can be written
g = g1 + g2, g1 ∈ C1, g2 ∈ C2, and since g2 · S1 = 0 and g1.S2 = 0, and since
the group of automorphisms of S1 (respectively S2) leaving invariant the symplectic
scalar product consists of elements u in C+r,s such that uτu = 1, we can deduce that
Spin(Er,s) is included in Sp(2p,R) with p = 2k−1. As in 1.6, we have the following
embedding of Q̃(Er,s), the corresponding projective quadric, into U(2k−1)/O(2k−1).
Thus, we have the following results:

1.7.1.1.1 Theorem For m ≥ 8, r − s ≡ 0 (mod 8), m = r + s = 2k, k even
(r and s even) and then m ≡ 0 (mod 4). Spin(Er,s) is embedded into Sp(2p,R) with
p = 2k−1; Q̃(Er,s) is embedded into U(2k−1)/O(2k−1).

1.7.1.1.2 Fundamental Remark

Since k is even, r and s even, we can always find a realization of (C+r,s)+: Cr,s−2, or

respectively Cs,r−2, such that for J̃1, respectively for J̃ ′1, we have J̃ 2
1 = −1, respec-

tively J̃ ′2
1 = −1. Moreover, J̃1 and J̃ ′1, since the dimension is even, both belong to the

anticenter of (C+r,s)+ and then commute with even elements in (C+r,s)+. Since we have
the above decomposition g = g1+ g2 (gi ∈ Ci , for i = 1, 2) for any g in Spin(Er,s),

82 Cf., for example, R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit.,
“proposition VIII-13-C” p. 341, “théorème VIII-13-E” p. 343, “théorème VIII-4-A” pp.
345–346.
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we can deduce on S1 as on S2 the existence of a “structure of type SO(p1, p1),” and
consequently, Spin V is embedded into SU (2k−1, 2k−1), following the same route as
in 1.6 and using a consideration of determinant equal to 1. Therefore, as in 1.6, the
corresponding projective quadric Q̃(Er,s) is embedded into U(2k−1) for k ≥ 4.

1.7.1.2 k odd (r and s odd) m = 2 k ≡ 2 (mod 4)

We obtain with the above notation

J τ
1 = J1, N(J1) = J 2

1 = 1, J ′τ
1 = J ′1, N(J ′1) = 1 = J ′2

1 ,

J̃ τ
1 = J̃1, J̃ ′τ

1 = J̃ ′1.

We know that τ interchanges C1 and C2, the two simple components of C+r,s , since
m ≡ 2 (mod 4).83

Moreover, C1 and C2 are orthogonal for the real symmetric bilinear form:
(x, y)→ Tr(l(xτ y)). In the first case, case of J1, we now have (1+J1)

τ = 1+J1,
(1− J1)

τ = 1− J1, and since (1+ J1)
τ (1− J1)

τ = (1+ J1)(1− J1) = 0 since
J 2

1 = 1, if x = 1
2 (1+J1)a ∈ C1, y = 1

2 (1−J1)b ∈ C2, we find that xτ y = 0. The
same can be done in the case J ′1.

According to classical results concerning faithful representations of semisimple
algebras84 already given, S1 is a C1-simple module, S2 is a C2-simple module, and if
j �= i (i, j = 1, 2), Cj .Si = 0 and Si is isomorphic to a left simple ideal Hi = Ciẽi
of Ci—where ẽi is an idempotent of Hi , for i = 1, 2—according to its structure as a
Ci-module.

As in the above case 1.7.1.1, C1 is a central simple algebra, the Ci-simple module
of which is S1, and C1 can be identified with LR(S1) = m(2k−1,R). With previous
notation, any element of C1 is represented by its matrix in ε1, an arbitrary basis of
S1, and Aτ = U−1(tA)U now with Uτ = tU = U , and U is proportional to J̃1,
respectively to J̃ ′1. S1 is then provided with a pseudo-Euclidean scalar product. As in
1.6 above, if (p, q) denotes the signature of such a pseudo-Euclidean scalar product
defined on S1, we verify that the signature of the quadratic form X → Tr(l(XτX))

defined on C1 is (p2 + q2, 2pq), and the same approach as in 1.6.5 shows that such
a quadratic form is a neutral one. Therefore, the pseudo-Euclidean scalar product
defined on S1 is also a neutral one.

The same is true for C2 and S2. S = S1 ⊕ S2 is then provided with a pseudo-
Euclidean neutral scalar product defined for any z = z1 + z2, z′ = z′1 + z′2, where
zi and z′i belong to Si for i = 1, 2, by (z | z′) = (z1 | z′1) + (z2 | z′2). As in 1.7.1.1
above, we can write g ∈ Spin(Er,s) as g = g1 + g2 with gi ∈ Ci for i = 1, 2; and
for j �= i we have giSj = 0 (i, j = 1, 2).

Since the group of automorphisms of S1, respectively S2, that leave invariant
this pseudo-Euclidean neutral scalar product consists of elements u in C+r,s such that

83 I. Satake, op. cit.
84 Cf., for example, R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit.,

“chapitres VIII-13, VIII-14.”
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uτu = 1, using the same route as in 1.5 we show easily that any element in Spin(Er,s)

is a product of elements with determinant equal to±1 in S1, respectively S2, and for a
reason of connectedness, all these elements have necessarily determinant equal to 1.
Thus, Spin(Er,s) is included into SO(p1, p2) with p1 = 2k−1, and the corresponding
projective quadricQ̃(Er,s) is embedded into O(2k−1) (for m ≥ 8). We have then
obtained the following result:

1.7.1.2.1 Theorem For m ≥ 8, m = r+s = 2k, k odd (r and s odd), m ≡ 2 (mod 4),
Spin(Er,s) is embedded into SO(p1, p1) with p1 = 2k−1, and Q̃(Er,s) is embedded
into O(2k−1).

1.7.2 Study of the Case r − s ≡ 4 (mod 8)

According to the fundamental table (1.4.2), the Clifford algebra C+r,s in the case
m = r + s = 2k, r − s ≡ 4 (mod 8) is the direct sum of two simple algebras, both
isomorphic to its even subalgebra (C+r,s)+ and also isomorphic tom(2k−2,H).With the
same notation as above, C+r,s = C1 ⊕C2, C1 = (C+r,s)+ε1, C2 = (C+r,s)+ε2. Let S be
the space of spinors forC+r,s a semisimple minimal faithful module overC+r,s , the direct
sum of two simple nonisomorphic submodulesS1 andS2. We have the following table:

m = r + s = 2k, r − s = 4 + 8l, k ≡ s + 2 (mod 4)

Realization of C+r,s : C(Er,s−1) C+r,s : C(Es,r−1)

Er,s−1 = E1 = u⊥ Es,r−1 = E1 = u⊥

J1 product of the elements of J ′1 product of the elements of

the chosen basis of u⊥ the chosen basis of u⊥

J 2
1 = (−1)k+s , J τ

1 = (−1)k−1J1 J ′2
1 = (−1)k+s , J ′τ

1 = (−1)k−1J ′1
J̃1 product of the elements of the J̃ ′1 product of the elements of the

chosen basis for the realization of chosen basis for the realization of

(C+r,s)+ (C+r,s)+

J̃ τ
1 = (−1)k+1J1 J̃ ′τ

1 = (−1)k+1J̃ ′1

1.7.2.1 k Even, r and s Even, m ≡ 0 (mod 4)

The route is the same as in 1.7.1.1.C1 is a central simple algebra theC1-simple module
of which is S1, and C1 can be identified with the real algebra LR(S1) 	 m(2k−2),H)

for which previous results (1.5) can be applied. C1 is identified with the real algebra of
linear operators of the quaternionic right vector space S1. We choose τ for involution
of C1. Let ε1 = {ε1

i }1≤i≤n, n = dimH(S1) = 2k−2, be an arbitrary basis of S1. This
basis determines on S1 a quaternionic scalar product for which ε1 is an orthogonal
basis. Any element a in C1 is represented by its matrix in ε1, and the corresponding
adjunction ∗ is such that with the same notation as above (1.5), A∗ =t Aν . As in 1.5,
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Aτ = U−1(tAν)U with tUν = U or tUν = −U . If tUν = U , then tUν = Uτ = U ,
and if tUν = −U , then tUν = Uτ = −U .

The element U that conducts the inner automorphism is proportional to J̃1,
respectively J̃ ′1. Since now we have J̃τ = −J̃1, respectively J̃′τ = −J̃ ′1, U de-
termines on S1 a nondegenerate H-skew sesquilinear form on S1, of maximal in-
dex [n2 ]. Furthermore, the nondegenerate real symmetric corresponding bilinear form
(x, y)→ Tr(l(xτ y)) defined on C1 is a neutral one, using the same approach as in 1.5.
The same is true for C2 and S2, where we find that S = S1⊕S2 is provided with a non-
degenerate H-skew sesquilinear form b defined by b(z, z′) = b1(z1, z

′
1)+b2(z2, z

′
2),

where z = z1 + z2, z′ = z′1 + z′2, zi and z′i in Si , i = 1, 2, and bi is the restriction
to Si of the above sesquilinear form. As in 1.7.1 we find that Spin(Er,s) is embedded
into Un1(S, b) and even in SUn1(S, b) = SO∗(2n1), with n1 = dimH S = 2k−1,
following the same approach as in 1.5, and that the corresponding projective quadric
Q̃(Er,s) is embedded into O(2k), for k ≥ 3. Then we have obtained the following:

1.7.2.1.1 Theorem For m ≥ 6, m = r + s = 2k, k even, r and s even, m ≡ 0 (mod
4), Spin(Er,s) is embedded into SO∗(2k), Q̃(Er,s) is embedded into O(2k).

1.7.2.2 k Odd, r and s Odd, m ≡ 2 (mod 4)

Then we obtain

J 2
1 = 1, J τ

1 = J1, J ′2
1 = 1, J ′τ

1 = J τ
1 ,

J̃ τ
1 = J̃1, J̃ ′τ

1 = J̃ ′1.

As in 1.7.1.2,C1 andC2 are interchanged by τ and are orthogonal for the real bilin-
ear symmetric form (x, y)→ Tr(l(xτ y)). S1 is aC1-simple module, S2 is aC2-simple
module, and for j �= i,Cj .Si = 0 for i, j = 1, 2.C1 is a central simple algebra theC1-
simple module of which is S1, and C1 can be identified with LR(S1) = m(2k−2,H).

Any element in C1 is represented by its matrix in ε1, a basis of S1, and
Aτ = U−1(tAν)U with tUν = U = Uτ , and U is proportional to J̃1, respec-
tively J̃ ′1. S1 is then provided with a pseudoquaternionic scalar product of signature
(p, q). As in 1.5, we verify that the signature of the corresponding real quadratic form
X → Tr(l(XτX)) is (4(p2 + q2), 8pq). Moreover, this quadratic form is a neutral
one, following the same route as in 1.5. The same can be done for S2 and C2. We
have obtained the following result:

1.7.2.2.1 Theorem For m ≥ 6, m = r + s = 2k, k odd, r and s odd, m ≡ 2 (mod
4), Spin(Er,s) is embedded into SpU (p, p) ⊂ SU (2p, 2p) with p = 2k−2; Q̃(Er,s)

is embedded into SpU (2k−2).

1.8 Study of the Case r − s ≡ ±2 (mod 8)

In these cases, C+r,s = A is isomorphic to m(2[ m−1
2 ],C) according to the fundamental

table (1.4.2) (m = r + s = 2k). A can be identified with the central simple complex

algebra of linear operators of a complex vector space of dimension 2[ m−1
2 ].
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1.8.1 Involutions on A = LC(S), where S is a Complex Vector
Space of Dimension n

Let ε = {ε1, . . . , εn} be an arbitrary basis of S. Such a basis determines on S a
hermitian standard scalar product for which ε is an orthonormal basis. Any element
a in A is represented by its matrix A in ε and the corresponding adjunction ∗ is
such that A∗ =t Ā. Any involution α of A is such that according to the fundamental
Theorem 1.3.3.3, Aα = U−1(t Ā)U with t Ū = U or t Ū = −U . If t Ū = U , U is
the matrix in ε of a nondegenerate C-sesquilinear form that determines a pseudo-
hermitian scalar product the adjunction of which is precisely α. If t Ū = −U , U is
the matrix in ε of a nondegenerate skew-hermitian sesquilinear form the adjunction
of which is α. (This form is, in fact, of maximal index [n2 ].) It is classical85 that then
ib is a pseudo-hermitian sesquilinear form.

With the same notation as above, J τ = (−1)kJ , J τ
1 = (−1)k−1J1, and J ′τ =

(−1)k−1J ′1. The dichotomy k even and k odd appears naturally, since the element
that conducts the inner automorphism is proportional to J1 (respectively J ′1). If k is
even, S is provided with a nondegenerate skew-hermitian form b and with ib a non-
degenerate pseudo-hermitian form. If k is odd, S is provided with a pseudo-hermitian
scalar product.

As above, we are going to study the following problem: If the involution α on the
complex central simple algebra A = LC(S) is associated with a pseudo-hermitian
scalar product, determine the signature (p, q) of this pseudo-hermitian scalar product,
the adjunction of which is α.

1.8.2 Associated Form with an Involution α of A = LC(S)

The same approach as above leads to the following result:86

1.8.2.1 Proposition The form (x, y) ∈ A2 → Tr(l(xαy)) is a nondegenerate
hermitian form on A associated with the involution α of A, and the signature of
the hermitian associated quadratic form on A : x → Tr(l(xαy)) is (p2 + q2, 2pq).

1.8.3 Pseudo-Hermitian Structures on the Spaces of Spinors
S for C+

r,s (r − s ≡ ±2 (mod 8))

Let us take for involution τ the principal antiautomorphism of A = C+r,s .
The corresponding hermitian form on C+r,s is (x, y)→ Tr(l(xαy)). The minimal

module of C+r,s is the space of spinors associated with C+r,s . As usual,87 let us take
u in V = Er,s such that (u | u) = ±1 and put W = u⊥. C+r,s is the complexifi-
cation of its subalgebra C+(W), which is invariant by τ . Since m = 2k = r + s,
dimC C+r,s = dimR C+(W) = 22k−2 and dimC S = 2k−1.

85 For example, R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit., p. 222.
One can show it immediately that if t Ū = −U , let us takeU1 = iU , then we have t Ū1 = U1.

86 Cf. also R. Deheuvels, Groupes Conformes et Algèbres de Clifford, op. cit., pp. 219–220.
87 Cf. for example, R. Deheuvels, ibid., pp. 220–221.
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The basis of C+(W) associated with an orthonormal basis {e1, . . . , e2k−1} of W

is a complex basis of C+(Er,s). If we denote by eI = ei1 · · · ei2k and eL = ej1 · · · ej2l

two elements of such a basis, then eτI eL is also an element of this basis and a non-
scalar one if I �= L. In such a case the translation l(eτI eL) permutes the vectors of the
basis without any fixed element and with trace equal to zero.

The basis of C+(W) is a complex orthogonal basis of C+r,s for the form asso-
ciated with τ . (eτI eI ) is a scalar equal to N(eI ) = (ei1 | ei1) · · · (ei2k | ei2k ) and
TrC(l(eτI eI )) = dim C+(W).N(eI ) is positive if and only if eI contains an even
number of negative vectors of the basis of W and consequently, an even number
of positive vectors of the basis of W . As above, if we denote by p(n) and i(n) the
respective numbers of subsets of {1, 2, . . . , n} with an even cardinality, respectively
an odd cardinality, we have p(n) = i(n) = 2n−1. If the corresponding signature of
W is (p1, p2) according to the choice of u, it is (r, s− 1) or (s, r − 1), the number of
positive vectors of the basis of C+(W) is p(p1)p(p2), and the number of negative
vectors is i(p1)i(p2). Both these both numbers are equal, and the pseudo-hermitian
form (x, y)→ Tr(l(xτ y)) on C+r,s is a neutral one.

Therefore, we deduce that if k is even, ib is a pseudo-hermitian neutral scalar
product of signature (2

m
2 −2, 2

m
2 −2) and then b is a nondegenerate skew-hermitian

form of maximal index 2
m
2 −2 and if k is odd, S is provided with a pseudo-hermitian

scalar product of signature (2
m
2 −2, 2

m
2 −2).

Since the pseudounitary group of automorphisms of S that leave invariant each
of these sesquilinear forms consists in each case of elements u of C+r,s 	 LC(S) such
that uτu = 1, Spin Er,s is then embedded into it.

As above, using the lemma given in the appendix, we can verify that

• if k is even, Spin Er,s is embedded into SU (p, p) with p = 2
m
2 −2,

• if k is odd, Spin Er,s is embedded into SO∗(2p) with p = 2
m
2 −2 and then embed-

ded into SU (p, p) with p = 2
m
2 −2.

Then, we have obtained the following result:

1.8.3.1 Theorem For m ≥ 6, m = 2k = r + s, r − s ≡ ±2 (mod 8), the space S

of spinors associated with the even algebras C+r,s possesses a natural complex struc-
ture and a pseudo-hermitian neutral scalar product. In each case (k even and k odd)
Spin(Er,s) is embedded into SU (p, p) with p = 2

m
2 −2.

We find directly the results obtained by René Deheuvels88 for m = 4k + 2,
r − s ≡ 2 (mod 4).

1.8.4 Embedding of the Corresponding Projective Quadric Q̃(Er,s)

According to Porteous,89 the Grassmannian of maximal totally isotropic subspaces of
dimension

( 1
2

)
dim S of the complex space S with dimC S = 2

m
2 −1 is homeomorphic

88 R. Deheuvels, Groupes Conformes et Algèbres de Clifford, op. cit.
89 I. R. Porteous, Topological Geometry, op. cit., Theorem 12-12 p. 233 and Proposition 17-46

p. 350.
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to U(2
m
2 −2) in each case, k even or k odd. We have then obtained the following

theorem:

1.8.4.1 Theorem For m = 2k, m ≥ 6, r − s ≡ ±2 (mod 8), the projective quadric
Q̃(Er,s) is embedded into the group U(p), where p = 2

m
2 −2 = 2k−2.

Such a result generalizes the results of Deheuvels.90 The set of maximal and
strictly positive subspaces of S and then of dimension ( 1

2 )dim S is an open set of the
Grassmannian G(S, ( 1

2 )dim S) called the semi-Grassmannian of S and denoted by
G+(S). G+(S) is the classical symmetric hermitian space of typeAIII in Elie Cartan’s
list,91 SU (p, p)/S(U(p)× U(p)) with p = 2

m
2 −2 and Q̃(Er,s) is embedded into the

boundary of G+(S) into G(S, ( 1
2 )dim S).

As in Deheuvels,92 G+(S) can be identified with the symmetric space of involu-
tions of C+r,s that commute with τ and that are strictly positive.

1.8.5 Concluding Remarks

We can now give the following summary concerning the spin groups Spin Er,s :

1.8.5.1 Theorem In each case r − s ≡ ±3,±1, 0, 4,±2 (mod 8), where m =
dimR Er,s = r + s ≥ 8, the spin group Spin Er,s is naturally embedded into a
pseudounitary neutral group SU (2a(r,s), 2a(r,s)) with

a(r, s) =



m− 1

2
− 1 if r − s ≡ ±3 (mod 8),

m− 1

2
− 2 if r − s ≡ ±1 (mod 8),

m

2
− 1 if r − s ≡ 0 (mod 8),

m

2
− 1 if r − s ≡ 4 (mod 8),

m

2
− 2 if r − s ≡ ±2 (mod 8).

1.9 Appendix

Proof of the following lemma that has been used before, in particular in 1.5.4.1. Er,s

denotes Rr+s endowed with a quadratic form q of signature (r, s); B(x, y) denotes
the symmetric bilinear associated form.

90 R. Deheuvels, Groupes Conformes et Algèbres de Clifford, op. cit., part 10.
91 Cf., for example, S. Helgason, op. cit., p. 354.
92 R. Deheuvels, Groupes Conformes et Algèbres de Clifford op. cit., pp. 224–225.
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Lemma Let (V , q) be the quadratic standard pseudo-Euclidean space Er,s with
r ≥ 2. For any pair of linearly independent vectors {u1, u2} such that B(u1, u1) =
B(u2, u2) = −1, there exists z ∈ V such that B(z, z) = 1 and B(z, u1) =
B(z, u2)= 0.

A quadratic real plane P that inherits two linearly independent vectors u1 and u2
with q(u1) = q(u2) = −1 is necessarily isomorphic to one of the three following
standard planes (R2, q): P1 : q1(x) = −(x1)

2; E0,2 : q2(x) = −(x1)2 − (x2)2;
E1,1 : q3(x) = (x1)2 − (x2)2.

In the last two cases P is a direct factor of Er,s and Er,s = P ⊕ P⊥. According
to the classical Witt’s isomorphism theorem, we have:

• if P 	 E0,2, P
⊥ 	 Er,s−2 with r ≥ 1,

• if P 	 E1,1, P
⊥ 	 Er−1,s−1. In the first case and in the second one, if r ≥ 2,

there always exists z ∈ P⊥ with q(z) = 1,
• if P 	 P1 and if D is the isotropic line of P , there exists an isotropic line D′,

linearly independent of P , such that D ⊥ D′ and so P ⊕ D′ is regular and iso-
morphic to E1,2. According to Witt’s theorem, (P ⊕D′)⊥ 	 Er−1,s−2. We obtain
the existence of z if r ≥ 2.

1.10 Exercises

(I) In the first exercise we summarize classical properties of H

(A) Let H be the standard Clifford algebra C(E0,2) = 〈−1,−1〉
R . Let e1 and e2 be

an orthogonal basis of E0,2 with e2
1 = −1 = q(e1), e

2
2 = −1 = q(e2).

(a) Show that C(E0,2) admits the following basis: 1, e1, e2, e1e2 with e1e2 +
e2e1 = 0. We put e1 = i, e2 = j , e1e2 = k. Then H = {q = 1.a + ib + jc + kd

with a, b, c, d ∈ R} is a skew field with the usual addition and the following table
for the “unit elements” i, j, k: i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i,
ki = −ik = j .

(b) If q = a+ ib+jc+kd , prove that π(q) = a− ib−jc+kd , τ(q) = a+ ib+
jc−kd , ν(q) = q∗ = a− ib− jc−kd, ν(q) is called the conjugate quaternion of q.

(c) Prove that for any q in H, π(q) = kqk−1, where k−1 = −k. More generally
for any even-dimensional regular standard space (E, q) over the field K show that
in the corresponding Clifford algebra C(E, q) for any a in C(E, q), π(a) = uau−1,
where u = e1 · · · en is the product of the elements of an orthogonal basis for q of the
space (E, q).

(d) We put N(q) = qq∗ = q∗q. Verify that N(q) = a2 + b2 + c2 + d2

and that N(q)N(q ′) = N(qq ′) (N is called the usual quaternionic norm). Write
the result known as the Euler–Lagrange identity. For q = a + ib + jc + kd,
q ′ = a′+ib′+jc′+kd ′: (a2+b2+c2+d2)(a

′2+b
′2+c

′2+d
′2) = (aa′+bb′+cc′+

dd ′)2+(ab′ −ba′ +cd ′ −dc′)2+(ac′ −bd ′ −ca′ +db′)2+(ad ′ +bc′ −cb′ −da′)2.
(e) For any q in H, we put q = a+ ib+jc+kd = (a+ ib)+j (c− id) = u+jv

with u = a+ ib, v = c− id . We embed the classical field C of complex numbers into
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H by putting a + ib→ a + ib + j.0+ k.0 ∈ H. C operates by right multiplication
into H and 1, j become the elements of a basis of H over C. If z = a + ib ∈ C,
verify that jz = z̄j , where z̄ = a − ib is the classical conjugate complex of z, and
that q∗ = a − ib − jc − kd = ū− jv.

(f) Show that the form (q1, q2) ∈ H2 → q∗1q2 is a quaternionic scalar product on
H. What are the complex components in the basis {1, j} of H over C of this form?
Prove now that SpU (1) = U(2) ∩ Sp(2,C).

(B) (a) We associate with any quaternion q in H a mapping Rq from H by Rq

(q ′) = qq ′.
(b) Show that Rq is an endomorphism of H with respect to its structure of a right

space over C.
(c) Let Aq be the matrix of Rq corresponding to the basis {1, j} of H over C.

Determine A1, Ai , Aj , Ak , and for any q = u+ jv ∈ H show that

A1 =
1 0

0 1

 , Ai =
i 0

0 −i

 , Aj =
0 −1

1 0

 , Ak =
 0 −i

−i 0


and that

Au+jv =
u −v̄

v ū

 .

(d) Verify that the mapping q → Rq is a representation of the algebra H by square
matrices of degree 2 with coefficients in C.

(e) Show that q∗ is associated with the matrix Aq∗ =t Āq .

(C) Let Mn(R) be the real associative algebra of square matrices of degree n with
coefficients in R and let In denote the unit element. We assume that there exist two
matrices A and B in Mn(R) such that A2 = −In, B2 = −In, AB + BA = 0 (I).

(a) Show that n cannot be odd.
(b) Show that the subspace H generated by In, A,B, and AB constitutes a sub-

algebra of Mn(R).
(c) If t, x, y, z are in R, determine the product (tIn + xA + yB + zAB)

(tIn − xA− yB − zAB).
(d) Deduce that In, A,B,AB are linearly independent and form a basis of H and

that H is a noncommutative field.

(e) Now, once and for all, we put n = 4, J =
 0 −1

−1 0

 and 0 the null matrix

in M2(R). We define A =
J 0

0 −J

 and B =
 0 −I2

I2 0

 in M4(R) and C = AB.

(α) Show that A and B satisfy the above condition (I).
H again denotes the subspace of M4(R) generated by In, A,B,C = AB. Its

elements are called quaternions. The basis {I4, A, B,C} of H is denoted by B.
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(β) If M belongs to H∗, show that tM ∈ H. What is the relation between M−1

and tM?

(D) Study of the automorphisms of the algebra H.
(a) By definition a pure quaternion is any element M in H such that M =t M .

Show that the set of pure quaternions L is a space over R with dimR L = 3 and with
basis {A,B,C} = C. Is L a subalgebra of H?

(b) L is provided with the usual structure of a Euclidean space such that
C = {A,B,C} is an orthonormal basis. We denote by (M|N) the usual scalar
product of M and N in L. ‖M‖ denotes the corresponding norm. Show that
1
2 (MN +NM) = −(M|N)I4.

(c) Verify that a quaternion is pure if and only if its square is a square matrix λI4
with λ a negative real number.

(d) Let φ be an isomorphism of algebras from H into itself. Show that for any
M ∈ L, φ(M) ∈ L with ‖M‖ = ‖φ(M)‖ and that the restriction of φ to L is an
orthogonal transformation.

(e) Let M and N be both pure quaternions. We want to show that if ‖M‖ = ‖N‖,
there exists P ∈ H∗ such that M = P−1NP .

(α) First, study the case that M and N are proportional.
(β) Now we assume that M and N are not proportional. Verify that if ‖M‖ = ‖N‖

we have M(MN)− (MN)N = ‖M‖2(M −N). Deduce that there exists a nonzero
matrix P such that MP = PN .

(f) Now show that if we put P = αI4+Q, with α in R and Q in L, Q is orthogonal
both to M and N .

(g) Deduce that any algebra isomorphism φ from H into itself is defined by
φ(M) = P−1MP , where P is a nonzero element in H. We may observe that such an
isomorphism φ is determined by φ(A) and φ(B) and begin by searching the isomor-
phisms that leave A invariant.

(h) What is the general theorem that we have verified?

(II) The construction of Brauer and Weyl93

(a) Let (E, q) be a quadratic regular space over K = R or C and let ∧E be the
exterior algebra of E. Let g be the bilinear symmetric form associated with q. Show
that with any x in E we can associate an antiderivation dx of degree −1 of ∧E, with
square equal to zero such that for any decomposable p-vector y1 ∧ · · · ∧ yp we have
dx(y1 ∧ y2 ∧ · · · ∧ yp) =∑p

i=1(−1)i−1g(x, yi)y1 ∧ · · · ∧ ŷi ∧ · · · ∧ yp, where the
symbolˆ means that the corresponding yi is missing.

(b) We put Lx : t ∈ ∧(E) → Lx(t) = x ∧ t ∈ ∧(E). Verify that L2
x = 0 and

that ϕ : x ∈ E → ϕ(x) = dx + Lx ∈ L(∧(E)) is a Clifford mapping from E into
L(∧(E)).

(c) Deduce that any quadratic regular n-dimensional space over K = R or C pos-
sesses a Clifford algebraC(E, q) defined as the quotient of C(E), the tensor algebra of

93 R. Brauer and H. Weyl, Spinors in n dimensions, Amer. J. Math., 57, pp. 425–449, 1935.
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E, by the two-sided ideal N(q) generated by the elements x⊗x−q(x).1, x ∈ E, and
that dimK C(E, q) = 2n. One may prove that the 2n elements 1C, eI = ei1ei2 · · · eip
(1 ≤ i1 < i2 < · · · < ip ≤ n) constitute a basis of C(E, q) and prove the result by
a recurrence using 2(a).

(d) Show that the mapping ϕ from E3,0 = E3 into the real algebra m(2,C) defined

for m = xe1 + ye2 + ze3 by ϕ(m) =
 z x − iy

x + iy −z

, where {e1, e2, e3} is an

orthonormal basis of E3, is a Clifford mapping. Deduce that ϕ(E3) is the real space
of hermitian matrices with trace equal to zero. We put

σ1 = ϕ(e1) =
0 1

1 0

 , σ2 = ϕ(e2) =
0 −i

i 0

 , σ3 = ϕ(e3) =
1 0

0 −1

 , σ0 = I

(Pauli’s matrices). Show that the eight matrices σ0, σ1, σ2, σ3, σ1σ2, σ1σ3, σ2σ3,
σ1σ2σ3 are linearly independent over R and that the real algebra m(2,C) is a Clifford
algebra of E3.

(e) More generally, let En be the standard complex n-dimensional space provided
with the standard quadratic form q such that for any x in En,

q(x) =
n∑

j=1

(xj )2

with respect to an orthonormal basis {e1, . . . , en} of En.

(α) First, we assume that n is even, n = 2r . Let m(2r ,C) be identified with the
tensor product of r copies of m(2,C), i.e., m(2r ,C) = m(2,C)⊗ · · ·⊗m(2,C). We
define a mapping p from En into m(2r ,C). For 1 ≤ j ≤ r we put

p(ej ) = pj = σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
j−1

⊗σ1⊗I ⊗ · · · ⊗ I︸ ︷︷ ︸
r−1

,

p(er+j ) = pr+j = σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
j−1

⊗σ2⊗I ⊗ · · · ⊗ I︸ ︷︷ ︸
r−1

,

and if n is odd (n = 2r + 1),

p(e2r+1) = p2r+1 = σ3 ⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
r

.

Show that p is a Clifford mapping. Deduce that if n is even, n = 2r , C(E2r ) =
m(2r ,C), and if n is odd, n = 2r + 1, C(E2r+1) = m(2r ,C)⊕m(2r ,C).
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(III) Classical spin groups. Spinors in the usual standard Euclidean space E3

(A) Show that Spin 1 = {1}.
(B) Show that Spin 2 	 SO(2) 	 S1 	 U(1).
(C) (1) Use the fundamental table to show that C(E3) = C3,0 	 m(2,C), where

E3 = E3,0, and that the corresponding spinor complex space S is C2.
(2) Let H1 be the vector space of pure quaternions, i.e., by definition, of quater-

nions q such that ν(q) = q∗ = −q, where ν is the standard conjugation in H (cf.
exercise I(A)). We identify H1 with the standard Euclidean space E3, and S3 with
the multiplicative group of unitary pure quaternions (we recall that as usual, the set
of unit vectors a ∈ En,0 = En = Rn is the unit sphere Sn−1) and that a unitary
quaternion q is a quaternion such that N(q) = 1 (cf. exercise I(A)). If q ∈ S3 and
x ∈ H1, show that (qxq−1)∗ = −qxq−1 and thus that qxq−1 ∈ H1.

(3) Show that the mapping ϕ : q → ϕ(q) such that ϕ(q) · x = −qxq−1 is a
homomorphism from S3 onto SO(3) such that Ker ϕ 	 Z2 and realizes a twofold
universal covering. Conclude that the Poincaré group of SO(3) is of order 2.

(4) Deduce that Spin 3 	 S3 	 SpU (1).
(5) (a) Show that any matrix in SU (2) can be written as

A =
 a b

−b̄ ā

 or

u −v̄

v ū

 = A1

with |a|2 + |b|2 = 1 or respectively |u|2 + |v|2 = 1 and that the mapping from
SU (2) into S3 defined by A(a, b)→ a + jb, respectively A1(u, v)→ u+ jv, is an
isomorphism (cf. exercise I(B)). Deduce that Spin 3 	 SU (2) and that the space S of
spinors for E3 can be identified with C2 and is provided with the standard hermitian
scalar product defined for s = ξε1+ ηε2 and s′ = ξ ′ε1+ η′ε2 by (s|s′) = ξ ξ̄ ′ + ηη̄′,
where {ε1, ε2} is an orthonormal basis for ( | ).

(b) Let CP1 = P(C2) be the standard complex projective line. Show that CP1
can be identified with the Cauchy plane C̃ = CU{∞}. (If the vector (ξ, η) represents
a chosen complex line in C2, cut it with the affine complex line ξ = 1 and put z = η/ξ

if ξ �= 0, and if we consider the line ξ = 0, put z = ∞.
(c) Show that the group of homographies of the Cauchy plane PL(1,C) =

GL(2,C)/CI = SL(2,C)/{I,−I }. The subgroup PU(1,C) = SU(2)/{I,−I } =
SO(3) is the projective unitary group CP1. Hints: Show that to any linear mapping
m from S, identified with C2, into S there corresponds a homography p1(m) in the
Cauchy plane. Let ξ ′ = aξ + bη, η′ = cξ + dη and, therefore ζ ′ = η′

ξ ′ = p(m)(ζ ) =
dζ+c
bζ+a

. Give conclusions. Study the converse.

(d) With any x = x1e1 + x2e2 + x3e3 in E3, x �= 0, where {e1, e2, e3} is an or-

thonormal basis, we associate X =
 x3 x1 − ix2

x1 + ix2 −x3

. We recall, (II, d) above

that ϕ : x → X is a Clifford mapping such that m(2,C) is a Clifford algebra of E3
and that ϕ(E3) is the real space of hermitian matrices with trace equal to zero.
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Show that X is unitary if and only if ‖x‖ = 1 and that the eigenvalues of X are
±‖x‖ and that if ‖x‖ = 1, X represents an orthogonal symmetry of S. Verify that to
any x �= 0, x ∈ E3 we can associate a complex line �(x) in S the eigencomplex line
associated with the eigenvalue ‖x‖ of X. Put �(x) = (ξ, η) ∈ C2. Show that for any
x ∈ S2 — (‖x‖ = 1) — we have ξ

1+x3 = η

x1+ix2 or equivalently ξ

x1−ix2 = η

1−x3 .

Verify that � is a mapping from E3 − {0} onto CP1 (and in particular, from S2 onto
CP1). Show that for any x ∈ S2, �(−x) is a complex line orthogonal to �(x). Show

that � can be written �(x) = z = η
ξ
= x1+ix2

1+x3 = 1−x3

x1−ix2 and that � is the classical

inversion with center B(x1 = 0, x2 = 0, x3 = −1) and power 2 that sends S2 into
the equatorial plane (x1, x2) and B into the point at infinity∞.

(e) Let {ε1, ε2} be the orthonormal basis for the hermitian scalar product of
S = C2. Let s = (ξ, η) be a unitary spinor of S and t = (η̄,−ξ̄ ) the corresponding
orthogonal unitary spinor. Let σ be the orthogonal symmetry that leaves s invariant
such that σ(t) = −t . Show that the corresponding matrix relative to {ε1, ε2} of σ is

As =
 ξ ξ̄ − ηη̄ 2ξ η̄

2ξ̄ η −(ξ ξ̄ − ηη̄)

.

(f) Solve the equation As = X (cf. part II d above) and determine x = (x1, x2, x3)

in E3 such that ϕ(x) = X = As . Deduce that there exists a mapping ϕ1 from S onto
E3 such that ϕ(s) = x, whence ϕ(S3) = S2. Determine ϕ−1(x) for any x ∈ S2.

(Such a mapping ϕ1 from S3 onto S2 is called the classical Hopf’s fibration, the fibers
of which are ϕ−1

1 (x) for any x ∈ S2.) Deduce a mapping ϕ0 from CP1 onto S2 such
that ϕ0 ◦� = Id , and that S2 is homeomorphic with CP1.

(g) Deduce the following commutative diagram:

such that if h ∈ SU (2) = Spin 3 and if h̃ = p(h) ∈ SO(3) according to the exact
sequence 1 → Z2 → SU (2) →p SO(3) → 1, we have for any s ∈ S, ϕ1(hs) =
h̃ϕ1(s). Let h ∈ SU(2) = Spin(3) and let p1(h) and h̃ = p(h) be the respective
corresponding homography of CP1 and rotation of SO(3). Show that ϕ0(p1(h))(z) =
h̃ϕ0(z), and that �(h̃(x)) = p1(h)�(x). Find again that PU(1) = SU(2)/
{I,−I } = SO(3).

(D) (1) Let ξ, η ∈ S3. Put Xξ,η : ζ → ξζ η̄ for any ζ ∈ H. Verify that
Xξ,η ∈ SO(4).

(2) Verify that µ : S3 × S3 → SO(4) defined by (ξ, η) → Xξ,η is a homomor-
phism with kernel equal to {(1, 1), (−1,−1)}.

(3) Deduce that Spin 4 is isomorphic to S3 × S3.
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(IV) Prove the results given as exercises in 1.5.2
(V) Orthogonality preserving transformations
Complete the following outline of a proof:

This is the adaptation of the theorem by J.M. Arnaudies and H. Fraysse, (Cours
de mathematiques, 4 : Algebre bilineaire et. geometrie . Dunod Universite, Paris
1999) for the case of a nondegenerate pseudo-Euclidean bilinear form. While in the
Euclidean case it is enough to assume that u ∈ HomRE, in the general case we have
to add the further assumption that u is invertible. Using a “projection” on an isotropic
vector, find a simple counterexample with a noninvertible u.

Proposition
Let u be an invertible element in L(E) such that (x|y) = 0 implies (ux|uy) = 0 for
all x, y ∈ E. Then u∗u = C ∈ R \ {0}.
Proof.
We will first prove that there exists constantC �= 0 such that (ux|uy) = C (x|y) for all
nonisotropic vectors x, y ∈ E.Let y ∈ E, y2 �= 0.Let fy denote the linear functional
fy(x) = (ux|uy). The set y⊥ ⊂ E = {x ∈ E : (y|x) = 0} is then a hyperplane,

(Exercise: Prove this statement.)

and fy is identically zero on y⊥.
(Exercise: Prove this statement.)

Since x �→ (x|y) is a nonzero linear functional vanishing on y⊥, there exists
f (y) ∈ R such that fy(x) = f (y)(x|y) for all x ∈ E.

(Exercise: Prove this statement.)

We will next show that if y′ ∈ E, (y′)2 �= 0, then f (y′) = f (y). Let us assume,
first, that (y|y′) �= 0. Then

(uy′|uy) = fy (y′|y) = (uy|uy′) = fy′ (y|y′) = fy′ (y
′|y),

so that fy = fy′ .
(Exercise: Check carefully the above.)

Now, suppose that (y′|y) = 0. Since both y2 and (y′)2 are not zero, and since
(y + λy′)2 = y2+ λ(y′)2, there exists λ > 0 such that y′′ = y + λy′ is nonisotropic.

(Exercise: Check carefully the above.)

On the other hand (y|y′′) = y2 �= 0, and also (y′|y′′) = λ(y′)2 �= 0. Therefore
fy = fy′′ = fy′ .

(Exercise: Check carefully the above.)

Let us denote the value of the function y �→ fy , which, as we have shown, is constant
on all nonisotropic vectors, byC. We thus have (ux|uy) = C(x|y) for all nonisotropic
x, y in E. Denote w = u∗u − C.I . Then (x|wy) = 0 for all nonisotropic x, y, and
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therefore for all vectors ei of an orthonormal basis of E. It follows that w = 0, or
u∗u = C.I .

(Exercise: Check all points and fill in the gaps.)

The constant C must be different from zero, otherwise we would have, for an arbitrary
y ∈ E, (ux|y) = (ux|uu−1y) = 0, which, due to the nondegeneracy of the inner
product, would imply u = 0.

(Exercise: Check all points and fill in the gaps.)

Note: The last part of the theorem does not hold, in a pseudo-Euclidean case, with-
out the assumption that u is invertible. Indeed, it is enough to consider the case of
E1,1 with the orthonormal basis e0, e1, (e0)2 = −1, (e1)

2 = 1, and u defined as
ux = (x|e0) e0. Then u preserves orthogonality, u �= 0, but u∗u = 0.

(Exercise: Check all points and fill in the gaps.)
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Real Conformal Spin Structures

The second chapter deals with real conformal (pseudo-Euclidean) spin structures.
First, we recall the principal properties of Möbius geometry and we present the study
of the standard Euclidean plane. Then, we construct covering groups for the gen-
eral conformal group Cn(p, q) of a standard real space En(p, q). We define a nat-
ural injective map that sends all the elements of En(p, q) into the isotropic cone of
En+2(p+1, q+1), in order to obtain an algebraic isomorphism of Lie groups between
Cn(p, q) and PO(p+1, q+1). The classical conformal pseudo-orthogonal flat geom-
etry is then revealed. Explicit matrix characterizations of the elements of Cn(p, q) are
given. Then, we define new groups called conformal spinoriality groups. The study of
conformal spin structures on riemannian or pseudo-riemannian manifolds can now be
made. The preceding conformal spinoriality groups play an essential part. The links
between classical spin structures and conformal spin ones are emphasized. Then we
study Cartan and Ehresmann conformal connections, Oguie conformal geodesics,
and generalized conformal connections. Finally, we present the Vahlen matrices and
exercises.

2.1 Some Historical Remarks

The development of quantum mechanics has emphasized the part played by the rep-
resentations of either Lie groups in theoretical physics or finite groups in theoretical
chemistry. As pointed out by Theo Kahan,1 “the unique mathematical route for study-
ing the properties concerning the symmetries of a physical system and the meaning of
the structure of elementary particles and their associate fields is the theory of groups.”2

Researchers have been led to associate with any of these particles or with a set of

1 Theo Kahan, Théorie des Groupes en Physique Classique et Quantique, Tome 1, Fascicule
1, pp. V–XV, Dunod, Paris, 1960.

2 We recall the following successful thought of the french mathematician Henri Poincaré
(cf. Theo Kahan, ibidem, p. XIV): “the concept of group preexists in our mind, at least,
potentially; it is given to us not as a kind of our sensibility but as a kind of our understanding.”
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particles a quantum field the structure of which enables us to know the properties
of these corpuscles. Principles of symmetry appear and rule the universe of parti-
cles. The presence of symmetries implies that of the group-theoretic point of view.
According to a well-known happy thought of Albert Einstein, the theory of groups
leads the theoretical physicist to a better understanding of the apparent confusion of
things.

The Galilean group governs classical mechanics. In special relativity, the first im-
portant group is the inhomogeneous or extended Lorentz group, or Poincaré group,
the semidirect product of the homogeneous Lorentz group by the group of the transla-
tions of the Minkowski classical space. As claimed by Theo Kahan,3 “mathematics is
no longer a tool but “objects” and particles become the representations of the Lorentz
group in the sense that the electron is the Dirac equation.”

But in the universe of elementary particles, new phase and gauge groups come
and enforce their “symmetries.” It is well known that the theory of special relativity
was established by A. Einstein in 1905 on the basis of the formalism introduced by
M. Faraday in his study of the electromagnetic field and of its fundamental laws and
completed by J. C. Maxwell, about 1887, for its mathematical presentation.

As emphasized by S. Sternberg,4 “in order to elaborate a covariant theory, the
search of a correct Lie group G for the building of unitary theories including gravity
and electromagnetic field, has been the object of the physicists. The classical theory
of the electromagnetic field shows the part played by the conformal group SO+(2, 4),
which leaves invariant Maxwell’s equations.”

First, H. Bateman5 and E. Cunningham6 showed how the equations of the electro-
magnetic field are invariant not only for the Poincaré group but for the larger one: the
conformal group. Elie Cartan himself7 studied the structure of SO+(2, 4) and showed
by an analysis of the roots that SU(2, 2) is a covering group.

R. Brauer and H. Weyl in 1935,8 and P. A. M. Dirac in 1936,9 gave a “projective
representation” in a six-dimensional space.

Physicists such as W. A. Hepner, Y. Murai, and I. Segal10 have used the properties
of the Lie algebra LSO+(2, 4) = so+(2, 4). Independently, SO+(2, 4) appears as a
group of Dirac’s matrices and as a dynamical group for the hydrogen atom.11

3 Ibid., pp. V–XV.
4 S. Sternberg, for example, Lectures on Differential Geometry, Prentice-Hall Mathematics

series, second printing, 1965.
5 H. Bateman, The conformal transformations of a space of four dimensions and their appli-

cations to geometrical optics, J. of London Math. Soc., 8, 70, 1908; and The transformation
of the Electrodynamical Equations, ibid., 8, 223, 1909.

6 E. Cunningham, The principle of relativity in electrodynamics and an extension thereof,
ibid., 8, 77, 1909.

7 E. Cartan, Ann l’ENS, 31, pp. 263–355, 1914.
8 R. Brauer and H. Weyl, Amer. J. Math., op. cit., 57–425.
9 P. A. M. Dirac, Ann. of Math., op. cit., 37–429.

10 W. A. Hepner, op. cit.; Y. Murai, op. cit.; I. Segal, op. cit.
11 W. A. Hepner, op. cit.
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N. H. Kuiper12 showed that the conformal group of Rn, n = p+q > 2, is induced
by the projective group that leaves invariant a quadric in RPn+1. His method used pro-
jective coordinates and was a generalization of the classical stereographic projection
for three-dimensional spaces and emphasized the part played by the classical Liou-
ville’s theorem.13 Such a theorem has also been generalized for pseudo-Euclidean
spaces by J. Haantjes.14

Besides, according to Nicolas Bourbaki,15 A. F. Möbius constructed, in the golden
period of geometry, a geometry called Möbius geometry, the links of which to physics
had not been understood. The notion of spin structure on a manifold V was intro-
duced by A. Haefliger, who specified an idea from Ehresmann.16 J. Milnor17 and
A. Lichnerowicz18 have taken an interest in those structures. ln a self-contained way,
A. Crumeyrolle19 has developed the study of vector bundles associated with spin
structures, in any dimension and signature. He introduced the general definitions of
spin structures on a real paracompact n-dimensional smooth pseudo-riemannian (in
particular riemannian) manifold and drew up necessary and sufficient conditions for
their existence in a purely geometrical way. More precisely, he defined the notion of
spinoriality groups such that the existence of a spin structure on V can be submitted to
the reduction of the structure group O(p, q) of “the bundle of orthonormal frames of
V ,” to a spinoriality group, after having been complexified. One of the main guiding
principles is that the study of fields over curved spaces is nothing but the consideration
of spin-orthogonal, or symplectic, fibrations. According to the same guidance, there
appears the problem of the investigation of conformal spin structures, in which the
part previously assigned to the group O(p, q) will now be given to the conformal
one: Cn(p, q).

12 N. H. Kuiper, op. cit.
13 J. A. Schouten and D. J. Struik, op. cit.
14 J. Haantjes, op. cit.
15 N. Bourbaki, Elements d’Histoire de Mathématiques, op. cit.
16 A. Haefliger, Sur l’extension du groupe structural d’un espace fibré, C. R. A. S. Paris, 243,

1956, pp. 558–560.
17 J. Milnor, Spin structure on manifolds, Enseignement Mathématique, Genève, 2 série 9,

1963, pp. 198–203.
18 A. Lichnerowicz, Champs spinoriels et propagateurs en relativité générale, Bull. Soc. Math.

France, 92, 1964, pp. 11–100; and A. Lichnerowicz, Champ de Dirac, champ du neutrino
et transformations C. P. T. sur un espace-temps courbe, Ann. l’I.H.P., Section A (N.S.), 1,
1964, pp. 233–290.

19 A. Crumeyrolle, Structures spinorielles, Ann. l’I.H.P., Section A (N.S.), 11, 1969, pp. 19–55;
A. Crumeyrolle, Groupes de spinorialité, Ann. l’I.H.P., Section A (N.S.), 14, 1971, pp. 309–
323; A. Crumeyrolle, Dérivations, formes et opérateurs usuels sur les champs spinoriels
des variétés différentiables de dimension paire, Ann. l’I.H.P., Section A (N.S.), 16, 1972,
pp. 171–201; and A. Crumeyrolle, Fibrations spinorielles et twisteurs généralisés, Period.
Math. Hungar., 6, 1975, pp. 143–171 or Spin fibrations over manifolds and generalized
twistors, Differential geometry (Proc. Sympos. Pure Math., Vol. 27, Part 1, Stanford Univ.,
Stanford, Calif., 1973), Amer. Math. Soc., Providence, RI, 1975, pp. 53–67.
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2.2 Möbius Geometry

2.2.1 Möbius Geometry: A Summary of Classical Results20

2.2.1.1 The Space of Hyperspheres

We introduce Vn = En,0, the standard Euclidean space Rn provided with the norm ‖ ‖
such that for any ξ ∈ V, ‖ξ‖2 = gij ξ

iξ j . Any hypersphere of V admits an equation

X0gij ξ
iξ j − 2gij ξ

iXj + 2Xn+1 = 0, (1)

where the real numbers X0, X1, . . . , Xn+1, not all equal to zero, are determined up
to a nonzero factor. Such real numbers are called homogeneous coordinates of the
hypersphere. When X0 is different from zero, (1) can be written as

gij

(
ξ i − Xi

X0

)(
ξj − Xj

X0

)
= gijX

iXj − 2X0Xn+1

(X0)2
. (1′)

Thus, any equation of type (1) defines

• a real hypersphere if X0 �= 0 and gijX
iXj − 2X0Xn+1 > 0.

• a hyperplane if X0 = 0 and (X1, . . . , Xn) �= (0, . . . , 0).
• the hyperplane at infinity, by passing to the projective space, if X0 = · · · =

Xn = 0 and Xn+1 �= 0.

Therefore, the hyperspheres—in a general sense—of Vn can be represented as points
of the projective space Pn+1.21

We agree to call an “analytic sphere” any point (X0, . . . , Xn+1) in Rn+2 \ {0}. If
we define π : Rn+2 \{0} → Pn+1 the canonical projection, any real hypersphere—in
a general sense—of Vn can be written: π(X), where X ∈ Rn+2 \ {0} with q(X) =
gijX

iXj − 2X0Xn+1 > 0.
We recall that π(X) = π(Y ) is equivalent to the existence of a real number λ,

λ �= 0, such that Y = λX. The bilinear symmetric form associated with the quadratic
form q is often called the inner product in Rn+2 and is defined for X, Y in Rn+2 by
X ·Y = gijX

iXj −X0Yn+1− Y 0Xn+1, and it is also called the inner product of the
corresponding analytic spheres.

We obtain the following results, which are given as exercises (cf. below 2.13):

2.2.1.1.1 Proposition The radius of the hypersphere π(X) is [q(X)/(X0)2]1/2.
The angle θ between two intersecting real hyperspheres π(X) and π(Y ) is deter-
mined by 0 ≤ θ ≤ π/2 and cos θ = |X ·Y |/[(X ·X)1/2(Y ·Y )1/2] with q(X) > 0
and q(Y ) > 0.

20 Cf., for example, M. Berger, Géométrie, volume 5, Cedic, Nathan, Paris, pp. 75–80, 1977;
A. Toure, Thèse Université Pierre et Marie Curie, Paris VI, 1981; and P. Anglès, Les struc-
tures spinorielles conformes réelles, Thèse, Université Paul Sabatier, 1983.

21 By definition, we recall that Pn+1 = RPn+1 denotes the projective space P(Rn+2).
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2.2.1.1.2 Proposition If q(X) = 0 and X0 �= 0, π(X) is reduced to the point of
coordinates ξ i = Xi/X0, 1 ≤ i ≤ n, of V and if q(Y ) > 0, X ·Y = 0 is equivalent
to “the hypersphere π(Y ) contains the point ξ .”

2.2.1.2 The Möbius Space

According to what has been said before, there exists a bijective mapping from Vn

onto the subset of Pn+1 consisting of points whose homogeneous coordinates satisfy
q(X) = 0 and X0 �= 0.

2.2.1.2.1 Definition (Cf. 1.4.3.2 for general definitions for pseudo-Euclidean
spaces) By definition, the Möbius space of order n is the quadric hypersurface Qn of
Pn+1 with the homogeneous equation

gijX
iXj − 2X0Xn+1 = 0.

The only point of Qn whose coordinates satisfy X0 = 1 is the point (0, 0, . . . , 0, 1)
called, by definition, the point at infinity and often denoted by∞. Thus, usually, one
writes X∞ for Xn+1. Qn can be identified with the one-point compactification of Vn

denoted by Ṽn = Vn ∪ {∞}.
Let Vn+1 be the standard Euclidean space Rn+1 with the standard norm ‖Y‖ =

(gij Y
iY j+(Y n+1)2)1/2 with obvious notation and let Vn+2 be the standard Euclidean

space provided with the norm

‖Y‖ = (gij Y
iY j + (Y n+1)2 + (Y 0)2)1/2,

and let Sn be the unit sphere of Vn+1. The stereographic projection s from Sn onto
the hyperplane defined by Yn+1 = 0, in Vn+1, with origin w = (0, 0, . . . , 0, 1) leads
to the identification of Sn with Ṽn = Vn ∪ {∞} and s(w) = ∞. Let i denote the
injective mapping from Vn+1 into P(Vn+2), viewed as Vn+1∪T∞, where T∞ denotes
the hyperplane at infinity Y 0 = 0. We obtain that i(Sn) is the projective quadric of
P(Vn+2), an equation of which is, in homogeneous coordinates,

gijY
iY j + (Y n+1)2 − (Y 0)2 = 0. (2)

Let ρ be the projective morphism of P(Vn+2) induced by the rotation Y → r(Y ) = Z

of Vn+2 defined by Zj = Y j for 1 ≤ j ≤ n,

Z0 = X0 + Yn+1

√
2

, Zn+1 = Y 0 − Yn+1

√
2

.

The image by ρ of the projective quadric defined by (2) is Qn as (Y n+1)2− (Y 0)2 =
−2Z0Zn+1. Thus, we obtain that

Qn = ρ ◦ i ◦ s−1(Ṽn). (2′)
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2.2.1.3 The Möbius Group: M̃n

2.2.1.3.1 Definitions In the n-dimensional Euclidean space Vn, let A be a point of Vn.
For any point P of Vn, let Q the point on the ray AP such that AP ·AQ = k, where
k is a nonzero real number. By definition, we call the transformation that sends P to
Q the inversion of center A and power k. Inversions are not bijective transformations
of Vn but of Ṽn.

The Möbius group M̃n is defined as the group generated by inversions of Ṽn

and symmetries with respect to a hyperplane.22 In order to study this group Mn, it
is convenient to interpret inversions and symmetries in Ṽn by means of orthogonal
symmetries in the pseudo-Euclidean space of “analytic spheres,” i.e., of the space
Rn+2 provided with its inner product X ·Y = gijX

iXj − X0Yn+1 − Y 0Xn+1. We
will denote such a space by ∑

n
= (Rn+2, q).

The quadratic form q is of signature (n+ 1, 1).

Any point ξ ∈ Ṽn can be written as ξ = π(X), where X is an isotropic element
of

∑
n (i.e., such that q(X) = 0), where π denotes the projection from

∑
n onto

the projective associated space. A linear mapping f from
∑

n into itself induces a
punctual transformation of Ṽn if and only if q(X) = 0 ⇒ q(f (X)) = 0, for any X

of
∑

n.
We have the following results left as exercises (cf. below 2.13).

2.2.1.3.2 Proposition Let B = (B0, B1, . . . , Bn+1) be a nonisotropic element
of

∑
n. Let sB be the associated symmetry with respect to the hyperplane B⊥

defined by sB : X → Y = X − 2(B.B)−1(X.B)B. Then sB induces a bijection
σB of Ṽn that is

• a symmetry with respect to the hyperplane defined by the equation

n∑
i=1

Biξ i − Bn+1 = 0, if B0 = 0.

22 We recall the classic definition, cf., for example, C. Chevalley, The Algebraic Theory of
Spinors, op. cit., p. 19. Let (E,Q) be a standard regular quadratic n-dimensional space
over a field K , of characteristic different from 2. Let G = O(Q) denote the corresponding
orthogonal group. Let H be a hyperplane whose conjugate contains a nonsingular vector z.
Let Q(z) = a. For any x ∈ E, we put s · x = x − 2a−1B(x, z)z. An easy computation
shows that Q(s · x) = Q(x), i.e., s is orthogonal, and since the conjugate of H is Kz and
s does not change if we replace z by kz, k �= 0, s depends only on H and is called the
symmetry with respect to the hyperplane H . Moreover, we have the classical following
theorem:

Theorem (Cartan–Dieudonné) Every operation of G belongs to the group G′ generated
by the symmetries with respect to the hyperplanes whose conjugates contain nonsingular
vectors. For the standard Euclidean space Vn, the following result can be written: Every
operation of G is a product of symmetries with respect to nonisotropic hyperplanes.
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• the inversion with center B = (B1/B0, . . . , Bn/B0) and power (B2
0 )
−1 · (B ·B)

if B0 �= 0.

We deduce the following theorem:

2.2.1.3.3 Theorem (Definitions) The Möbius group M̃n consists of bijective map-
ping of Ṽn induced by orthogonal transformations of

∑
n = (Rn+2, q). M̃n is isomor-

phic to the classical projective group PO(n+ 1, 1). The pair (Qn, M̃n) also denoted
later by Mn, is called the standard conformal geometry (of type n) or Möbius geome-
try (of type n); Qn is called the standard n-dimensional conformal space also denoted
later by Mn.

2.3 Standard Classical Conformal Plane Geometry23

2.3.1 Definition LetM andN be riemannian manifolds.Adiffeomorphismf : M →
N is conformal if there exists a differentiable positive function α on M such that for
all x ∈ M , for all a, b ∈ TxM ,

B(dxf (a), dxf (b))f (x) = α(x)B(a, b)x

(i.e., f preserves angles but not necessarily lengths). The set of conformal diffeomor-
phisms of M onto N is denoted by Conf (M,N), and in case M = N , by Conf (M).
The + superscript will mean that orientation (if any) is preserved.24

2.3.2 Definition (Theorem) (Cf. Chapter 2.13, exercise III.) Let S2 = CP 1 be the
Riemann sphere identified with the set C ∪ {∞}. One usually defines two classes of
mappings from CP 1 onto itself by

homographies z→ az+ b

cz+ d
,

antihomographies z→ az̄+ b

cz̄+ d
,

where z̄ is the classical conjugate of the complex number z. The group Conf (S2)

consists of all homographies and antihomographies. Conf+(S2) consists of all
homographies. The proof will be given later as an exercise (cf. 2.13).

23 Cf. Ricardo Benedetti, Carlo Petronio, Lectures on Hyperbolic Geometry, Springer, 1992,
pp. 7–22.

24 For a riemannian manifold M , we denote by J (M) the set of all isometric diffeomorphisms
of M onto itself, (or isometries of M). If M is supposed to be oriented, J+(M) denotes the
set of all isometries of M preserving orientation. The differential of a mapping f in a point
x of M is denoted by dxf . The scalar product defined on the tangent space TxM will be
denoted by B( , )x . We recall that f is an isometry iff for any x ∈ M , for any v,w ∈ TxM ,
B(dxf (v), dxf (w))f (x) = B(v,w)x .
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2.3.3 Proposition (cf. below 2.13) If we identify CP 1 with R2 ∪ {∞}, the only
elements of Conf (CP 1) are the mappings x → µBi(x)+w, whereµ > 0,B ∈ O(2),
and i is either the identity or an inversion and w ∈ R2.

We recall the following classical theorem:

2.3.4 Theorem (Liouville, 1850) (cf. below 2.13 Exercises) Every conformal dif-
feomorphism between two domains of Rn has the form x → µBi(x) + w, where
µ > 0, B ∈ O(n), and i is either the identity or an inversion and w ∈ Rn.

2.4 Construction of Covering Groups for the Conformal Group
Cn(p, q) of a Standard Pseudo-Euclidean Space En(p, q)25

We use the same notations as in 1.4.

2.4.1 Conformal Compactification of Standard Pseudo-Euclidean Spaces
En(p, q)

Let V be a standard pseudo-Euclidean n-dimensional space of type (p, q) (cf. 1.4).
We denote by ( | ) or B( , ) the associated pseudo-Euclidean scalar product and q the
corresponding quadratic form.

We have the following results (cf. below exercises 2.13).

2.4.1.1 Theorem Let H = E2(1, 1) be the standard hyperbolic real plane provided
with an isotropic basis ε, η such that 2(ε | η) = 1 and let En+2(p + 1, q + 1) be
the direct orthogonal sum En(p, q)⊕ E2(1, 1) = En(p, q)⊕H = F = En+2(p +
1, q + 1). The “isotropic” injective mapping u : y → y + q(y)ε − η leads us to
identify M = P(Q(F)\{0}) (with the notation of 1.4.3.2), the projective quadric
associated with En(p, q) with the compactified space obtained by the adjunction to
En(p, q) of a projective cone at infinity. M is called the Möbius space associated with
En(p, q).

M is identical to the homogeneous space PO(F )/Sim V, the quotient group of
PO(F ) = O(p + 1, q + 1)/Z2 by the group Sim V of similarities of V . Moreover,
PO(F ) is identical to the group Conf (En(p, q)) of conformal transformations of
En(p, q) and is generated by products of affine similarities and inversions accord-
ing to a theorem of Haantjes that extends to pseudo-Euclidean spaces, the Liouville
theorem26 (for p + q ≥ 3).

25 (a) P. Anglès, Construction de revêtements du groupe conforme d’un espace vectoriel muni
d’une métrique de type (p, q), Annales de l’I.H.P., section A, vol XXXIII no 1, 1980,
pp. 33–51. (b) R. Deheuvels, Groupes conformes et algèbres de Clifford, Rend. Sem. Mat.
Univers. Politecn. Torino, vol. 43, 2, 1985, pp. 205–226.

26 J. Haantjes, Conformal representations of an n-dimensional Euclidean space with a
non-definitive fundamental form on itself, Nedel. Akad. Wetensch. Proc., 40, 1937, pp.
700–705.
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2.4.2 Covering Groups of Conf(En(p, q)) = Cn(p, q)27

2.4.2.1 Notation

We use the standard notation of Chapter 1 (1.4.1). π denotes the principal automor-
phism of the standard Clifford algebras Cp,q ; τ denotes the principal antiautomor-
phism of Cp,q . We recall the following exact sequences:

1→ Z2 → RO(p, q)→ O(p, q)→ 1,

1→ Z2 → RO+(p, q)→ SO(p, q)→ 1,

1→ Z2 → Spin(p, q)→ SO+(p, q) = O++(p, q)→ 1, ((p, q) �= (1, 1)).

We put, for any g in G, the Clifford group, and for any x in En(p, q), ϕ(g)x =
gxg−1 and for any g in G̃, the regular Clifford group, and for any x in En(p, q),
ψ(g)x = π(g)xg−1.

2.4.2.1.1 Definition Let f be a continuously differentiable mapping from an open
set U of En(p, q) into En(p, q). f is said to be conformal in U if there exists a
continuous function λ from U into R∗ = R\{0} such that for almost all x ∈ U and
for all a, b ∈ En(p, q), B(dxf (a), dxf (b)) = λ2(x)B(a, b) (where B is the polar
bilinear symmetric form associated with the quadratic form q of type (p, q), and
where dxf is defined in footnote 24.)

2.4.2.1.2 Theorem (Definition) Abusively, one defines the conformal group of
En(p, q) as the restriction of PO(p + 1, q + 1) to the projective quadric M , or
Möbius space M; M is homeomorphic with Sp × Sq/Z2 (cf. below exercises).

Thus, by definition, Conf (En(p, q)) is the set of all projective transformations
that leave M invariant. We emphasize the fact that some such transformations are
defined only on open sets of En(p, q). The Haantjes theorem28 allows us to express
that the only conformal transformations of En(p, q), n ≥ 3, are the products of affine
similarities and inversions.

2.4.2.2 Construction of a Covering Group of Cn(p, q)

Let Cp+1,q+1 be the standard Clifford algebra of En+2(p+ 1, q + 1) = En(p, q)⊕
E2(1, 1) = En(p, q)⊕H . Once and for all, we consider {e1, . . . , en} an orthonormal
basis of En(p, q) with (ei)

2= 1 for 1 ≤ i ≤ p and (ei)
2= − 1 for p + 1 ≤ i ≤

p + q = n, and {e0, en+1} an orthonormal basis of the standard hyperbolic plane

27 P. Anglès, Construction de revêtements du groupe conforme d’un espace vectoriel muni
d ’une métrique de type (p, q), Annales de l’I.H.P., section A, Physique théorique, vol.
XXXIII no. 1, 1980, pp. 33–51.

28 J. Haantjes, op. cit.
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H = E2(1, 1) with e2
0 = 1 and e2

n+1 = −1. If we put x0 = (e0 + en+1)/2 and y0 =
(e0 − en+1)/2, {x0, y0} is an isotropic basis, or Witt basis, of H with 2B(x0, y0) = 1.
At other places, we will use also the notation x0∗ or yn+1 instead of y0. If necessary,
the definition will be recalled. We are going to construct:

(a) an injective mappingu fromEn(p, q) into the isotropic coneCn+2 ofEn+2(p+
1, q+1) such that any mapping f ∈ Cn(p, q) can be described by means of elements
of RO(p+1, q+1). More precisely, for almost all x ∈ En(p, q) and anyf inCn(p, q)

there exist g in RO(p + 1, q + 1) and σg(x) in R such that

ψ(g) · u(x) = π(g)u(x)g−1 = σg(x)u(f (x)). (A)

(b) a morphism of groups ϕ̃ with a discrete kernel, from RO(p + 1, q + 1) onto
Cn(p, q): g→ ϕ̃(g) = f ∈ Cn(p, q).

2.4.2.2.1 Construction of u

We put u(x) − x = ae0 + ben+1 with (a, b) ∈ R2. Since (u(x))2 is equal to zero,
we find easily that x2 = b2 − a2. We can choose a = 1

2 (x
2 − 1) = 1

2 (q(x)− 1) and
b = 1

2 (1+ x2) = 1
2 (1+ q(x)). Thus

u(x) = 1

2
(x2 − 1)e0 + x + 1

2
(1+ x2)en+1, (B)

or equivalently,

u(x) = x2x0 + x − y0. (B1)

We obtain again the “isotropic” injective mapping already given in Theorem 2.4.1.

2.4.2.2.2 Determination of ϕ̃

We are going to show successively that

(a) there exists a mapping ϕ̃ from RO(p + 1, q + 1) into the set E of mappings
from En(p, q) into itself g→ ϕ̃(g) = f such that for almost all x ∈ En(p, q) there
exists σg(x) in R with

ψ(g).u(x) = π(g)u(x)g−1 = σg(x)u(ϕ̃(g)(x)) = σg(x)u(f (x)). (A)

(b) ϕ̃ is a morphism from the multiplicative group RO(p + 1, q + 1) into (E, ◦),
where “◦” is the usual composition of mappings.

(c) ϕ̃(RO(p + 1, q + 1)) is a group that according to the Haantjes theorem, can
be identified with the conformal group Cn(p, q).

(d) A = Ker ϕ̃ is a discrete group.
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For convenience, we will use the notation for u given by (B) and for σg(x) �= 0,
we will denote (σg(x))

−1 by λg(x).
Step a. For anyg in RO(p+1, q+1),ψ(g) ∈ O(p+1, q+1). Let us putψ(g) · u(x) =
X0e0 +Xn+1en+1 +X, (X0, Xn+1) ∈ R2, X ∈ En(p, q). (A) is equivalent to

1

2
σg(x)(f

2(x)−1)e0+σg(x)f (x)+ 1

2
σg(x)(f

2(x)+1) = X0e0+X+Xn+1en+1,

i.e., with 
1
2σg(x)(f

2(x)− 1) = X,
1
2σg(x)(f

2(x)+ 1) = Xn+1,

σg(x)f (x) = X,

i.e., with 
σg(X) = Xn+1 −X0,

σg(X)f 2(x) = Xn+1 +X0 (A1),

σg(X)f (x) = X.

• Thus, for σg(x) �= 0, to any g ∈ RO(p+ 1, q+ 1), we can associate a mapping
f from En into En, independent of the “writing” of g in RO(p + 1, q + 1) for
σg(X) = Xn−1 −X �= 0, f (x) = X/(Xn+1 −X0). We set ϕ̃(g) = f .
• If ϕ̃(g) = f exists, we note that f (x) and σg(x), also denoted by σg,f (x), are

defined without ambiguity.
Assume that for g given in RO(p + 1, q + 1) there exist two corresponding ele-

ments, by ϕ̃: f and f ′. For almost all x in En(p, q), with obvious notation, we have
σg,f (x)u(f (x)) = σg′,f ′u(f ′(x)), which implies that u(f (x)) and u(f ′(x)) are pro-
portional for almost all x in En(p, q).An easy computation shows that u(x) = λu(x′)
with λ ∈ R∗ implies that x = λx′ and x2 = λx′2 and then λ2x′2 = λx′2,
whence λ = 1 and x = x′. Then, for almost all x in En(p, q), f (x) = f ′(x),
and σg,f (x) = σg,f ′(x) will be now denoted by σg(x).

Step b. Put ϕ̃(g) = f and ϕ̃(g′) = f ′. It is easy to verify that ϕ̃(g′g) = f ′ ◦ f . Since
ψ(g) · u(x) = σg(x)u(f (x)) and ψ(g′) · u(x) = σg′(x)u(f ′(x)), we have

ψ(g′g).u(x) = π(g′)(π(g)u(x)g−1)g′−1 = π(g′)(σg(x)u(f (x))g′−1

for almost all x in En(p, q), and there, ψ(g′g) · u(x) = σg′(f (x))σg(x)u(f
′ ◦f (x)),

whence ϕ̃(g′g) = f ′ ◦ f and

σg′g = σg′(f (x))σg(x). (C)

Step c. Using step b and the fact (1.2.2.7) that RO(p + 1, q + 1) is the multiplica-
tive group consisting of products of vectors x in En+2(p + 1, q + 1) such that
x2 = ±1 = N(x), we are led to determine ϕ̃(v), where v = v1 + v2 + v3 ∈ En+2,
with v1 = λ1e0, v2 = λn+1en+2, v3 ∈ En(p, q), (λ0, λn+1) ∈ R2, and v2 = ±1. It
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is well known29 that

ψ(v).u(x) = u(x)− 2B(u(x), v)

N(v)
v, with N(v) = v2 = ε = ±1.

We put, as in step a above, ψ(v).u(x) = X0e0 + X + Xn+1en+1, X ∈ En(p, q),
(X0, Xn+1) ∈ R2.
An easy computation leads to

X0 = ε

{
(λ0)2 1

2
(1− x2)− (λn+1)2 1

2
(x2 − 1)+ (v3)2 1

2
(x2 − 1)

+ (1+ x2)λ0λn+1 − 2λ0B(x, v3)

}
Xn+1 = ε

{
(λ0)2 1

2
(1+ x2)+ (λn+1)2 1

2
(1+ x2)

+ (v3)2 1

2
(x2 + 1)+ (1− x2)λ0λn+1 − 2λn+1B(x, v3)

}
X = ε

{
x((λ0)2 − (λn+1)2 + (v3)2︸ ︷︷ ︸

v2=ε

)− v3(2B(x, v3 − λ0(1− x2)

− λn+1(1+ x2))

}
Using the previous system (A1) given in step a above, we obtain

σg(x) = Xn+1 −X0 = ε{x2(λn+1 − λ0)2

+ (v3)2 − 2B(x, v3)(λ
n+1 − λ0)} = ε(x(λn+1 − λ0)− v3)

2,

σg(x)f (x) = ε{xv2 − v3(2B(x, v3)+ x2(λ0 − λn+1)− (λ0 + λn+1))},
σg(x)f

2(x) = ε{v2
3x

2 + (λ0 + λn+1)(λ0 + λn+1 − 2B(x, v3))}.
We consider the “hyperquadric” defined in En(p, q) by σg(x) = 0, i.e., (x(λn+1 −
λ0)− v3)

2 = 0. For σg(x) �= 0,

f (x) = xv2 − v3(2B(x, v3)+ x2(λ0 − λn+1)− (λ0 + λn+1))

(x(λn+1 − λ0)− v3)2
, (D)

σg(x) = ε(x(λn+1 − λ0)− v3)
2, v2 = ε = ±1.

I. λn+1 − λ0 = 0. v2 = ε = v2
3 + (λ0)2 − (λn+1)2 = v2

3, σg(x) = ε2 = 1,

f (x) = εx − v3(2B(x, v3))− (λ0 + λn+1))

ε
= x − v3(2B(x, v3)ε)+ 2λ0εv3.

29 Cf. for example, R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit.,
chapitre IV.
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As usual, x → x − 2B(x, v3)εv3 = uv3(x),
30 where uv3 denotes the orthogonal

symmetry with respect to (v3)
⊥.

Since according to the classical Cartan–Dieudonné theorem31 every element u ∈
O(p, q) can be expressed as the product of at most n = p + q symmetries with
respect to nonisotropic hyperplanes and since ϕ̃ is a homomorphism of groups and
2λ0εv3 = y is in En(p, q), we obtain the “generic element” of the classical Poincaré
group, the semidirect product of O(p, q) by the group of translations of En.

One can verify immediately that for these elements we have σg(x) = 1. In the
special case λn+1 = λ0 = 0, we find that f (x) = uv3(x) ∈ O(p, q) with σg(x) = 1.

II. λn+1 − λ0 �= 0. v2 = ε = (λ0)2 − (λn+1)2 + v2
3. We have σg(x) = ε((λn+1 −

λ0)x − v3)
2,

f (x) = xv2 + (λ0 + λn+1)v3

[(λ0 + λn+1)x + v3]2
− v3[2B(x, v3)+ x2(λ0 − λn+1)]

[(λ0 − λn+1)x + v3]2
,

i.e.,

f (x) = [(λ0)2 − (λn+1)2]x + (λ0 + λn+1)v3

[(λ0 − λn+1)x + v3]2

+ v2
3x − v3[2B(x, v3)+ x2(λ0 − λn+1)]

[(λ0 − λn+1)x + v3]2
.

Then,

f (x) = (λ0 + λn+1)
[(λ0 − λn+1)x + v3]

[(λ0 − λn+1)x + v3]2

+ (x + v3

(λ0 − λn+1)
)v2

3 .
1

[(λ0 − λn+1)x + v3]2

− v3[2B(x, v3)(λ
0 − λn+1)+ x2(λ0 − λn+1)2 + v2

3]

(λ0 − λn+1)[2B(x, v3)(λ0 − λn+1)+ x2(λ0 − λn+1)2 + v2
3]

,

which is equivalent to

f (x) = (λ0 + λn+1)
1

[(λ0 − λn+1)x + v3]
+ v2

3

(λ0 − λn+1)
.

1

([λ0 − λn+1]x + v3)

− v3

(λ0 − λn+1)
,

i.e.,

f (x) = 1

(λ0 − λn+1)
[(λ0)2 − (λn+1)2 + v2

3].
1

[(λ0 − λn+1)x + v3]
− v3

[λ0 − λn+1]
,

30 Cf., for example, R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit.,
pp. 350–351 or C. Chevalley, The Algebraic Theory of Spinors, op. cit., p. 19 and above,
2.2.1.3.a.

31 C. Chevalley, The Algebraic Theory of Spinors, op. cit., pp. 19–20.
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that is,

f (x) = ε

(λ0 − λn+1)2
.

1

(x + v3
λ0−λn+1 )

− v3

(λ0 − λn+1)
. (E)

This is the general form of f corresponding to a vector v ∈ En+2. We find
inversions with center 0 and power in R∗ (put v3 = 0). Moreover, we note that
dilations of En correspond to elements of RO(p+ 1, q + 1), which can be written as
exp((1/2)ηe0en+1), η ∈ R∗.

Since we have shown that ϕ̃ is a homomorphism of groups, according to the
Haantjes theorem (cf. above 2.4.1), ϕ̃(RO(p + 1, q + 1)) can be identified with the
group denoted above by Cn(p, q). ϕ̃(RO(p + 1, q + 1)) = Cn(p, q).

We agree by definition to call ϕ̃(RO+(p+1, q+1)) = (Cn(p, q))r the restricted
conformal group.

2.4.2.2.3 Remarks on Formula (E)

(a) If v3 = 0 we find that

f (x) =
(
λ0 + λn+1

λ0 − λn+1

)
1

x
= ε

(λ0 − λn+1)2

1

x
.

We find the inversions with center O and power in R∗. (λ0 = 1, λn+1 = 0) is asso-
ciated with the inversion with center 0 and power 1 and (λ0 = 0, λn+1 = 1) with the
inversion with center 0 and power −1, associated respectively with e0 and en+1.

(b) If v3 �= 0 and v2
3 = 0, since (λ0)2 − (λn+1)2 = ε is equivalent to

1

λ0 − λn+1
= ε(λ0 + λn+1),

we find that

f (x) = (λ0 + λn+1)

(
1

x(λ0 − λn+1)+ v3
− εv3

)
.

(c) We note that the case that v3 is isotropic and (v1 + v2) isotropic cannot occur:
otherwise, En+2 would be totally isotropic.

(d) Since, for any x in En(p, q), σv(x) = ε(x(λn+1 − λ0)− v3)
2 for v in En+2, and

since σg′g(x) = σg′(f (x))σg(x), we deduce that σg(x) is different from zero when
f is defined and that there exists λg(x) = (σg(x))

−1. If λn+1 − λ0 = 0, ϕ̃(v) = f

is defined for any x in En(p, q). If λn+1 − λ0 �= 0, ϕ̃(v) = f is defined for any
x ∈ En(p, q)\{v3/(λ

n+1 − λ0)}.
2.4.2.2.4 Determination of A = Ker ϕ̃

We have that g ∈ A = Ker ϕ̃ iff for all x in En(p, q), π(g).u(x)g−1 = ψ(g).u(x)

is proportional to u(x). Searching in the group Cn(p, q) to determine the identity
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mapping, one can easily verify that for any x in En(p, q) and for any g in A = Ker ϕ̃,
σg(x) = σg(−x) = σId(x) = ε = ±1.

The successive choices of x in En(p, q) and −x in En(p, q) such that x2 =
1,32 and (−x)2 = 1, lead us to verify that for any g in A, ψ(g).en+1 = εen+1,
ψ(g).x = εx.33 In the same way, the successive choice of x, (x2) = −1, and of −x

such that (−x)2 = −1 leads to ψ(g).e0 = εe0, and ψ(g).x = εx (∀ x)(x2 = −1)
(∀ g)(g ∈ A). Moreover, for any x : x2 = 0, we easily find that ψ(g).x = εx. Thus,
for any z in En+2, z = λ0e0 + λn+1en+1 + x, with x in En(p, q), (λ0, λn+1) ∈ R2,
we find that ψ(g).z = εz, where ε = ±1. Thus, g ∈ A ⇔ ψ(g) = IdEn+2 or
ψ(g) = −IdEn+2 .34

Since classically ψ−1{Id} = {1,−1} and ψ(e0en+1e1 · · · en) = −IdEn according
to the general results of Chapter 1, we obtain that Ker ϕ̃ = {1,−1, eN ,−eN }, where
eN = e0en+1e1 · · · en. A is discrete. One can easily verify that if respectively e2

N = 1,
respectively e2

N = −1, A is isomorphic with Z2 × Z2 or respectively Z4.

2.4.2.3 Complements: Table of Results (see below table of results)35

We present some results that will be proved below in exercises (2.13). We denote by
ui or uei the following mapping:

u(ei ) : x → u(ei )(x) = x − 2B(x, ei)Eiei


E0 = −En+1 = 1,

Ei = 1, 1 ≤ i ≤ p,

Ei = −1, p + 1 ≤ i ≤ n.

32 This is possible according to the following result of Chevalley (The Algebraic Theory of
Spinors, op. cit., p. 14): Assume that B is nondegenerate and that there is an x �= 0 in E

such that q(x) = 0. Then for any a in the field K (K = R or C), there is a in E such that
q(z) = a.

33 It is easy to write{
x : x2 = 1⇒ u(x) = x + en+1

−x : (−x)2 = 1⇒ u(−x) = −x + en+1

⇒
{
ψ(g).(x + en+1) = σId(x)(x + en+1)

ψ(g).(−x + en+1) = σId(−x)(−x + en+1)

⇒ ψ(g).en+1 = εen+1

and ψ(g) · x = εx, (∀ g)(g ∈ A), (∀ x)(x2 = 1).
34 Remark: according to a well-known result (cf., for example, E. Artin, Algèbre Géométrique,

op. cit., Théorème 3.18, p. 126), if E is a quadratic regular space over K = R or C, if
σ ∈ O(q) leaves any isotropic line invariant, σ = ±IdE . But there, ψ(g) belongs to
O(p + 1, q + 1) and u(En(p, q)) is included into the isotropic cone Cn+2 of En+2(p +
1, q + 1). Our method is different.

35 Cf. P. Anglès, Construction de revêtements du groupe conforme d’un espace vectoriel muni
d’une métrique de type (p, q), Annales de l’I.H.P., section A, vol. XXIII no. 1, 1980, pp.
33–51, op. cit.
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2.4.2.3.1 Remark In agreement with a result given above in 1.5.2.2.1, the table of
results given in 2.4.2.3 shows that the preimages g by ϕ̃ of the elements of the
group GO(p, q) of similarities of the space E(p, q)—following the notation used
by Jean Dieudonné—satisfy the following property: there exists µ ∈ R∗ such that
gτg = µ1.

2.4.2.4 Covering Groups of Cn(p, q)

(1) We have found that algebraically, Cn(p, q) is isomorphic to RO(p+1,q+1)
A . Clas-

sically, RO(p + 1, q + 1) is provided with the structure of a Lie Group.36 Let us
denote by i the algebraic isomorphism from RO(p+1,q+1)

A onto Cn(p, q). Since A is
a discrete group, we can postulate that i defines a topological isomorphism between
RO(p+1,q+1)

A and Cn(p, q). Thus Cn(p, q) becomes a topological group and even a
Lie group. Since (eN)2 = (e0en+1e1 · · · en)2 = (−1)r+q , with n = 2r or n = 2r+1,
we have obtained the following result.

2.4.2.4.1 Proposition If r and q are of the same parity (r + q even, e2
N = 1),

RO(p+1, q+1) is a double twofold covering group of the conformal group Cn(p, q).
If r and q are of opposite parity (r + q odd, e2

N = −1), RO(p + 1, q + 1) is a
fourfold covering group of Cn(p, q).

2.4.2.4.2 Fundamental Isomorphism

We know that ψ(A) 	 Z2. Using a classic theorem of isomorphism for the groups,
we obtain that

Cn(p, q) 	 RO(p + 1, q + 1)

A 	 ψ(RO(p + 1, q + 1))

ψ(A)
	 O(p + 1, q + 1)

Z2

	 PO(p + 1, q + 1).

Such a result is in agreement with the construction made by R. Penrose of the classical
conformal group.37

2.4.2.4.3 Corollary

ϕ̃(RO+(p + 1, q + 1)) 	 RO+(p + 1, q + 1)

A 	 ψ(RO+(p + 1, q + 1))

ψ(A)

	 O+(p + 1, q + 1)

Z2
	 PSO(p + 1, q + 1).

36 Cf., for example, A. Crumeyrolle, Structures spinorielles, Annales de l’I.H.P., section A,
vol. XI, no. 1, 1969, pp. 19–55.

37 Cf., for example, R. Penrose, (a) Twistor algebra, J. of Math. Physics, t. 8, 1967, pp. 345–
366; (b) Twistor quantization and curved space time, Int. J. of Th. Physics, (I), 1968. R.
Penrose, for p = 1, q = 3, defines the conformal group as a group of transformations of
S1×S3

Z2
.
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g ∈ Pin(p + 1, q + 1) f ∈ Cn(p, q); f = ϕ̃(g) σg(x)

g = exp b = exp
(

1
2b

jieij

)
“proper rotation” ∈ SO+(p, q) :

bij = 1
2h

ij : hx = bx = xb x → t (x) = g(x)g−1;

t = exp h, t = ϕ̃(g) 1

g = eij t ∈ SO(p, q) : x → t (x) = u(i) ◦ u(j)(x);

1 ≤ i < j ≤ n u[u(i) ◦ u(j)(x)] = u(i) ◦ u(j) ◦ u(x) 1

g = ei 1 ≤ i ≤ n t ∈ O(p, q)− SO(p, q) :

x → t (x) = u(i)(x);

u(u(i)(x)) = u(i)(u(x)) 1

g = exp
(

1
2 (en+1 + e0)

)
y x → x + y translation of En 1

= 1+ 1
2 (en+1 + e0)y;

y ∈ En

g = exp
(

1
2ηe0en+1

)
, x → λx dilation of En, λ = exp(−η), λ−1

η ∈ R∗ λ ∈ R∗+

g = e0 x → 1
x : inversion of center 0 and power 1: x2

x2u(x−1) = u(0)(u(x)), for x �= 0

g = en+1 x → −1
x : inversion of center 0 and −x2

power −1,

(−x2)u(−x−1) = u(n+1)(u(x)), for x �= 0

g = exp
(

1
2 (en+1 − e0)a

)
x → x(1+ ax)−1 transversion of En, N(1+ ax)

= 1+ 1
2 (en+1 − e0)a, for x : (1+ ax)2 �= 0

a ∈ En

Table of results of 2.4.2.3

Thus ϕ̃(RO+(p + 1, q + 1)) = (Cn(p, q))r is isomorphic to the special projective
group PSO(p + 1, q + 1).

2.4.2.5 Connected Components of Cn(p, q), n > 2

We denote by G the connected component of identity for the topological group G.
Classically,

Cn(p, q)

Cn(p, q)
	 RO(p + 1, q + 1)

ϕ̃−1
(

Cn(p, q)
) ,
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according to a well-known result of algebra. Since Cn(p, q) is connected, if an

element of RO(p + 1, q + 1) is mapped by ϕ̃ into Cn(p, q) , the same is true for

any element in its connected component. Conversely, any element in Cn(p, q) has
its preimage in one of the connected components of the elements of Ker ϕ̃, as it is
shown by the permissible pullback of a path of Cn(p, q) into RO(p + 1, q + 1),
since RO(p+ 1, q + 1) is a covering group of Cn(p, q). Therefore, the preimage by
ϕ̃ of Cn(p, q) is the set of the connected components of the elements of Ker ϕ̃ in

RO(p+1, q+1). We use previous notations of 1.2.2.6 and 1.2.2.7. RO+(p+1, q+1)
denotes RO(p + 1, q + 1)

⋂
C+(E).

Let G0 denote the subgroup of elements g of RO(p + 1, q + 1) with N(g) = 1
and let G+0 = G0 ∩ RO+(p + 1, q + 1). G+0 = Spin(p + 1, q + 1) with our
notation (cf. Chapter 1). It is well known38 that G+0 is connected and of index 2
in RO+(p + 1, q + 1). But RO(p + 1, q + 1) = RO+(p + 1, q + 1) ∪ C, where
CC = CRO(p+1,q+1)RO+(p+1, q+1) with RO+(p+1, q+1)∩C = ∅. C possesses
two connected components since the product of an element in RO+(p+ 1, q + 1) by
a nonisotropic vector z with N(z) = 1 is a bijective mapping from RO+(p+1, q+1)
onto C.

RO(p + 1, q + 1) possesses four connected components: G+0 , G0 −G+0 , CCG0

the complement in C of G0, RO+(p + 1, q + 1)−G+0 .± 1 belong to G+0 . An easy
computation shows that N(eN) = (−1)q+1.

(a) p + q = n even

(α) pq even (p and q even)

N(eN) = −1,±eN ∈ RO+(p+1, q+1)−G+0 , ϕ̃−1
(

Cn(p, q)
)

=RO+(p+1, q+1).

It is well known that RO(p + 1, q + 1)/RO+(p + 1, q + 1) 	 Z2.39 Cn(p, q) has
two connected components.

(β) pq odd (p and q odd)

N(eN) = 1, ±eN ∈ G+0 , ϕ̃−1
(

Cn(p, q)
)
= G+0 , RO+(p + 1, q + 1)/G+0 (p +

1, q + 1) 	 Z2.40 Cn(p, q) has four connected components.

(b) p + q = n odd

(α) p even, q odd
N(eN) = 1, ±eN ∈ G0 \G+0 . Cn(p, q) possesses two connected components.

38 Cf., for example, C. Chevalley, The Algebraic Theory of Spinors, op. cit.; A. Crumeyrolle,
Structures spinorielles, Annales de l’I.H.P., section A, vol. VI, no. 1, 1969, pp. 19–55; R.
Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit.

39 Idem.
40 Idem.
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(β) p odd, q even
N(eN) = −1, ±eN ∈ CCG0. Cn(p, q) has two connected components.

We have obtained the following statement:

2.4.2.5.1 Proposition If pq is odd, Cn(p, q) has four connected components, and if
pq is even, Cn(p, q) has two connected components.

2.4.2.6 Consequences

2.4.2.6.1 Connected Component of the Identity in Cn (p, q)

Classically, in the Lie group RO(p + 1, q + 1) one can find a neighbourhood of the
identity element generated by the exponential mapping.41 According to the table given
in 2.4.2.4, we can deduce that the generic element of the connected component of the
identity element in Cn(p, q) is a composite of images by ϕ̃ of elements in RO(p +
1, q + 1) such as exp

(− 1
2b

jieij
)
, exp

( 1
2 (en+1 + e0)y

)
, y ∈ En, exp

( 1
2ηe0en+1

)
,

with η ∈ R∗, exp
( 1

2 (en+1 − e0)a
)
, a ∈ En. We will use this remark later.

2.4.2.6.2 Topological Remarks

a) It is known42 that O(p)×O(q) is a maximal compact subgroup of O(p, q) and
that every compact subgroup of O(p, q) is conjugate to a subgroup of O(p) ×
O(q). More precisely, O(p, q) is homeomorphic to O(p) × O(q) × Rpq .43

Thus, since the Poincaré group P(p, q) is the semidirect product of the Lorentz
group O(p, q) and the group of translations of En that has n parameters, we have
obtained that P(p, q) is homeomorphic to O(p)×O(q)×Rpq+n; since the con-
formal affine group is by definition the semidirect product of P(p, q) and of the
group of positive dilations, observing that R+ is homeomorphic to R, we obtain
that the conformal affine group is homeomorphic to O(p)×O(q)× Rpq+n+1.

(Cf. below footnote 120 in 2.9.1.3.3; see also: S. Kobayashi, Transformations
groups in differential geometry, op.cit. p. 10. The conformal affine group is the
semidirect product of CO(p, q), defined in Kobayashi, p. 10, and of the transla-
tion group of En(p, q).)

41 Cf., for example, C. Chevalley, Theory of Lie Group, I, Princeton University Press, Princeton,
1946 (fifth printing, 1962).

42 J. A. Wolf, Spaces of Constant Curvature, Third edition, Publish or Perish, Inc., Boston,
Mass., 1974.

43 Such a result is in agreement with a general theorem of E. Cartan, improved by K. Iwasawa
according to which any Lie group is homeomorphic to the topological product of a compact
Lie group and a vector space (cf. S. Helgason, Differential Geometry and Symmetric Spaces,
op. cit., p. 240).
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We will use in 2.5.1.6 the following result:
The Cn(p, q) connected component of the identity in Cn(p, q) is homeomor-

phic to O(p,q) × R2n+1.

Such a result comes from the fact that according to 2.4.2.6.1 any element of
the connected component of the whole conformal group Cn(p, q) can be written
as the product of a proper rotation belonging to O(p,q) , of a translation, of
proper dilation and of special conformal transformation, taking account of the
facts that the group of translations has n parameters, the Poincaré group n(n+1)

2

parameters, the conformal affine group n(n+1)
2 + 1 parameters, and the whole

conformal group Cn(p, q) has (n+1)(n+2)
2 parameters.

According the remarks given above in 2.4.2.6.2.a we obtain that Cn(p, q)

is homeomorphic to SO+(p, q) × Rpq+2n+1 and homeomorphic to SO(p) ×
SO(q) × Rpq+2n+1. Moreover, Cn(p, q) isomorphic to PO(p + 1, q + 1) is
homeomorphic to O(p + 1)×O(q + 1)× R(p+1)(q+1)/Z2. We will use these
remarks below in 2.5.1.6.

(b) It is easy to show that ±eN = ±(e0en+1e1 · · · en) /∈ Spin(p, q) = G+0 (p, q).44

Since, classically,ψ−1
(

O(p, q)
)

=G+0 (p, q),45 the restriction of ϕ̃ toG+0 (p, q)

is identical to the standard homomorphism ψ (often called twisted projection)
and to the classical homomorphism ϕ.46

2.4.3 Covering groups of the complex conformal group Cn

2.4.3.1 Some classical reviews (cf. for example C. Chevalley, The algebraic
theory of spinors, op.cit., pp. 40–41 and pp. 60–61)

Let En(p, q) be Rp+q, with p + q = n > 2, endowed with a quadratic form Q

of signature (p, q) and the corresponding bilinear form B. Let E′n, denoted also by
(En)C, be the complexification of En. E

′
n is an n–dimensional C–space. If {ej }1≤j≤n

denotes the standard orthonormal basis for En, then {1⊗ ej }1≤j≤n is a basis for E′n
over the field C. If F denotes any n–dimensional C–space, the real space obtained

44 In any case, n even or odd, any element in RO(p, q) is classically a product of elements
vi in En(p, q) with N(vi) = q(vi) = ±1. Since e1 · · · en is in RO(p, q) and since e0 and
en+1 /∈ En(p, q), e0en+1 /∈ RO(p, q) but e0en+1 ∈ RO(1, 1). Thus, eN /∈ RO(p, q),
since if not, e0en+1 = eN (e1 · · · en)−1 would be in RO(p, q), a contradictory result.

45 Cf. Chapter 1 or A. Crumeyrolle, Structures spinorielles, Ann. Inst. H. Poincaré, section A,
vol XI, no 1, 1969, pp. 19–55.

46 For any x in En(p, q) and any g in G+0 (p, q), let us recall that ϕ(x).g = gxg−1 and

ψ(g).x = π(g).xg−1.



www.manaraa.com

2.4 Construction of Covering Groups for the Conformal Group Cn(p, q) 91

by restriction of the scalars to the field R is denoted by RF. If {ej }1≤j≤n is a
C–basis of F, then {ej , ıej }1≤j≤n is an R–basis of RF, that is a 2n–dimensional
R–space.

Let B ′ be the bilinear form obtained from B by extension of R to the overfield
C and let Q′ be the corresponding quadratic form obtained by extension of Q. It is
shown in C. Chevalley (op.cit II,5 p. 41) that C′n(Q), the complexification of Cn(Q),

is isomorphic to the Clifford algebra of Q′.

2.4.3.2 Definition Let f be a continuously differentiable mapping from an open set
U ′ of E′n into E′n. Then f is said to be conformal in U ′ if there exists a continuous
function λ′ from U ′ into C∗ = C \ {0} such that for almost all x ∈ U ′ and for
all a, b ∈ E′n we have that B ′ (dxf (a), dxf (b)) = λ′2(x) B ′(a, b). The set of such
mappings constitutes a group denoted by Conf ′(n) or sometimes by C′n, if there is
not any ambiguity.

2.4.3.2 Covering group of C′
n

The previous route used in 2.4.2.2 can be taken again. Let {ej }1≤j≤n be the stan-
dard basis of E′n. Let F be E′n ⊕ E′2, where E′2 is a complex hyperbolic plane with
its standard orthonormal basis {e0, en+1}, Q′(e0) = 1, Q′(en+1) = −1. We can
construct an injective mapping u′, from E′n into the isotropic cone of F ′ = E′n+2,
defined by

u′(x) = 1

2

(
Q′(x)− 1

)
e0 + x + 1

2

(
Q′(x)+ 1

)
en+1, withQ′(x) = x2,

and a homomorphism ϕ̃′ with a discrete kernel A′ from RO ′(n+ 2)—with obvious
notation the ′ are relative to the complex case—onto ϕ̃′(RO ′(n + 2) such that for
almost all x ∈ E′n and for any g ∈ RO ′(n + 2), if we set ϕ̃′(g) = f , there exists
σg(x) ∈ C such that we have π(g)u′(x)g−1 = σg(x)u

′(ϕ̃′(g).x).
As stated previously ϕ̃′(RO ′(n = 2)) can be identified with the group generated

by inversions, similarities and translations of E′n : ϕ̃′(RO ′(n+ 2)) = Conf ′(n). The
group ϕ̃′(RO ′+(n+2)) is called the restricted complex conformal group and denoted
by Conf ′(n)r . We can verify that

Conf ′(n) 	 RO ′(n+ 2)

A′

and respectively

Conf ′(n)r 	 RO ′+(n+ 2)

A′ ,

where A′ = {1,−1, eN ,−eN , i,−i, ieN ,−ieN }, with eN = {e0en+1e1 . . . en}. The
construction of the corresponding table of results is left as an exercise.
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2.5 Real Conformal Spinoriality Groups and Flat Real
Conformal Geometry

2.5.1 Conformal Spinoriality Groups

2.5.1.1 A Brief Review of Previous Results

Let En(p, q) (p+q = n, n> 2) be Rn with a quadratic form Q of arbitrary signature
(p, q). Cl(En) denotes the Clifford algebra of En with the quadratic form Q; π is
the principal automorphism of Cl(En), τ the principal antiautomorphism of Cl(En).
B is the fundamental bilinear form associated with Q chosen so that for all x ∈ Rn,
B(x, x) = Q(x). We recall that the group ROQ = RO(p, q) constitutes the 2-fold
covering of the orthogonal group O(p, q). If g ∈ Pin(p, q), we define ϕ(g)x =
gxg−1, x ∈ Rn, ϕ(g) ∈ O(p, q) and ψ(g) = π(g)xg−1, ψ(g) ∈ O(p, q). We
introduce an orthonormal basis of En(p, q) such that Q(ei) = e2

i = εi (εi = 1,
1 ≤ i ≤ p, εi = −1, p + 1 ≤ i ≤ n). In R2 with a quadratic form Q2 of signature
(1, 1), we consider an orthonormal basis {e0, en+1} such that Q(e0) = (e0)

2 = 1,
Q(en+1) = (en+1))

2 = −1. Then {e1, . . . , en, e0, en+1} is an orthonormal basis
of Rn+2 = En+2(p + 1, q + 1) = En(p, q) ⊕ E2(1, 1); e0 and en+1 are chosen
once and for all. Cn(p, q) stands for the conformal Lie group of Rn isomorphic to
PO(p+1, q+1) = O(p+1,q+1)

Z2
, which we agree to call the Möbius group ofEn(p, q).

More precisely, we have constructed an injective mapping u from En(p, q) into the
isotropic cone Cn+2 of En+2(p + 1, q + 1) defined for all x ∈ En(p, q) by

u(x) = 1

2
(x2 − 1)e0 + x + 1

2
(x2 + 1)en+1. (B)

The “projection” ϕ̃ called “twistor projection” or “conformal spinor projection”
from RO(p + 1, q + 1) onto Cn(p, q) is such that for almost all x ∈ En(p, q) and
for all g ∈ RO(p + 1, q + 1),

π(g)u(x)g−1 = ψ(g)u(x) = σg(x)u(ϕ(g)x), (A)

with σg(x) ∈ R. We set eN = e0en+1e1 · · · en: the kernel of ϕ̃: A = {1,−1, eN ,−eN }
isomorphic to Z2×Z2 if (eN)2 = 1, or to Z4 if (eN)2 = −1. ϕ̃(RO+(p+ 1, q + 1)),
is called the real conformal restricted group.

If we set x0 = (e0 + en+1)/2 and y0 = (e0 − en+1)/2, {x0, y0} is then a special
“real Witt basis” of C2 associated with {e0, en+1}. From (B): u(x) = x2x0 + x − y,
we deduce

u(x)y0 = x2x0y0 + xy0 and y0u(x) = x2y0x0 + y0x,

whence we obtain

u(x)y0 + y0u(x) = 2B(u(x), y0) = x2.

Thus (A) is equivalent to

x = u(x)− 2B(u(x), y0)x0 + y0, (A1)
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subject to (u(x))2 = 0, since x0y0 + y0x0 = 2B(x0, y0) = 1 and xy0 + y0x =
2B(x, y0) = 0.

2.5.1.2 Fundamental Diagram

It is now possible to construct an explicit homomorphism h from the orthogonal Lie
group O(p + 1, q + 1) onto Cn(p, q), in order to obtain a commutative diagram.47

i, respectively j , denotes the identity map from O(p, q) into Cn(p, q), respectively
O(p + 1, q + 1).

First, we constructh. For anyω belonging toO(p+1, q+1), there existsg(modulo
±1) belonging toRO(p+1, q+1) such thatω = ψ(g). Since according to [1] for any
g, g′ in RO(p+1, q+1) such that ϕ̃(g) = f ∈ Cn(p, q) and ϕ̃(g′) = f ′ ∈ Cn(p, q),
ϕ̃(g′g) = f ′ ◦ f and for almost all x ∈ En(p, q), σg′g(x) = σg′(f (x))σg(x), we
obtain that σg(x) �= 0 when f (x) is defined and that (A) is equivalent to

u(f (x)) = λg(x)ψ(g)u(x) for f = ϕ̃(g), (A2)

where λg(x) = (σg(x))
−1. So with any ω ∈ O(p + 1, q + 1) we can associate

f = ϕ̃(g) ∈ Cn(p, q) such that f (x) = λg(x){ω.u(x) − 2B(ω.u(x), y0)x0} + y0
with 2λg(x)B(ω.u(x), x0) = −1. One obtains a map h from O(p + 1, q + 1) into
Cn(p, q).

We agree to set λg = λ−g = λω, where ω = ψ(g) = ψ(−g) ∈ O(p+ 1, q + 1),
and we can easily verify that it is possible to write

f (x) = λω(x){ω.u(x)−2B(ω.u(x), y0)x0}+y0, λω(x) = −1

2B(ω.u(x), x0)
(C)

when f (x) is defined and that the diagram is commutative.

2.5.1.2.1 Proposition One can verify that ω → h(ω) = f = ϕ̃(g) is a homomor-
phism48 from O(p + 1, q + 1) onto Cn(p, q) such that i = h ◦ j , ϕ̃ = h ◦ ψ . Thus
we obtain an isomorphism h1 of Lie groups from PO(p+ 1, q+ 1) onto Cn(p, q) by
using quotient groups such that h = h1 ◦ h̃, where h̃ is the homomorphism associated
with the classical exact sequence of groups

1→ Z2 → O(p + 1, q + 1)→ PO(p + 1, q + 1)→ 1.

Let k1 be the inverse of h1. ln the same way as previously, if C′n stands for
the complex conformal group49 and O ′(n + 2) for the complex orthogonal group,

47 P. Anglès, (a) Géométrie spinorielle conforme orthogonale triviale et groupes de spinorialité
conformes, Report HTKK Mat A 195, pp. 1–36, Helsinki University of Technology, 1982.
(b) Real conformal spin structures on manifolds, Scientiarum Mathematicarum Hungarica,
vol. 23, pp. 115–139, Budapest, Hongary, 1988.

48 Cf. exercises below.
49 Cf. above 2.4.3.
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Fig. 2.1. Fundamental diagram

RO′(n+ 2) is an 8-fold covering of C′n, with kernel

A′ = {1,−1, eN ,−eN , i,−i, ieN ,−ieN }.ϕ̃′,
respectively ψ ′, denotes the “complex conformal spinor projection,” respectively the
“twisted spinor projection,” from RO′(n+ 2) onto C′n, respectively O ′(n+ 2). Thus,
one can construct a diagram analogous to the fundamental diagram in Fig. 2.1—this
is left as an exercise.

2.5.1.2.2 Remark

Let us, finally recall50 the following remark: if n = 2r , then eNfr+1 = (−i)r−pfr+1,
where fr+1 = y1 · · · yry0 is an (r + 1)-isotropic vector and fr+1eN = (−1)r+1·
(−i)r−pfr+1 according to a result given in C. Chevalley51 (cf. exercises below).

50 P. Anglès, Les structures spinorielles conformes réelles, Thesis, op. cit., p. 41.
51 C. Chevalley, The Algebraic Theory of Spinors op. cit., p. 91.
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2.5.1.3 Definitions of Real Conformal Spinoriality Groups (n Even,
n = 2r , r > 1)

Let fr+1 = y1 · · · yry0 = fry0 be an (r + l)-isotropic vector.

2.5.1.3.1 Definition Let HC be the set of elements γ ∈ RO+(p+ 1, q+ 1) such that
γfr+1 = ε1fr+1, where ε1 ∈ A = {1,−1, eN ,−eN }. We agree to call, by definition,
the subgroup SC = ϕ̃(HC) of (Cn(p, q))r the real conformal group associated with
fr+1 = y1 · · · yry0.

Following the result given above (according to which eNfr+1 = (−i)r−pfr+1),
such a definition is equivalent to the following one:

SC = ϕ̃(HC), where HC is the set of elements γ ∈ RO+(p + 1, q + 1) such that
if r − p ≡ 0 or 2 (modulo 4), γfr+1 = ±fr+1, and if r − p ≡ 1 or 3 (modulo 4),
γfr+1 = εfr+1 with ε = ±1 or ±i.

2.5.1.3.2 Definition Let (HC)e be the set of elements g ∈ RO+(p + 1, q + 1) such
that gfr+1 = µfr+1, where µ ∈ C∗. We agree to call by definition the enlarged real
conformal spinoriality group associated with fr+1 the subgroup (SC)e = ϕ̃((HC)e)

of (Cn(p, q))r .

We can observe that e0 and en+1 being chosen once and for all, these definitions
are associated with the choice of an r-isotropic vector fr = y1 · · · yr of En(p, q).

2.5.1.3.3 Remark Let us observe that these subgroups, at first glance “bigger” than
those defined by Crumeyrolle52 are subgroups of (Cn(p, q))r that cannot be reduced
to subgroups of SO(p, q) defined as real spinoriality groups.53 More precisely, one
can easily verify, for example, that any real conformal spinoriality group contains the
following elements:

(α) the special conformal transformation x → f (x) = x(1+ ax)−1, where,
f = ϕ̃

(
1+ 1

2 (en+1 − e0)a
)

with a = e1 + · · · + en,

(β) the translation x → x + y, where y = e1 + · · · + ep − en−p+1 · · · − en.

(γ ) We notice that ϕ̃(e0en+1) = −IdEn belongs to SC and that the following
elements of SO(p, q): ϕ̃(eien−i+1) belong to SC for all i, 1 ≤ i ≤ n.

52 A. Crumeyrolle, (a) Groupes de spinorialité, Annales de l’Inst. H. Poincaré Section A (N.S.),
14, 1971, pp. 309–323; (b) Dérivations, formes et opérateurs usuels sur les champs spinoriels
des variétés différentiables de dimension paire, ibid. 16, 1972, pp. 171–201; (c) Fibrations
spinorielles et twisteurs généralisés, Period. Math. Hungar., 6, 1975, pp. 143–171; (d) Spin
fibrations over manifolds and generalized twistors, Differential geometry, Proc. Sympos.
Pure Math., Vol. 27, Part 1, Stanford Univ., Stanford, Calif., 1973, Amer. Math. Soc.,
Providence, R.I., 1975, pp. 53–67.

53 Idem.
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2.5.1.4 Description of the Enlarged Real Conformal Spinoriality Groups

The abbreviation m.t.i.s. stands for maximal totally isotropic subspace as in
C. Chevalley.54

2.5.1.4.1 Proposition Any enlarged real conformal group of spinoriality (SC)e is the
stabilizer of the m.t.i.s. associated with the r-isotropic vector y1 · · · yr for the action of
(Cn(p, q))r . If pq is even, (SC)e is connected; if pq is odd, (SC)e has two connected
components. For 0 < p < r , dim(SC)e = (r + 1)2+p(p + 1)/2. (σ )e, the enlarged
real group of spinoriality associated with fr as by A. Crumeyrolle55 is a normal
subgroup of (SC)e.

Proof. The demonstration can be carried out in two steps. Let us write f1 = h(ω)

for ω ∈ O(p + 1, q + 1).

(a) First, we suppose that u(f1(yi)) = f1(yi) − y0 is well determined for all i,
1 ≤ i ≤ r , that is, equivalently, f1(0) and f1(yi) well defined for all i, 1 ≤ i ≤ r .

According to a result by Crumeyrolle56, γfr+1 = ±µfr+1, µ ∈ C∗, is equivalent
to γfr+1γ

−l = N(γ )µ2fr+1. Thus, (HC)e is the set of elements g ∈ RO+(p+1, q+
1) such that gfr+1g

−1 = σfr+1, where σ = N(g)µ2 = ±µ2.
One can easily notice that π(g)fr+1g

−1 = σfr+1 is equivalent to

π(g)y1g
−1π(g)y2g

−1 · · ·π(g)yrg
−1π(g)y0g

−1 = σfr+1. (I)

We set ψ(g) = ω, ω = SO(p+1, q+1), so that π(g)yig
−1 = ω(yi), 1 ≤ i ≤ r ,

and π(g)y0g
−1 = ω(y0). So g belongs to (HC)e iff ψ(g) = ω belongs to σe, the real

enlarged spinoriality group associated with fr+1 = y1 · · · yry0.
According to the diagram given above, we obtain (SC)e = h(σe).
By an easy computation, taking account of the formulas (C), we obtain that (I) is

equivalent to

σω(y1)σω(y2) · · · σω(yr)(−σω(0))u(f1(y1)) · · · u(f1(yr))u(f1(y0))

= σy1 · · · yry0 = −σu(y1) · · · u(yr)u(0),
Since u(y1) · · · u(yr)u(0) = −y1 · · · yry0, we notice that the m.t.i.s. associated re-
spectively with u(y1) · · · u(yr)u(0) and with y1 · · · yry0 are equal. So we have the
following relation equivalent to (I):

σω(y1) · · · σω(yr)σω(0))u(f1(y1)) · · · u(f1(yr))u(f1(0)) = σuy1 · · · uyru(0), (II)

54 C. Chevalley, The Algebraic Theory of Spinors, Columbia University Press, New York,
1954.

55 A. Crumeyrolle, Fibrations Spinorielles et Twisteurs Généralisés, op. cit.
56 A. Crumeyrolle, Fibrations Spinorielles et Twisteurs Généralisés, op. cit.
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which means57 that the vectors u(f1(y1)), . . . , u(f1(y0)), u(f1(0)) belong to the
(r + 1)-m.t.i.s. F ′r+1 associated with fr+1.

We notice that u operates on the set of isotropic subspaces as the translation of
vector u(0) = −y0, since for any z ∈ E(p, q), u(z) = z2x0+ z−y0. If u(z) belongs
to the (r + 1)-m.t.i.s. F ′r+1, then z belongs to F ′r = {y1, . . . , yr}.

According to our assumption, σω(yi) �= 0 for all i, 1 ≤ i ≤ r , and σω(0) �= 0.
Since, taking into account another result of Crumeyrolle58 ω belongs to σe, which
stabilizes the (r + 1)-m.t.i.s. {y1, . . . , yr , y0} for the action of SO(p+ 1, q + 1), the
restriction of ω to F ′r = {y1, . . . , yr} stabilizes F ′r . So we find that for all i, 1 ≤ i ≤ r ,
σω(yi) = σω(0) �= 0.59

(I) is equivalent to

ω(y1) · · ·ω(yr)(−σ(0))f1(0)+ ω(y1) · · ·ω(yr)σω(0)y0 = σy1 · · · yry0, (III)

since ω(y0) = −σω(0)(f1(0)− y0). Since ω(y1), . . . , ω(yr) are independent in F ′r ,
according to the definition of ω, and since f1(0) belongs to F ′r ,

ω(y1) · · ·ω(yr)f1(0) = 0 (III′)

necessarily.60 Thus, (III) means that

ω(y1) · · ·ω(yr)y0 = σ

σω(0)
y1 · · · yry0,

whence we deduce61 that

ω(y1) · · ·ω(yr) = σ

σω(0)
y1 · · · yr . (IV)

An easy computation gives the following result:

ω(y1) · · ·ω(yr) = (σω(0))
r

r∏
i=1

(f1(yi)− f1(0)), (V)

57 C. Chevalley, The Algebraic Theory of Spinors, op. cit.; S. Sternberg, Lectures on Differential
Geometry, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1964.

58 A. Crumeyrolle, Fibrations Spinorielles et Twisteurs Généralisés, op. cit.
59 According to the formulas (C) of 2.5.1.2, σw(0) = −2B(w(−y0), x0) = 2B(w(y0), x0)

and σw(yi) = −2B(w, u(yi), x0) = −2B(w(yi − y0), x0) = 2B(w(y0), x0), whence the
result.

60 S. Sternberg, Lectures on Differential Geometry, op. cit., p. 14 Th. 4.3.2 chapter II.
61 C. Chevalley, The algebraic theory of spinors, chapter III, p. 72, II.1.4. According to this

result, since y2
0 = 0, and since A =

(
ω(y1) . . . ω(yr )− σ ′

σω(0)
y1 . . . yr

)
y0 is equal to

zero, there exists a scalar µ such that A = µy0 and because of the difference of degrees,
necessarily µ = 0. For additional information see also P. Anglès, Géométrie spinorielle
conforme orthogonale triviale et groupes de spinorialité conformes, in the bibliography to
this chapter.
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as ω(yi) = σω(0)(f1(yi)− f1(0)) for all i, 1 ≤ i ≤ r .

• If f1(0) = 0, we obtain that

f1(y1) · · · f1(yr) = σ

(σω(0))r+1
y1 · · · yr ,

where σ = ±µ2 belongs to C∗. So µ1 such that f1(y1) · · · f1(yr) = µ1y1 · · · yr is
any element of C∗.

• If f1(0) �= 0, observing that

r∏
i=1

(f1(yi)− f1(0))f1(0) = 1

(σω(0))r
ω(y1) · · ·ω(yr)f1(0) = 0,

according to (III′) and moreover noticing that the product on the left equals f1(y1) · · ·
f1(yr)f1(0), we find that the vectors f1(y1), . . . , f1(yr), f1(0) are dependent in
F ′r+1.62 [see IV and V]

r∏
i=1

(f1(yi)− f1(0)) = σ

(σω(0))r+1
y1 · · · yr = µ1y1 · · · yr ,

where µ1 is any element in C∗, taking account of the dependence of the vectors
f1(y1), . . . , f1(yr), f1(0), we obtain that f1(y1) · · · f1(yr) = µ2y1 · · · yr , where
µ2 ∈ C∗.

(b) Let us prove now that for anyf1 belonging to (SC)e, it is permissible to suppose
that f1(0) is well-defined and to find z1, . . . , zr linearly independent, belonging to F ′r
such that all the f1(zi) are well-defined if some of the elements f1(y1), . . . , f1(yr),
are not defined. Let us recall that classically, for x = x1e1+ · · · + xpep + xp+1ep+1
+ · · · + xnen the xi , 1 ≤ i ≤ p, are called “spatial coordinates of x ∈ En(p, q)” and
those for p + 1 ≤ i ≤ n the “temporal coordinates of x.” So, for any j, 1 ≤ j ≤ n,

we call (Sym)j the mapping already called uej or uj in 2.4.2.3. Moreover, (Sym)s
denotes the space symmetry defined as the product

∏
1≤j≤p(Sym)j , (Sym)t denotes

the product
∏

p+1≤j≤p+q(Sym)j , and (Sym)st = (Sym)s(Sym)t . It is well known

(see, for example Spaces of Constant Curvature by J. A. Wolf 63) that

O(p + 1, q + 1)

(O(p+1,q+1))
	 Z2 × Z2,

where G denotes the connected component of the Lie group G, and that

(O(p + 1, q + 1)) = SO+(p + 1, q + 1).

62 S. Sternberg, Lectures on Differential Geometry, Th. 4.2, p. 15.
63 J. A. Wolf, Spaces of Constant Curvature, op. cit., p.341.
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(i) Let us assume that p and q are even (n = p+q is even). We know (2.4.2.6) that

RO(p + 1, q + 1) = G+0 (p+ 1, q+ 1), ϕ̃−1
(

Cn(p, q)
)
= RO+(p+ 1, q+ 1),

Cn(p, q) has two connected components, and, finally, that RO(p+1, q+1) has four
connected components. We introduce the elements±ep,±eQ, where ep = e0e1 · · · ep
and eQ = ep+1 · · · enen+1. One may verify that±1 belong to G+0 (p+1, q+1),±ep

belong to G0(p+1, q+1)−G+0 (p+1, q+1),±eQ belong to CCG0(p+1, q+1),
where C is RO(p + 1, q + 1)\RO+(p + 1, q + 1). So, we find again that O(p +
1, q + 1) has 4 connected components and that any element ω ∈ O(p + 1, q + 1)
can be written ω = ω∗ω0, ω0 ∈ O(p + 1, q + 1) and ω∗ = IdEn+2 = ψ(±1) or
ω∗ = ψ(±ep) = (Sym)s (space-symmetry), or ω∗ = ψ(±eQ) = (Sym)t (time-
symmetry), or ω∗ = −IdEn+2 = ψ(±eN) = (Sym)st (space-time symmetry).

Such a result is well known and used in physics for n = 4, p = 3, and q = 1.
Moreover we observe that eP and eQ belong to the same class of RO(p + 1, q + 1)
modulo A = {1,−1, eN ,−eN }, since eP (eQ)−1 = ±eN , as can be easily verified.
Therefore necessarily,

ϕ̃(±eP ) = ϕ̃(±eQ) = Inv(0, 1) ◦ (Sym)s = (Sym)t ◦ Inv(0,−1)

in the space En(p, q), where Inv(0, 1) (resp. Inv(0,−1)) denotes the inversion of

center 0 and power 1 (resp.−1). We observe that h
(
O(p + 1, q + 1)

)
⊂ Cn(p, q)

and that any elementf ∈ Cn(p, q) can be writtenf = f ∗◦f0, wheref ∗ = h(ω∗) and
f0 = h(ω0) ∈ Cn(p, q) and f ∗ = ϕ̃(±1) = ϕ(±eN) = (Id)En or f ∗ = ϕ̃(±ep) =
ϕ̃(±eQ) = Inv(0, 1) ◦ (Sym)e = (Sym)t ◦ Inv(0,−1) in the space En(p, q), where
Inv(0, 1), respectively Inv(0,−1), denotes the inversion of pole O and power 1,
respectively of pole O and power −1. Therefore two cases appear: f = f ∗ ◦ f0,

with f0 belonging to Cn(p, q) , and f ∗ = IdEn or f ∗ = Inv(0, 1) ◦ (Sym)s =
(Sym)t ◦ Inv(0,−1). We recall that n and pq are even, and that Cn(p, q) has two
connected components. According to [2.4.2.6] f0 = � ◦T ◦H ◦S, where � belongs
to SO+(p, q), T is a translation of vector b ∈ En(p, q), H is a dilation, and S

is the special conformal transformation or transversion x → x(1 + ax)−1, where
a ∈ En(p, q). We remark that (SC)e ⊂ Cn(p, q) and that we are led to study the

case that f0 belongs to Cn(p, q) , f0 = � ◦ T ◦H ◦ S, with

σg0(x) = σ�(T ◦H ◦ S(x))︸ ︷︷ ︸
=1

σT (H ◦ S(x))︸ ︷︷ ︸
=1

σHS(x)︸ ︷︷ ︸
=λ−1

σS(x)︸ ︷︷ ︸
N(1+ax)

.

Since σg0(x) = σω0(x) = 0 is the equation of singular points of f0,64 we find that
for any isotropic vector x, a singular point of f0, we have B(a, x) = − 1

2 since
N(1 + ax) = 1 + 2B(a, x) + a2x2. Since f0 = h(ω0) stabilizes65 F ′r , we observe

64 P. Anglès, Construction de revêtements du groupe conforme d’un espace vectoriel muni
d’une métrique de type (p, q), Ann Inst. H. Poincaré Sect. A (N.S.), 33 (1980), 33–51.

65 A. Crumeyrolle, Structures Spinorielles, op. cit.
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that f0(0) is well-defined, according to the fact that f0(0) = � ◦ T ◦H ◦ S(0) with
S(0) = 0, H(0) = 0, and that � ◦ T (0) belongs to F ′r . Thus, we can assume that
f1(0) is well-defined according to the writing of f0. We have found that the condition
B(a, x) �= 1

2 is sufficient for f0(x) to be well defined. This implies that x belongs to
a dense subset of En(p, q) (cf. also Jean Dieudonne in Elements d’Analyse, tome 3,
Gauthier Villars, 1970, pp. 161–163 about Sard’s theorem), in which we can choose
suitable z1, . . . , zn, such that all the f0(zi) are well defined.

If yi , 1 ≤ i ≤ r , is a singular point for f0, we can find an isotropic vector

a1 =
r∑

i=1

αiyi

belonging to F ′r such that zi = yi+a1, 1≤ i ≤ r , satisfy the conditions B(a, zi) �= − 1
2 ,

the vectors zi being linearly independent. We note that setting a1= y1 + · · · + yr ,
belonging to F ′r , B(a, zi) �= − 1

2 for any i, 1 ≤ i ≤ r , and these vectors zi trans1ated
from the yi’s are linearly independent.

(ii) Let us now assume that p and q are odd. Cn(p, q) has 4 connected components

and ϕ−1
(

Cn(p, q)
)
= G+0 (p + 1, q + 1). We observe that ±1,±eN ,±ep,±eQ

belong to G+0 (p+1, q+1) and that G+0 (p+1, q+1) = ψ−1
(
O(p + 1, q + 1)

)
.66

RO(p+1, q+1) has four connected components as previously. There exists e0en+1 ∈
RO+(p+1, q+1)\G+0 (p+1, q+1)—even element with norm equal to−1; there
exists e0en+1e1—odd element with norm equal to−1, belonging to CCG0(p+1, q+
1); there exists e0e1e2—odd element with norm equal 1, belonging to G0(p+1, q+
1) \G+0 (p + 1, q + 1). Therefore any element ω of O(p + 1, q + 1) can be written

ω = ω∗ω0, where ω0 belongs to O(p + 1, q + 1) and

ω∗ = IdEn+2 = ψ(±1) = ψ(±eN) = ψ(±ep) = ψ(±eQ)

or
ω∗ = (Sym)0 ◦ (Sym)n+1 = ψ(e0en+1)

or
ω∗ = (Sym)0 ◦ (Sym)n+1 ◦ (Sym)1 = ψ(e0en+1e1)

or
ω∗ = (Sym)0 ◦ (Sym)1 ◦ (Sym)2 = ψ(e0e1e2).

Thus, any element f belonging to Cn(p, q) can be written f = f ∗ ◦ f0, where f0 =
h(ω0) belongs to Cn(p, q) and where f ∗ = IdEn or f ∗ = −IdEn or f ∗ = (−Id)En ◦
(Sym)1 or f ∗ = Inv(0, 1) ◦ (Sym)1 ◦ (Sym)2 with obvious notations.

66 A. Crumeyrolle, Structures Spinorielles, op. cit.; R. Deheuvels, Formes quadratiques et
groupes classiques, op. cit.; C. Chevalley, The Algebraic Theory of Spinors, op.cit.
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Thus, any element f belonging to (SC)s can be written f = (±Id)En ◦ f0 with

f0 ∈ Cn(p, q) since e0en+1e1 and e0e1e2 are odd and since−IdEn belongs to (SC)s ,
as previously said. We are thus led to the previous demonstration (i).

The results concerning the dimension come from those given67 for the spinoriality
groups. The same method as in 2.4.2.6 leads to the determination of these groups and
to the determination of their number (cf. below exercises).

2.5.1.5 Description of the Real Conformal Groups of Spinoriality in a Strict
Sense

As for the classical spinoriality groups studied by A. Crumeyrolle68 normalization
conditions appear. We obtain the following statement (cf. exercises below):

SC is the subgroup of (Cn(p, q)r ) of elements f1 that stabilize the m.t.i.s. associated
with the r-isotropic vector fr = y1 · · · yr and satisfy

f1(y1) · · · f1(yr) = ±y1 · · · yr .
In elliptic signature the group SC has 2 connected components. dim SC = r2+2r . If Q
is a neutral form (p = r), SC has 2 connected components if r is even and 4 connected
components if r is odd. dim SC = r(3r + 5)/2. In signature (p, q), p ≤ n − q, p
positive terms r > 2; if pq is even, SC has 2 connected components and if pq is odd,
SC has 4 connected components. dim SC = (r + 1)2 − 2+ p(p + 1)/2.

2.5.1.6 Remarkable Factorization of Elements of (SC)e and SC and
Topological Remarks if n = 2r

If pq is even , any element f0 ∈ (SC)e can be written in the form f0 = � ◦T ◦H ◦S,
where � ∈ O(p, q) and stabilizes F ′r = {y1, . . . , yr} and therefore belongs
to σe, the classical spinoriality group associated with fr (cf. below 3.10.1.5).
T is a translation, H is dilation, and S is a special conformal transformation:
x → x(1+ ax)−1.

If pq is odd , f0, belonging to (SC)e ca be written f0 = (±IdEn) ◦� ◦ T ◦H ◦ S
with � belonging to σe.

Thus, we obtain that

(SC)e

σe

is homeomorphic to R2n+1, taking account of the topological remark already used
in 2.4.6.2. (The group of the translations ofEn has n parameters, R+ is homeomorphic

67 A. Crumeyrolle, Fibrations Spinorielles et Twisteurs Généralisés, op. cit.
68 Idem.
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to R. Finally we recall that Cn(p, q) is homeomorphic to O(p, q)

×R2n+1.)
We will use this remark later in 2.7.2.2.
One can easily extend such a factorization to the case of the real conformal

spinoriality group Sc in a strict sense.

2.5.2 Flat Conformal Spin Structures in Even Dimension

2.5.2.1 Witt Decomposition

Let R2r be endowed with a quadratic form of signature (p, q): we suppose that
p ≤ n − p, (n = 2r). We introduce69 a “real” “special Witt decomposition” of
Cn+2 = E′n+2 = (En+2)C, naturally associated with the previous basis of En+2 :
{e′ . . . , en, e0, en+1} : (W1)n+2 = {xi, yj } with

x1 = e1 + en

2
, . . . , xp = ep + en−p+1

2
, xp+1 = iep+1 + en−p

2
, . . . ,

xr = ier + en−r+1

2
, x0 = e0 + en+1

2

y1 = e1 − en

2
, . . . , yp = ep − en−p+1

2
, yp+1 = iep+1 − en−p

2
, . . . ,

yr = ier − en−r+1

2
, y0 = e0 − en+1

2
.

So that for all i and j , B(xi, yi) = δij /2 and xiyj + yjxi = δij = 2B(xi, yi),
0 ≤ i ≤ r , 0 ≤ j ≤ r . We know70 that for each Witt decomposition of E′n+2,
E′n+2 = F + F ′, we can find a basis of isotropic vectors {η1, . . . , ηr , η0} in F ′ and
a basis of isotropic vectors {ξ1, . . . , ξr , ξ0} in F such that {ξi, ηj } is a “real” Witt
basis of E′n+2. With the same notation as 2.5.1.1, we consider η = k1 ◦ ϕ̃ from
RO(p + 1, q + 1) onto PO(p + l, q + 1) via the exact sequence

1 −→ A −→ RO(p + 1, q + 1)
η−→ PO(p + 1, q + 1) −→ 1

and η′ = k′1 ◦ ϕ̃′, so that we have the corresponding exact sequence

1 −→ A′ −→ RO′(n+ 2)
η′−→ PO′(n+ 2) −→ 1.

Let Cl′n+2 be the complexified algebra of Cln+2, and let � be the classical spin
representation71 of Cl′n+2 corresponding to the left action of Cl′n+2 on the minimal
ideal Cl′n+2fr+1 (where fr+1 = y1y2 · · · yry0 is an isotropic (r+1)-vector), called72

“the space of conformal spinors” associated with En(p, q).

69 P. Anglès, Les Structures Spinorielles Conformes Réelles, op. cit., p. 40.
70 A. Crumeyrolle, Fibrations Spinorielles et Twisteurs Généralisés, op. cit.
71 C. Chevalley, The Algebraic Theory of Spinors, op. cit.
72 Cf. P. Anglès, Les Structures spinorielles conformes réelles, op. cit.
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2.5.2.2 General Definitions

We will use the definitions recalled in 1.2.2.8.4. In particular ϕ, mentioned in 2.5.3.1,
denotes the spin representation. We consider73 the projective space P(E′n+2) and
projective Witt frames of P(E′n+2) associated with Witt basis ofF ′n+2 and in particular
projective orthogonal Witt frames of P(E′n+2).

Let (�̃n+2)1 and (W̃n+2)1 be two projective orthogonal Witt frames of P(E′n+2)

so that (W̃n+2)1 = τ−1
1 (�̃n+2)1, where τ−1

1 ∈ PO(p + 1, q + 1). Classically,74 we
identify the complexification of τ1 with τ1. Thus, we determine the action of RO(p+
1, q+1) on PO(p+1, q+1). Let g be one of the four elements of RO(p+1, q+1)
such that η(g) = τ1 ∈ PO(p + 1, q + 1). We observe that τ1 = η(g) = η(−g) =
η(eNg) = η(−eNg).

If (W̃n+2) is a projective Witt frame of P(E′n+2) associated with an orthogonal
projective frame of P(E′n+E) and with a “real” orthonormal basis (B′1)n+2 of E′n+2
and with a “real” orthonormal basis (B′1) of E′n (e0, en+1 being chosen once and for
all), we define,75 “over” the orthonormal “real” basis (B′1n) of E′n the four spinor
frames called conformal spinor frames or En:

{ε1(xi0xi1 · · · xihfr+1)}, where ε1 = ±1 or ± eN , i0 < i1 < · · · < ih,

such that if η(g) = τ1 ∈ PO(p + 1, q + 1) and if δ ∈ {g,−g, geN,−geN } we have

xi0xi1 · · · xihfr+1 = δ−1ξi0ξi1 · · · ξihδfr+1 = �(δ−1)ξi0ξi1 · · · ξihδfr+1.

This is equivalent to

�(δ)[xi0xi1 · · · xihfr+1] = δxi0xi1 · · · xihfr+1 = ξi0ξi1 · · · ξihδfr+1.

Thus, (R̃n+2)1 = η(δ)(R̃′n+2)1 is equivalent to Sn+2 = �(δ)S′n+2, where (R̃n+2)1

and (R̃′n+2)1 (respectively, Sn+2 and S′n+2) are projective orthogonal frames in the
projective space P(E′n+2), respectively “conformal spinor frames” with S′n+2 =
xi0 · · · xihfr+1 and Sn+2 = ξi0ξi1 · · · ξihδfr+1.

2.5.2.2.1 Definition A conformal spinor of En, associated with a complex represen-
tation � of RO(p + 1, q + 1) in a space of spinors for the Clifford algebra Cl′n+2,

is by definition an equivalence class ((R̃n+2)1, g, χn+2), where (R̃n+2)1 is a pro-
jective orthogonal frame of P(E′n+1), g ∈ RO(p + 1, q + 1), χn+2 ∈ C2r+1

and

where ((R̃′n+2)1, g
′, χ ′n+2) is equivalent to ((R̃n+2)1, g, χn+2) if and only if we have

((R̃′n+2)1 = σ((R̃n+2)1), σ = η(γ ) ∈ PO(p + 1, q + 1) with γ = g′g−1 and
χ ′n+2 =t (�(γ ))−1χn+2, where t (�)−1 is the dual representation of � and where

(�(γ ))−1 is identified with an endomorphism of C2r+1
.

73 Idem.
74 A. Crumeyrolle, Structures Spinorielles, op. cit.
75 P. Anglès, (a) Construction de revêtements du groupe conforme d’un espace vectoriel muni

d’une 4métrique* de type (p, q), op. cit.; (b) Les structures spinorielles conformes réelles,
op. cit.
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We can also write (R̃′n+2)1 = (R̃n+2)1σ instead of (R̃′n+2)1 = σ(R̃n+2)1, which
defines a right action, and in the same way, we can use the associated projective
orthogonal Witt frames of P(E′n+2) : (�̃n+2)1, (�̃

′
n+2)1.

2.5.2.2.2 Definition We agree to call by definition an equivalence class ((R̃n+2)1, g),
where g is in RO(p + 1, q + 1) and (�̃n+2)1 is a projective orthogonal frame of
P(E′n+2) a conformal spinor frame of En associated with the “real” orthonormal basis

(B1)n of E′n. ((R̃n+2)1, g) is equivalent to ((R̃′n+2)1, g
′) if and only if (R̃′n+2)1 =

(R̃n+2)1σ and σ = η(γ ) with g, g′ ∈ RO(p + 1, q + 1), and γ = g′g−1.

We remark that

((R̃n+2)1, g) ∼ ((R̃n+2)1,−g) ∼ ((R̃n+2)1, eNg) ∼ ((R̃n+2)1,−eNg).

If we suppose g, g′ ∈ RO′(n + 2) with γ = g′g−1 ∈ RO(p + 1, q + 1), we can
consider the action of RO(p + 1, q + 1) on every spinor frame of Cl′n+2fr+1.

2.5.2.2.3 Definition With obvious notation, (�̃n+2)1 and (�̃′n+2)1 being projective

orthogonal Witt frames of P(E′n+2), ((�̃n+2)1, g) and ((�̃′n+2)1, g
′) define the same

flat conformal spin structure if and only if (�̃′n+2)1 = σ(�̃n+2)1, η′(γ ) = σ , γ =
g′g−1, g, g′ ∈ RO′(n+ 2), γ ∈ RO(p + 1, q + 1).

(Thus ((�̃n+2)1, g) ∼ ((�̃n+2)1,−g) ∼ ((�̃n+2)1, eNg) ∼ ((�̃n+2)1,−eNg).) We
define76 complex conformal spin flat structures, using the mapping η′ from Pin′(n+2)
onto PO′(n+ 2) with kernel A′.

2.5.3 Case n = 2r + 1, r > 1

2.5.3.1 Definitions

If in an orthonormal basis of En we can write q(x) = (x1)2+· · ·+(xp)2−(xp+1)2−
· · ·−(x2r )2, under the assumption that p ≤ 2r−p, we obtain77 a Witt decomposition
of E′n = F +F ′ +{en}, where F and F ′ are defined as previously for the case n = 2r .

If we consider a special Witt basis �n = {ξi, ηj , en} and Wn = {xi, yj , zn}
associated with a real orthonormal basis of E′n, according to the fact that eN =
e0en+1e1 · · · en belongs to the center of the Clifford algebra Cl(En+2) (we recall that
the center of Cl(En+2) is then R⊕ReN ; cf. Chapter 1), we can define real conformal
spinorial frames {ε1S} where S = {xi0xi1 · · · xihfr+1}, i0 < i1 < · · · < ih, with
ε1 = ±1 or±eN for Cl′+(Q1)n+2)fr+1,78 so that Sn+2 = ρ(δ)S′n+2 is equivalent to

76 P. Anglès, Les structures spinorielles conformes réelles, Thesis, op. cit., cf. below, exercises.
77 A. Crumeyrolle, Structures Spinorielles, op. cit.
78 If n = 2r + 1, then Cl+(En) is central simple. If Q is of maximal index r , Cl+(En) is

isomorphic to Cl(Q1), where Cl(Q1) is the Clifford algebra for the space F + F ′, where
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(R̃n+2)1 = η(δ)(R̃′n+2)1, δ ∈ RO+(p+ 1, q + 1) or δ ∈ RO+′(n+ 2) with previous
notation.

We can consider RO+(p+1, q+1) or RO+′(n+2) since we represent only Cl
′+
n+2.

We can extend previous definitions, taking account of these remarks. We replace �n

by {ξi, ηj , en} and Wn by {xi, yj , zn}.
The same is done for previous orthogonal projective frames and Witt projective

frames.

2.5.3.2 Remark

Since n = 2r + 1, we now obtain that eNfr+1 = fr+1eN = (−i)r−pfr+1 since eN
is in the center of the corresponding Clifford algebra.

2.5.3.3 Conformal Spinoriality Groups

One can easily define conformal spinoriality groups associated with Cl
′+
n+2 as pre-

viously. Since we only represent Cl
′+
n+2, we find again that Cn(p, q) isomorphic to

PO(p + 1, q + 1) is isomorphic to ψ(RO+(p + 1, q + 1)) = SO(p + 1, q + 1).
We recall that it is known79 that if n = 2r + 1, PO(p + 1, q + 1) is isomorphic to
SO(p + 1, q + 1).

2.6 Real Conformal Spin Structures on Manifolds

2.6.1 Definitions

V is a real paracompact n-dimensional pseudo-riemannian (in particular, rieman-
nian) manifold. Its fundamental tensor field is called, abusively, Q. We denote by
ξ(E, V,O(p, q), π), or simply ξ , the principal bundle of orthonormal frames of V

(If n odd, n = 2r + 1, we assume that M is orientable.)

2.6.1.1 Bundle ξ1(V )

Let i : O(p, q) → Cn(p, q) be the canonical injective homomorphism. The group
O(p, q) acts on Cn(p, q) by (ω, f ) ∈ O(p, q) × Cn(p, q) → i(ω)f ∈ Cn(p, q).

F +F ′ is such that F +F ′ +(ξ0) is a Witt decomposition of En, with ξ0 being nonisotropic,
and where Q1 is related to Q by Q1(y) = −Q(ξ0)Q(y), y ∈ F +F ′. Q1 is a neutral form
and Cl(Q1) can be represented as Cl(En) for n = 2r . Cl+(En), for n = 2r + 1, possesses
a spinorial representation ρ+ which can be extended exactly in two inequivalent ways to an
irreducible representation ρ of Cl(En). (Cf. chapter 1 of C. Chevalley, The algebraic theory
of spinors. op.cit.)

79 Cf. J. Dieudonné, On the automorphisms of the classical groups, Mem. Amer. Math. Soc.,
no. 2, 1951, pp. 1–95.
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Let ξ1(A1, V , Cn(p, q), ω1) be the principal bundle with structure group Cn(p, q)

over the same base V , obtained by i-extension of ξ .80 ξ1(V ) = i(ξ(V )) = ξi(V ) =
ξ1(A1, V , Cn(p, q), ω̄1) is a principal bundle with structure group Cn(p, q) in the
following way: let us choose a covering (Uα′)α′∈A of V with a system of local cross
sections σα′ and transition functions gα′β ′ . Let us define maps g′

α′β ′ = i ◦gα′β ′ . Then,
for all x ∈ Uα′ ∩Uβ ′ ∩Uγ ′ the g′

α′β ′ satisfy the relation g′
α′β ′(x)g

′
β ′γ ′(x) = g′

α′γ ′(x)
and consequently, there is a principal bundle ξi with a system of local sections such
that the g′

α′β ′ are the corresponding transition functions, according to a general result

of Greub and Petry.81

2.6.1.2 Bundle Pξ1(V )

Let us recall that Cn(p, q) is isomorphic to PO(p + 1, q + 1). Using, with previous
notation, the classic sequence of groups

1 −→ Z2 −→ O(p + 1, q + 1)
h̃−→ PO(p + 1, q + 1) −→ 1

(cf. 2.5.1.2), let us define λ̃ = h̃◦j = k1◦i and letPξ1(V ) = λ̃(ξ(V )) = ξλ̃(V ) be the
λ̃-extension of the principal bundle ξ(V ). Pξ1(V ) = ξλ̃(V ) = Pξ1(E

′
1, V ,PO(p +

1, q + 1), π1) is a principal bundle with structure group PO(p + 1, q + 1) over the
same base V . Thus, e0 and en+1 being chosen once and for all, the two bundles ξ1
and Pξ1 are isomorphic. Subsequently, since the action of PO(p + 1, q + 1) on the
set of projective frames of P(En+2) is simply transitive, it is suitable to retain Pξ1
the principal bundle, λ̃-extension of ξ , with structure group PO(p + 1, q + 1).

2.6.1.3 Bundle Clif 1(V )

Let us introduce θ(V ) the trivial bundle with typical fiber R2 with a quadratic form
Q2 of signature (1, 1), and let us write θ(V ) = ξ0 ⊕ ξn+1, since a Whitney sum
of two bundles with typical fiber R and the required condition of orthogonality
for Q2.

We define then T1(V ) = T (V ) ⊕ θ(V ) = ∪x∈V T1(x)(V ), where T (V ) is the
tangent bundle of V and T1(x)(V ) = T (x)⊕ (ξ0)x⊕ (ξn+1)x , with obvious notation.

We denote by Clif (V ,Q) or simply Clif (V ), the Clifford bundle of V , and we
introduce another bundle Clif 1(V ) in the following way. At any point x ∈ V , let
us consider ⊗T1(x) and the Clifford algebra (Cln+2)x obtained as a quotient al-
gebra of ⊗T1(x) by the ideal generated by X1(x) ⊗ X1(x) −Qn+2(X1(x)), where
X1(X) ∈ T1(X) and Qn+2 is the quadratic form of signature (p+1, q+1) defined on
Rn+2.

80 W. Greub and R. Petry, On the lifting of structure groups, Lecture Notes in Mathematics, no
676. Differential Geometrical Methods in Mathematical Physics, Proceedings, Bonn, 1977,
pp. 217–246.

81 Idem.
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Fig. 2.2.

The collection of the Clifford algebras (Cln+2)x is naturally a vector bundle
of typical fiber Cln+2(p + 1, q + 1), which we denote by Clif 1(V ) and which is
an “amplified Clifford bundle” in the same way as T1(V ) is an “amplified tangent
bundle.” It is possible to define the action of the group Cn(p, q) on such a bundle
by means of the representation K1 so settled. For any ω belonging to Cln+2(p +
1, q + 1), for any ϕ(g) ∈ Cn(p, q) we set K1ϕ(g)ω = π(g)ωg−1, which defines
a representation of Cn(p, q) into Cln+2(p + 1, q + 1). Thus, PO(p + 1, q + 1)
isomorphic to Cn(p, q) acts on Clif 1(V ). Clif ′1(V ) denotes its complexification and
in the same way as previously, we can define the action of PO′(n+ 2) isomorphic to
C′n on this bundle.

2.6.2 Manifolds of Even Dimension Admitting a Real Conformal Spin
Structure in a Strict Sense

Let V be a real paracompact n-dimensional smooth pseudo-riemannian (in partic-
ular riemannian) manifold. ln this paragraph and the next three we assume that n

is even, n = 2r . As in 1, ξ stands for the bundle of orthonormal frames of V ;
Pξ1(E

′
1, V ,PO(p+1, q+1), π1) is the principal bundle obtained as the λ̃-extension

of ξ . We agree to give the following definitions, which generalize those given by
A. Crumeyrolle82 for the orthogonal case to the conformal orthogonal one.

2.6.2.1 Definition V admits a real conformal spin structure in a strict sense if there
exists a principal fiber bundle S1(E1, V ,RO(p + 1, q + 1), q1) and a morphism of
principal bundles η̃ : S1 → Pξ1 such that S1 a 4-fold covering of Pξ1 with the follow-
ing commutative diagram (see Figure 2.2), where the horizontal mappings correspond
to right translations. S1 is called the bundle of conformal spinor frames of V .

2.6.2.2 Definition According to this definition, we introduce the bundle of conformal
spinors

σ1 =
(
S1(V )× C2r+1

RO(p + 1, q + 1)
, V ,RO(p + 1, q + 1),C2r+1

)
,

82 A. Crumeyrolle, Structures spinorielles, Ann. Inst. H. Poincaré, Section A (N.S.), 11, 1969,
pp. 19–055. A. Lichnerowicz, (a) Champs spinoriels et propagateurs en relativité générale,
Bull. Soc. Math. France, 92, 1964, pp. 11–100; (b) Champ de Dirac, champ du neutrino
et transformations C. P. T. sur un espace-temps courbe, Ann. Inst. H. Poincaré, Section A
(N.S.), 1, 1964, pp. 233–290.
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a complex vector bundle of dimension 2r+1 with typical fiber C2r+1
associated with

the bundle S1(V ) of “conformal spinor frames.” We write σ1 = (σ ′1, V ,RO(p +
1, q + 1), s1).

Remarks. It is always possible to define the two fibrations Pξ1 and S1 by means of
the same trivializing neighborhoods (Uα′)α′∈A and local cross section zα′ , R̃α′ with
transition functions, γα′,β ′ respectively η(γα′,β ′):

zβ ′(x) = zα′(x)γα′,β ′(x), γα′,β ′(x) ∈ RO(p + 1, q + 1),

η̃(zβ ′(x)) = R̃β ′(x) = η̃(zα′(x))η(γα′,β ′(x))

= R̃α′(x)η(γα′,β ′(x)), η(γα′,β ′) ∈ PO(p + 1, q + 1).

R̃α′(x) and R̃β ′(x) are “projective orthogonal frames” of P(E′n+2).

Let us consider the Clifford algebra Cln+2 of En+2(p + 1, q + 1) and the com-
plexified algebra Cl′n+2 isomorphic to Cln+2(Q

′), where Q′ is the complexification
of Q.83 The sequence

{xi0xi1 · · · xihyj0yj1 · · · yjh}


0 ≤ h ≤ r,

0 ≤ i0 < i1 < i2 · · · ≤ r,

0 ≤ j0 < j1 < j2 · · · ≤ r,

is a basis of Cl′n+2, where {xi, yj } is the special Witt basis of Cn+2; already used.
The choice of the above basis establishes a linear isomorphism µ between Cl′n+2

and C2n+2
.

We can observe that the spinorial bundle σ1 associated with the bundle S1 is a
principal bundle with typical fiber C2r+1

and structure group RO(p+1, q+1), which
acts effectively in C2r+1

(C2r+1
is an irreducible Cl′n+2-representation space).

It is permissible to choose any irreducible representation of Cl′n+2 in C2r+1
and

convenient to choose the representation corresponding to the left action of Cl′n+2 in
the minimal ideal of conformal spinors, Cl′n+2fr+1 = Cl′n+2y1y2 · · · yry0, of which
the {ε1xi0xi1 · · · xihfr+1} where ε1 = ±1 or ±eN constitute “four conformal spinor
frames” (cf. 2.6.2 and 2.5.2). By restriction of µ to Cl′n+2fr+1 we obtain a linear

identification of Cl′n+2fr+1 with C2r+1
.

Over an open set of V , endowed with the cross section z : x → z(x) of S1 a
conformal spinor field χ will be defined by a differentiable mapping χ from E1 into
C2r+1

: z → χ(z) such that84 if χ(z) = µ(u), u ∈ Cl′n+2fr+1,(u = vfr+1), then
χ(zγ−1) = γχ(z) = µ(γu), (∀ γ ), (γ ∈ RO(p + 1, q + 1)). We denote by χx the
restriction of χ to S1x = s−1

1 (x) and observe that

(χx(z))
i0i1···ihxi0xi1 · · · xihfr+1 = (χx(z))

i0i1···ih (γ xi0xi1 · · · xih)fr+1. (I)

83 P. Anglès, Les structures spinorielles conformes réelles, Thesis, op. cit.
84 A. Lichnerowicz, Champs spinoriels et propagateurs en relativité générale, op. cit.
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2.6.3 Necessary Conditions for the Existence of a Real Conformal Spin
Structure in a Strict Sense on Manifolds of Even Dimension

Let x → zx be a local cross section over U , a trivializing open set in the bundle S1.
We set

zx = v(x, g(x)) = vx(g(x)), g(x) ∈ RO(p + 1, q + 1)

according to the construction of associated bundles [zx, xi0 · · · xihfr+1], identified to
[zxγ−1, γ x

(i)fr+1], is a cross section over U in the bundle σ1 which we denote by

[zx, x(i)fr+1] or Mx(x(i)fr+1). Let also R̃x = η̃(zx).
Let (Uα′)α′∈A be a trivializing atlas for the bundlePξ1. We can always suppose that

there exists over (Uα′) a cross section zα′ in S1; we take again R̃α′(x) = η̃(zα′(x)). If
W̃α′(x) is the projective “real” Witt frame associated with the projective orthogonal
frame R̃α′(x), we write, abusively, η̃(zα′(x)) = W̃α′(x). ln the projective space
P(Cn+2) the projective “real” frame

{p(x0), . . . , p(xr), p(y0), . . . , p(yr), p(x0 + · · · + xr + y0 + · · · + yr)}︸ ︷︷ ︸
(2r+3) elements

corresponds to the “real” Witt basis {xi, yj }, 0 ≤ i ≤ r , 0 ≤ j ≤ r of Cn+2 (p is
the canonical map: En+2 → P(En+2)). We agree to denote such a projective “real”

frame by ˜{xi, yj }. Since the action of PO(p + 1, q + 1) on the set of projective
orthogonal frames is simply transitive, we can write

W̃α′(x) = η̃(zα′(x)) = �̃x
α′( ˜{xi, yj }),

where the �̃x
α′ admit the transition functions η(γα′β ′) in PO(p + 1, q + 1).

If there exists over V a real conformal spin structure in a strict sense, this structure
induces in the “amplified” tangent space T1(x) at x a flat real conformal spin structure
(in a purely algebraic way, see 2.5.2) defined by an equivalence class of (�̃x, gx),
gx ∈ RO′(n + 2), �̃x , a “projective Witt frame,” depending differentially on x. Let
us recall that

(�̃x, gx) ∼ (�̃x,−gx) ∼ (�̃x, eNgx) ∼ (�̃x,−eNgx)

(see 2.5.2).
We note that PO′(n+2) acts transitively on the set of “real” or complex projective

Witt frames, and that in the above class there will always be “real” projective Witt
frames. With previous notation, at x ∈ Uα′ ∩ Uβ ′ we must obtain two “equivalent
frames,” which necessarily determine the same flat real conformal spin structure in
the “amplified” tangent space at x: T1(x),

(�̃x
α′ = �̃x

α′ {π(λα′)(x) ˜{xi, yj }λ−1
α′ (x)}, gα′(x)),

and

(�̃x
β ′ = �̃x

β ′ {π(λβ ′)(x) ˜{xi, yj }λ−1
β ′ (x)}, gβ ′(x)),
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λα′(x), λβ ′(x), gα′(x), gβ ′(x) ∈ RO′(n + 2), λα′ , λβ ′ defined respectively over
Uα′ and Uβ ′ and gα′ , gβ ′ over a neighborhood of x included in Uα′ ∩ Uβ ′ with
(gβ ′g

−1
α′ )x ∈ RO(p + 1, q + 1) and η(gβ ′(x)) = η(gα′β ′(x)gα′(x)) with η(gα′β ′)

denoting the transition functions of �̃x
α′ , �̃

x
β ′ , gα′β ′ with values in RO(p+ 1, q + 1),

and η(α(λα′)gα′β ′λ
−1
β ′ ) = η(λα′β ′).

We also set

�̃x
α′(π(λα′(x)) ˜{xi, yj }λ−1

α′ (x) = µ̃x
α′( ˜{xi, yj }).

With the notation of 2.6.2, if χ(�̃x
α′ , gβ ′(x)) = µ(fr+1) then χ(�̃x

β ′ , gβ ′(x)) =
µ(ε1g

−1
α′β ′(x)

−1fr+1), where ε1 = ±1 or ±eN . Since the spinor thus defined at x is

a well determined element in (Cl′n+2fr+1)x, χ(�̃x
α′ , gα′(x)) = χ(�̃x

β ′ , gβ ′(x)), we
deduce

fr+1 = ε2ε1fr+1g
−1
α′β ′(x), (I)

where ε2 = ±1 if r is even and ε2 = 1 if r is odd.
As matter of fact, let us recall first that eN anticommutes with every element of

En+2, and that for g ∈ RO(p + 1, q + 1), eNg = ±geN , and that π(g) = ±g for
g ∈ Pin(p + 1; q + 1). Moreover, µ̃x

α′ and µ̃x
β ′ satisfy the relation

µ̃x
β ′(u) = µ̃x

α′(π(gα′β ′(x))ug
−1
α′β ′(x))

for all u ∈ Cl′n+2fr+1. Consequently,

µ̃x
α′(fr+1) = µ̃x

β ′(ε1g
−1
α′β ′(x)fr+1) = µ̃x

α′(π(gα′β ′)(x)ε1g
−1
α′β ′(x)fr+1g

−1
α′β ′(x))

= µ̃x
α′(ε1π(gα′β ′(x)g

−1
α′β ′(x)fr+1g

−1
α′β ′(x)) = µ̃x

α′(ε1fr+1g
−1
α′β ′(x)).

Therefore, we obtain (I), noting that via the projective space, there appears the
factor ε2 = ±1 corresponding to the ambiguity of sign for homogeneous elements
of the Clifford algebra.85 Using the principal antiautomorphism π of the Clifford
algebra and observing that for all g belonging to RO(p+1, q+1), τ(g) = g−1N(g),
and that

τ(eN) = (−1)
(n+1)(n+2)

2 eN = (−1)r+1eN

(for n = 2r), furthermore

τ(fr+1) = (−1)
r(r+1)

2 fr+1

and

τ(g−1
α′β ′(x)) =

gα′β ′(x)

N(gα′β ′(x))
,

85 By getting to the projective space, the product by (−Id) is permissible and gives a factor
(−1)r+1 for fr+1, whence ε2 = ±1, if r is even and ε2 = 1, if r is odd.



www.manaraa.com

2.6 Real Conformal Spin Structures on Manifolds 111

we obtain

ε2fr+1 = gα′β ′(x)

N(gα′β ′(x))
fr+1τ(ε1).

Since fr+1eN = (−1)r+1(−i)r−pfr+1 (see 2.5.1.2.1), we get, if ε1 = eN ,

ε2fr+1N(gα′β ′(x)) = gα′β ′(x)(−i)r−pfr+1,

or equivalently,
gα′β ′(x)fr+1 = ε2(i)

r−pN(gα′β ′(x))fr+1,

and then in any case,

(gα′β ′(x)fr+1) = ε2εN(gα′β ′(x))fr+1, (II)

where

ε = ±1 if r − p = (0 or 2) (mod 4), and
ε = ±1 or ±i, if r − p = (1 or 3) (mod 4).

Thus, gα′β ′(x) belongs to a subgroup HC of RO+(p + 1, q + 1) that is mapped
by η onto a subgroup of PSO(p + 1, q + 1), the special projective orthogonal group
isomorphic to a subgroup SC called86 “the conformal spinoriality group SC” in a strict
sense, see 2.5.1.3, associated with the r-isotropic vector fr = y1 · · · yr (we observe
that ϕ(HC) = SC ⊂ (Cn(p, q))r , the restricted conformal group,87 where ϕ̃ is the
“projection” from RO(p + 1, q + 1) onto Cn(p, q)). We note that π(gα′β ′(x)) =
gα′β ′(x) since HC ⊂ RO+(p + 1, q + 1). It is known88 that

gα′β ′(x)fr+1 = ε2εN(gα′β ′(x))fr+1

implies
gα′β ′(x)fr+1g

−1
α′β ′(x) = N(gα′β ′(x))ε

2fr+1, (III)

since (N(gα′β ′(x)))2 = 1 and ε2
2 = 1, with

ε2 = (ir−p)2 = (−1)r−p = (eN)2 = (−1)r+q,

for n = p + q = 2r . Therefore, we have, applying µ̃x
β ′ to fr+1, with the following

notations,

µ̃x
β ′(fr+1) = f̃β ′(x) and µ̃x

α′(gα′β ′(x)) = g̃α′β ′(x),

86 P. Anglès, Les structures spinorielles conformes réelles, Thesis, op. cit.
87 P. Anglès, Construction de revêtements du groupe conforme d’un espace vectoriel muni

d’une métrique de type (p, q), op. cit.
88 A. Crumeyrolle, Fibrations spinorielles et twisteurs généralisés, op. cit., p. 158. It is shown

there that for any γ ∈ RO(Q) and for any isotropic vector f , the condition γf = µf, µ ∈
C∗ is equivalent to γf γ−1 = N(γ )µ2f.
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taking account of the fact that g is in RO(p+1, q+1) iff g = v1 · · · vk , v1, . . . , vk ∈
En+2 with Q(vi) = ±1, 1 ≤ i ≤ k (cf. chapter 1),

f̃β ′(x) = ε2g̃α′β ′(x)f̃α′(x)g̃
−1
α′β ′(x). (IV)

Then applying µ̃x
α′ to the previous relation (III), and observing that N(g̃α′β ′(x)) =

N(gα′β ′(x)), we obtain

f̃β ′(x) = ε2(eN)2N(g̃α′β ′(x))f̃α′(x). (V)

We observe that η(gα′β ′(x)) are transition functions for cross sections in the com-
plexified bundle (P ξ1)C of Pξ1. The cocyle η(γα′β ′) that defines Pξ1 and the cocycle
η(gα′β ′) are cohomologous in PO′(n+ 2). Thus, we have obtained the following:

2.6.3.1 Proposition If there exists on V a real conformal spin structure in a strict
sense,

(1) there exists overV an isotropic (r+1)-vector pseudofield modulo a factor ε2, ε2 =
±1 if r is even, ε2 = 1 if r is odd, pseudo–cross section in the bundle Clif ′1(V ).

(2) The group of the principal bundle Pξ1 is reducible in PO′(n+ 2) to a subgroup
isomorphic to SC—the conformal spinoriality group in a strict sense associated
with the r-isotropic vector fr = y1 · · · yr—which is a subgroup of (Cn(p, q))r ,
the restricted conformal group.

(3) The complexified bundle (P ξ1)C admits local cross sections over trivializing
open sets with transition functions η(gα′β ′), gα′β ′(x) ∈ RO+(p+ 1, q + 1) such
that if the mappings

f̃α′ : x ∈ Uα′ ∩ Uβ ′ → f̃α′(x)

define locally the previous (r + 1)-isotropic pseudofield, then

f̃β ′ = (eN)2N(gα′β ′(x))f̃α′(x), modulo ε2,

and f̃β ′ = g̃α′β ′(x)f̃α′(x)g̃
−1
α′β ′(x) modulo ε2, where ε2 = ±1 if r is even and

ε2 = 1 if r is odd.

2.6.4 Sufficient Conditions for the Existence of Real Conformal Spin
Structures in a Strict Sense on Manifolds of Even Dimension

Let us consider the bundle Pξ1.

2.6.4.1 Proposition Let (Uα′ , µ̃α′)α′∈A be a trivializing atlas for the complexified
bundle (P ξ1)C on V , with transition functions η(gα′β ′(x)) ∈ PO(p + 1, q + 1). If
there exists over V an isotropic (r+1)-vector pseudofield, modulo a factor ε2 = ±1,
if r is even and ε2 = 1, if r is odd, determined locally by means of x ∈ Uα′ → f̃α′(x)
such that if x ∈ Uα′ ∩ Uβ ′ �= ∅, we have f̃β ′(x) = g̃α′β ′(x)f̃α′(x)g̃

−1
α′β ′(x), modulo

ε2, µ̃x
α′(gα′β ′(x)) = g̃α′β ′(x), f̃β ′ = (eN)2N(g̃α′β ′(x))f̃α′(x), modulo ε2, then the

manifold V admits a real conformal spin structure in a strict sense.
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All the following algebraic calculations are made modulo ε2, which we omit for
simplicity. We abbreviate f̃β ′(x) = f ′, f̃α′(x) = f , g̃α′β ′(x) = δ. Then{

f ′ = δf δ−1

f ′ = (eN)2N(δ)f δ

}
⇒ δf δ−1 = (eN)2N(δ)f ⇒ δf = (eN)2N(δ)f δ,

whence we deduce since the intersection of any right minimal ideal with any left
minimal ideal is of dimension 1,89 δf = ε̃(x)f , ε̃(x) ∈ C∗. Then (eN)2N(δ)f δδ−1 =
ε̃(x)f δ−1; therefore we obtain

f δ−1 = (eN)2N(δ)f

ε̃(x)
.

Applying the principal antiautomorphism τ to f δ−1 we get

τ(δ−1)τ (f ) = (eN)2N(δ)

ε̃(x)
τ (f ),

or equivalently,

δ

N(δ)
f = (eN)2N(δ)

ε̃(x)
f,

since τ(δ−1) = δ/N(δ) (cf. chapter 1), and since τ(f ) = (−1)r(r+1)/2f .
Thus

δf = ε̃(x)f = (eN)2 N
2(δ)

ε̃(x)
f,

which gives (ε̃(x))2 = (eN)2, since (N(δ))2 = 1, with

(eN)2 = (−1)r−p =
{

1 if r − p = 0 (modulo 2),

−1 if r − p = 1 (modulo 2).

Then we obtain ε̃(x) = ±1 if r−p is even and ε̃(x) = ±i if r−p is odd. So, we write
ε̃(x) = ε̃ and then gα′β ′(x)fr+1 = ε2ε̃fr+1, where ε̃ = ±1 or±i and gα′β ′(x) ∈ HC

(with previous notation – cf. 2.5.1.3.1).
If at x ∈ Uα′ ∩Uβ ′ , µ̃x

α′(y
′
1y
′
2 · · · y′ry′0) = f̃α′(x), we can complete the set of vec-

tors {y′1, y′2, . . . , y′r , y′0} with {x′1, x′2, . . . , x′r , x′0}, so that µ̃x
α′

˜{x′i , y′j } and µ̃x
β ′

˜{x′i , y′j }
constitute Witt projective frames in the complexified bundle (P ξ1)C, with transition
functions η(gα′β ′). (This is a consequence of the extension of the Witt theorem to the
projective orthogonal classical group and to projective orthogonal frames.) Therefore
we shall omit the accents and suppose that

µ̃x
α′(y1y2 · · · yry0) = f̃α′(x).

89 C. Chevalley, The Algebraic Theory of Spinors, op. cit., p. 71.
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Let us consider over Uα′ the local cross section in Clif ′1(V ):

x → (x(i)fr+1)
x
α′ = µ̃x

α′(x(i)fr+1).

Since for any α′ ∈ A, if x ∈ Uα′ ∩ Uβ ′ , g̃α′β ′(x)f̃α′(x) = ε2ε̃f̃α′(x), where ε̃ = ±1
if r − p is even and ε̃ = ±i if r − p is odd, using the principal antiautomorphism τ

of the Clifford algebra, we obtain, modulo ε2,

τ(f̃α′(x)τ (g̃α′β ′(x))) = ε̃β(f̃α′(x)),

or equivalently, f̃α′(x)g
−1
α′β ′(x)N(g̃α′β ′(x)) = ε̃f̃α′(x) modulo ε2—since τ(g) =

g−1N(g)—and then

f̃β ′(x)g
−1
α′β ′(x) = (eN)2N(g̃α′β ′(x))f̃α′(x)g

−1
α′β ′(x)

= (eN)2 N(g̃α′β ′(x))

N(gα′β ′(x))
ε̃f̃α′(x) (modulo ε2),

and therefore,
f̃β ′(x)g

−1
α′β ′(x) = (eN)2ε̃f̃α′(x) (modulo ε2),

where (eN)2ε̃ = (−1)r−pε̃. We shall write

f̃β ′(x)ḡ
−1
α′β ′(x) = ε′f̃α′(x) (modulo ε2),

where ε′ = ε̃ if r − p is even and ε′ = −ε̃ if r − p is odd.
Then

(x(i)fr+1)
x
β ′ = ε′g̃α′β ′(x)(x(i)fr+1)

x
α′ (modulo ε2),

where ε′ is determined in any case [(x(i)fr+1)
x
β ′ is known, (x(i)fr+1)

x
α′ is known, and

one can find an element of the kernel that gives such a relation].
We can associate differentiably with each x in V a 2r+1-dimensional subspace,

in T1(x) the amplified tangent space at x, such that µ̃x
α′(x(i)fr+1) = (x(i)fr+1)

x
α′ and

the transition functions of µ̃x
α′ are η(gα′β ′). Therefore we have constructed a spinorial

bundle over V , with typical fiber C2r+1.

With the frame {x(i)fr+1}xα′ , we associate the frame µ̃x
α′

˜{xi, xj }. Then with

{gα′β ′(x)x(i)fr+1}xα′ is associated µ̃x
β ′

˜{xi, yj }. We can determine λα′(x) ∈ RO′(n+2)

such that with the frame {λα′x(i)fr+1} is associated the frame µ̃x
α′ {π(λα′) ˜{xi, yj }λ−1

α′ },
where µ̃x

α′ {π(λα′) ˜{xi, yj }λ−1
α′ } is a “real” projective Witt frame in (P ξ1)C. We have

obtained a real conformal spin structure in a strict sense, since the {x(i)fr+1}xβ ′ are
local cross sections of a fiber over principal bundle Pξ1.

2.6.4.2 Remark We can observe that the gα′β ′(x) are defined modulo ε1α′β ′(x) = ±1
or±eN . According to previous results (see 2.5.1.1) any real conformal structure will
be obtained from the one associated with the choice of ε1α′β ′ such that ε1α′β ′ determine
a cocyle with values in Z2 × Z2 if (eN)2 = 1, respectively in Z4 if (eN)2 = −1.

Therefore the set of conformal spin structures is of the same cardinality as
H 1(V ,Z2 × Z2) if r − p is even, respectively as H 1(V ,Z4) if r − p is odd.
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2.6.4.3 Proposition Let us assume that the structure group of the bundle Pξ1 reduces
in PO′(n + 2) to a subgroup isomorphic to a conformal spinoriality group SC in a
strict sense; then the manifold V admits a real conformal spin structure in a strict
sense.

If we have transition functions η(gα′β ′), gα′β ′(x) ∈ HC , according to gα′β ′(x)·
fr+1 = εfr+1 with ε = ±1 if r − p ≡ 0 or 2 (modulo 4) and ε = ±1 or ±i if
r − p ≡ 1 or 3 (modulo 4), on account of previous remarks, we get

g̃α′β ′(x)f̃α′(x) = ε2εf̃α′(x)

(where ε2 = ±1 if r is even and ε2 = 1 if r is odd).
Using τ the principal antiautomorphism of the Clifford algebra, since τ(g) =

g−1N(g) for all g ∈ RO(p + 1, q + 1), we get successively

f̃α′(x)g̃
−1
α′β ′(x)N(g̃α′β ′(x)) = εf̃α′(x) (modulo ε2)

and

f̃α′(x)g̃
−1
α′β ′(x) =

εf̃α′(x)

N(g̃α′β ′(x))
(modulo ε2).

Since

f̃β ′(x) = g̃α′β ′(x)f̃α′(x)g̃
−1
α′β ′(x) (modulo ε2),

we obtain

f̃β ′(x) = g̃α′β ′(x)
εf̃α′(x)

N(g̃α′β ′(x))
= ε

N(g̃α′β ′(x))
g̃α′β ′(x)f̃α′(x)

= ε2

N(g̃α′β ′(x))
f̃α′(x) (modulo ε2).

And then

f̃β ′(x)g̃
−1
α′β ′(x) =

ε2

N(g̃α′β ′(x))
f̃α′(x)g̃

−1
α′β ′(x) =

ε3

(N(g̃α′β ′(x)))2
f̃α′(x)

= ε3f̃α′(x) (modulo ε2),

(since (N(g̃α′β ′(x)))2 = 1), where ε3 = ε if r−p = 0 or 2 (modulo 4), and ε3 = ±ε

if r − p = 1 or 3 (modulo 4).
Starting with this result we can take up again the proof of Proposition 2.6.4.

Remark We observe that the auxiliary bundle �(V ) previously introduced does not
occur in such a statement, which is therefore intrinsic, since the conformal spinoriality
group is defined only by elements of En(p, q) and of its complexification E′n.
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2.6.5 Manifolds of Even Dimension with a Real Conformal Spin Structure in a
Broad Sense

Let (Cn(p, q))r be the restricted conformal group (see 2.5.1.1). Let fr+1 = y1y2 · · ·
yry0 be an isotropic (r + 1)-vector. The enlarged conformal group of spinoriality
(SC)e associated with the isotropic (r + 1)-vector fr+1 is the subgroup ϕ((HC)e) of
(Cn(p, q))r , where ((HC)e is the subgroup of the elements γ of RO+(p + 1, q + 1)
such that γfr+1 = µfr+1, µ ∈ C∗.

ln 2.5.1 we proved that (SC)e is the “stabilizer” for the action of (Cn(p, q))r
of the m.t.i.s. associated with the isotropic r-vector y1y2 · · · yr . (We recall that the
abbreviation m.t.i.s. stands for maximal totally isotropic subspace.)

2.6.5.1 Definition V admits a real conformal spin structure in a broad sense if and
only if the structural group PO(p + 1, q + 1) of the principal bundle Pξ1—the λ̃-
extension of the principal bundle ξ of orthonormal frames of V —is reducible to
a subgroup of PO′(n + 2) isomorphic to (SC)e, the enlarged conformal group of
spinoriality associated with the isotropic r-vector y1y2 · · · yr .

According to Proposition 2.6.4.3 such a definition is a generalization of definitions
given in 2.6.2.

2.6.5.2 Proposition V admits a real conformal spin structure in a broad sense if and
only if there exists over V an (r+1)-m.t.i.s. field, that is, a subbundle of T C

1 (V ) such
that with the same notation as in Proposition 2.6.4.1 we have

f̃β ′(x) = g̃α′β ′(x)f̃α′(x)g̃
−1
α′β ′(x),

modulo ε2 = ±1 if r is even, ε2 = 1 if r is odd, gα′β ′(x) ∈ RO(p + 1, q + 1),
f̃β ′(x) = µα′β ′(x)f̃α′(x), µα′β ′(x) ∈ C∗.

As in the proof of Proposition 2.6.4.1 we obtain gα′β ′(x)fr+1 = λα′β ′(x)fr+1,
λα′β ′(x) ∈ C∗. Then, taking up again the method given in the proof of Proposition
2.6.4.1 above, we get the result.

Conversely, if it is possible to reduce the structure group PO(p + 1, q + 1) to
a subgroup isomorphic to (SC)e in PO′(n + 2), the same method as in the proof of
Proposition 2.6.4.2 leads to the existence of an (r + 1)-m.t.i.s. field, defined locally
by means of the maps f̃α′ .

2.6.6 Manifolds of Odd Dimension Admitting a Conformal Spin Special
Structure

Let us assume that V is an orientable manifold of dimension 2r + 1. We extend
the definitions given above, replacing respectively RO(p + 1, q + 1), Cn(p, q), and
PO(p + 1, q + 1) by RO+(p + 1, q + 1), (Cn(p, q))r , and PSO(p + 1, q + 1).

Cl+n+2 is central, simple. Cl+n+2(Q
′) (n = 2r + 1,Q′ the complexification of

Q) is isomorphic to Cln+2(Q
′) (n = 2r). We introduce the associated Witt basis
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{xi, yj , zn} and associated projective Witt frame and the representation of Cl
′+
n+2 in

the space xi0xi1 · · · xihfr+1, fr+1 = y1y2 · · · yry0. The bundles S1 and σ1 are defined
in the same way. ln the study of necessary and sufficient existence conditions, only a
few details are modified: one arrives at identical statements, the gα′β ′(x) belonging
to RO+(p+ 1, q + 1). (Let us now recall that eN belongs to the center of Cln+2 and
that eNfr+1 = fr+1eN = (−i)r−pfr+1.)

2.7 Links between Spin Structures and Conformal Spin
Structures

Let us assume that n = p+q = 2r . We study here only the case of real conformal spin
structures in a strict sense. G stands for the identity component of the Lie group G.

2.7.1 First Links

ln the same way as in 2.6.1, we introduce the “Greub extension” ξj of ξ , the
j -extension of ξ , and ξi , the i-extension of ξ , and then Pξ1 = ξλ̃, the λ̃-extension of ξ .

Clif 2 is the auxiliary bundle, the typical fiber of which is Cl2(1, 1). Clif (V ,Q)

is the Clifford bundle of (V ,Q). According to the classical isomorphism (see,
for example, Chapter 1), which we denote by λ1 from Cln(p, q) ⊗ Cl2(1, 1)
onto Cln+2(p + 1, q + 1), we still abusively denote by λ1 the isomorphism from
Clif (V )⊗ Clif 2 onto Clif 1(V ) and from Clif ′1(V )⊗ Clif ′2 onto Clif ′1(V ).

Since �(V ) is a trivial bundle, let us recall that then there exists a RO(1, 1)-spin
structure on �(V ). ψ denotes the “twisted projection” from RO(Q) onto O(Q). We
shall use the following two statements.90

There exists an RO(p, q)-spin structure in a strict sense on V iff:

(i) There exists on V , modulo a factor ±1, an isotropic r-vector field, pseudo–
cross section in the bundle Clif (V ); the complexified pseudo-riemannian bundle ξC
admits local cross sections, over a trivialization open set (Uα′)α′∈A with transition
functions ψ(gα′β ′), gα′β ′ ∈ RO+(p, q) such that if x ∈ Uα′

⋂
Uβ ′ �= ∅ → fα′(x)

locally define the previous r-vector field, then fβ ′(x) = N(ĝα′β ′(x))fα′(x); fβ ′(x) =
gα′β ′(x)fα′(x)g

−1
α′β ′(x), where

fα′(x) = µx
α′(fr), ĝα′β ′(x) = µx

α′(gα′β ′(x)),

fr = y1 · · · yr ; µx
α′ is an isomorphism well-defined91 from Cl′n onto Cl′n(x).

(ii) The structure group of the bundle ξ is reducible in O ′(n) to a real spinoriality
group σ(p, q) in a strict sense.

90 A. Crumeyrolle, Fibrations Spinorielles et Twisteurs Généralisés, op. cit.
91 Idem.
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2.7.2 Other Links

Let us denote by a Cn(p, q) spin structure, respectively by an RO(p, q) spin struc-
ture, a real conformal spin structure in a strict sense, respectively a real RO(p, q)

spin structure in a strict sense, on V .
ln the same way, we agree to denote by an RO(p + 1, q + 1) spin structure a

real RO(p+ 1, q + 1) spin structure over the bundle ξj of orthonormal frames of the
amplified tangent bundle T1(V ). We want to prove the following statement:

2.7.2.1 Proposition (1) If there exists an RO(p, q) spin structure on V , then there
exists an RO(p + 1, q + 1) spin structure on ξj .

(2) If there exists an RO(p + 1, q + 1) spin structure on ξj , then there exists a
Cn(p, q) spin structure on V .

(3) If there exists an Cn(p, q) spin structure on V , if r and p are odd, then there
exists an RO(p + 1, q + 1) spin structure on ξj .

Proof. (1) Let us assume that there exists an RO(p, q) spin structure on V . Let
fr = y1 · · · yr be an isotropic r-vector. By assumption, there exists a pseudo–cross
section in the bundle Clif ′(V ); so we can naturally form a pseudo–cross section in
the bundle Clif ′(V )⊗ Clif ′2, determined locally by

x → µx
α′(fr)⊗ µ2x

α′ (y0) = fα′(x)⊗ f 2
α′(x) = f̃α′(x),

where x → f 2
α′(x) = µ2

α′(y0) determines locally a cross section in the bundle Clif ′2,
with obvious notation. Using a λ1 isomorphism from Clif ′(V )⊗Clif ′2 onto Clif ′1(V ),
we obtain a pseudo–cross section in the bundle Clif ′1(V ) determined locally by means
of x ∈ Uα′ → f̃ ′

α′(x) = λ1(f̃
′
α′(x)) that satisfies the required conditions for the exis-

tence of an RO(p, q) spin structure on ξj .92

Moreover, we observe that the reduction of O(p, q) to σ(p, q) in O ′(n) and that
ofO(1, 1) to σ(1, 1) inO ′(2) imply the reduction ofO(p+1, q+1) to σ(p+1, q+1)
associated with y1, . . . , yry0 in O ′(n+ 2).

(2) Let us assume that there exists an RO(p + 1, q + 1) spin structure on V . We
observe that η = h̃ ◦ψ is a projection from RO(p+ 1, q+ 1) onto PO(p+ 1, q+ 1)
with kernel A = {1,−1, eN ,−eN }.

There exists a principal bundle S1 twofold covering of ξj and a morphism of
principal bundles ψ ′ : S1 → ξj . So we can set η̃ = h ◦ ψ ′, which is a morphism
of principal bundles from S1 onto Pξ1, and S1 is a fourfold covering of Pξ1. Thus,
we have obtained the existence of a Cn(p, q) spin structure on V . We can also ob-
serve93 that the reduction of O(p+1, q+1) to σ(p+1, q+1) in O ′(n+2) implies
the reduction in PO′(n + 2) of PO(p + 1, q + 1) to h̃(σ (p + 1, q + 1)), which is
isomorphic by h1 to SC(p, q), the real conformal spinoriality group in a strict sense
associated with fr = y1, . . . , yr .

92 P. Anglès, Les structures spinorielles conformes réelles, Thesis, op. cit.
93 Idem.
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(3) Finally, let us assume that there exists a Cn(p, q) spin structure on V and that r
and p are odd. If r is odd, then ε2 = 1. According to 2.6.3 and 2.6.4.1 above, there ex-
ists an isotropic (r+1)-pseudo–vector field (so defined modulo ε2 = 1), locally deter-
mined by means of x ∈ Uα′ → f̃α′(x), such that for any x ∈ Uα′

⋂
Uβ ′ �= ∅we have

f̃α′(x) = g̃α′β ′(x)f̃α′(x)ĝ
−1
α′β ′(x)

and
f̃β ′(x) = (eN)2N(g̃α′β ′(x))f̃α′(x) modulo ε2 = 1.

Thus, since r is odd, since (eN)2 = (−1)r−p if p is odd, then (eN)2 = 1. So
we get the existence of an isotropic pseudo–vector field that satisfies the required
sufficient condition94 for the existence of an RO(p + 1, q + 1) spin structure on ξj .

2.7.2.2 Remark Let us recall (2.5.1.6) that

SC(p, q)

σ (p, q)

is homeomorphic to R2n+1 and so is a solid space.95 Following corollary 12–6 in
Steenrod,96 any bundle with structure group SC(p, q) is reducible in SC(p, q) to

a bundle with structure group σ(p, q) . If there exists a Cn(p, q) spin structure on

V , according to 2.6.4.1 Cn(p, q) is reducible to SC(p, q) in C′n.

Moreover, the previous reduction of SC(p, q) to σ(p, q) is made in SC(p, q)

and not in O ′(n), since SC(p, q) is obviously “extended out” of O ′(n), so that it is
not permissible to use the sufficient condition given in 2.7.1 for the existence of an
RO(p, q) spin structure on V .

2.8 Connections: A Review of General Results97

2.8.1 General Definitions

Let ξ = (P, π,M,G) be a differentiable principal fiber bundle. (For the sake of
convenience we always assume that differentiability means that of class C∞.) The
total space P and the base M are differential manifolds and the projection π is a

94 A. Crumeyrolle, Fibrations Spinorielles et Twisteurs Généralisés, op. cit.
95 N. E. Steenrod, The Topology of Fiber Bundles, op. cit., p. 54. “We recall that a space Y

will be called solid if for any normal space X, closed subset A of X and map f : A→ Y

there exists a map f ′ : X→ Y such that f ′ |A= f.” (Cf. below footnote 126).
96 Idem, p. 56.
97 Cf., for example, S. Kobayashi and K. Nomizu, Foundations of Differential Geometry,

vol. 1, Interscience Publishers, New York, 1963; or Dale Husemoller, Fiber Bundles, 3rd
edition, Springer-Verlag, 1994. Note that some authors use the term fiber for fiber.
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differentiable mapping. The structure group G is a Lie group and acts on P on the
right as a transformation group. On each fiber, G acts transitively without fixed points.
For elements a, x in G,P , we write Ra(x) = xa.

Let p be an element in P such that π(p) = b and let Tp(P ) be the tangent space
at p and let Vp = ker(dπ)p, where (dπ)p is the tangent mapping of π in p. Vp is the
subspace of Tp(P ) tangent the fiber π−1(b) at p. Elements of Vp are called vertical
elements.

2.8.1.1 Definition Aconnection � in P is an assignment for each x in P of a subspace
Qx of Tx(P ) such that the following conditions are satisfied:

(i) πx(P ) = Vx(P )⊕Qx (direct sum);

(ii) for every g in G and every x in P , QRg(x) = (dRg)x(Qx) (i.e., the “distribu-
tion” u→ Qu is equivariant under G);

(iii) the mapping x → Qx is differentiable (Qx is called the horizontal subspace
of Tx(P )).98

Let � be a connection in P . We define a 1-form w on P with values in the Lie
algebra G of G as follows.

It is known that every A ∈ g induces a vector field A∗ on P , called the funda-
mental vector field corresponding to A, and that A→ (A∗)p is a linear isomorphism
of G onto Vp, for each p ∈ P .99

2.8.1.2 Definition For each X ∈ Tp(P ) we define w(X) to be the unique A ∈ G
such that (A∗)p is equal to the vertical component of X. Thus, w(X) = 0 if and
only if X is horizontal. The form w is called the connection form of the given
connection �.

2.8.1.3 Proposition (Definitions100) The connection form w of a connection satis-
fies the following conditions:

(i)′ w(A∗) = A, for every A ∈ G.

98 A vector X ∈ Tx(P ) is called vertical, respectively horizontal, if it lies in Vx , resp. Qx .
According to (i), every vector X ∈ Tx(P ) can be uniquely written as X = Y + Z, where
Y ∈ Vx and Z ∈ Qx . Y , resp. Z, is called the vertical, resp. the horizontal, component of
X and denoted by V (X), resp. h(X). (iii) means that if X is a differentiable vector field on
P , so are V (X) and h(X).

99 For each A in G, the 1-parameter subgroup exp t A (−∞ < t < +∞) defines a one-
parameter group Rexp tA of transformations on P and it determines A∗, namely,

(A∗f )p = lim
t→0

f (p. exp tA)− f (p)

t
= d

dt
f (p. exp tA)t=0

for every p in P .
100 Cf. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. 1, op. cit.,

pp. 63–66.
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(ii)′ (Rg)
∗w = ad(g−1).w, i.e., w((dRg)X) = ad(g−1).w(X) for every g ∈ G

and every vector field X on P , where ad denotes the adjoint representation of G in G.

Conversely, given a g-valued 1-form w on P satisfying conditions (i)′ and (ii)′′,
there is a unique connection � in P whose connection form is w.

The projection π : P → B induces a linear mapping π̃ = dπ : Tp(P )→ Tb(B)

for each p ∈ P , where b = π(p). When a connection is given, π̃ maps the horizontal
subspace Qp isomorphically onto Tb(M).

The lift (or horizontal lift) of a vector field X on B is a unique vector field X̄ on
P that is horizontal and that projects onto X. The lift X̄ is invariant by Rg , for every
g ∈ G. Conversely, every horizontal field X̄ on P invariant by G is the lift of a vector
field X on M .

Let (Uα)α∈A be an open covering of M with a family of isomorphisms ϕα :
π−1(Uα) → Uα × G and the corresponding family of transition functions gαβ :
Uα ∩ Uβ → G. For each α ∈ A, let σα : Uα → P be the cross section defined by
σα = ϕ−1

α (x, e), x ∈ Uα , where e is the identity of G.
The transition functions gαβ satisfy the consistency relations gαβ(x)gβγ (x) =

gαγ (x), for x ∈ Uα

⋂
Uβ

⋂
Uγ and σβ(x) = σα(x)gαβ(x) for x in Uα

⋂
Uβ . We

can define the pullback wα = σ ∗α (w) by σα of the 1-form w restricted to π−1(Uα),
which is a g-valued 1-form defined on Uα . We have the following classical statement.

2.8.1.4 Proposition There exists a connection � with a Lie(G)-valued 1-form w on
the principal fiber bundle if and only if for any α, β in A,

wβ = ad(g−1
αβ )wα + g−1

αβ dgαβ.

2.8.2 Parallelism

Given a connection � in a principal fiber bundle ξ = (P, π,M,G), the following
results concern the concept of parallel displacement of fibers along any curve γ in
the base manifold M .

2.8.2.1 Definition Let γ : t → γ (t), a ≤ t ≤ b, be a piecewise differentiable curve
of class C1 in M; a lift (or horizontal lift) of γ is a horizontal curve ϕ : t → ϕ(t),
a ≤ t ≤ b, such that π ◦ ϕ = γ . Here, a horizontal curve in P means a piecewise
differentiable curve of class C1 whose tangent vectors are all horizontal.

Note: In what follows we will sometimes use the terms curve or path to denote a
differentiable curve of class C1.

2.8.2.2 Proposition (Definition) Let γ : t → γ (t), 0 ≤ t ≤ 1, be a curve of class
C1 in M . For an arbitrary point p0 of P with π(p0) = γ (0) = b0, there exists a
unique lift ϕ : t → ϕ(t) of γ that starts from p0.
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We can now define the parallel displacement of fibers as follows: Letγ : t → γ (t),
0 ≤ t ≤ 1, be a differentiable curve of class C1 on M . Let p0 be an arbitrary point
of P with π(p0) = γ (0) = b0. The unique lift ϕ : t → ϕ(t) of γ through p0 has the
endpoint p1 such that π(p1) = b1 = γ (1).

By varying p0 in the fiber π−1(b0), we obtain a mapping of the fiber π−1(b0)

onto the fiber π−1(b1), which maps p0 into p1. We denote this mapping by τγ and call
it the parallel displacement along the curve γ . The fact that τγ : Pb0 = π−1(b0)→
Pb1 = π−1(b1) is an isomorphism comes from the following proposition.

2.8.2.3 Proposition The parallel displacement along any curve τγ commutes with
the action of G on P : τγ ◦ Ra = Ra ◦ τγ , for every a ∈ G.

2.8.3 Curvature Form and Structure Equation

(Cf. exercises below)

2.8.3.1 Definition We call the curvature form � of the connection the 2-form on P

with values in G defined by �(X, Y ) = dw(h(X), h(Y )), where h(X) and h(Y ) are
respectively the horizontal components of the vector fields X, respectively Y , defined
on P .101

2.8.3.2 Theorem Let w be a connection form and � its a curvature form. Then

�(X, Y ) = dw(X, Y )+ 1

2
[w(X),w(Y )]

for X, Y ∈ Tp(P ), p ∈ P (structure equation of Elie Cartan), which is sometimes
written, for the sake of simplicity,

� = dw + 1

2
[w,w].

2.8.3.3 Theorem (Bianchi’s identity) D� = 0, where D is the classical exterior
covariant differentiation.

2.8.3.4 Definition A connection � is called flat if its curvature form vanishes
identically.

2.8.3.5 Theorem � is equal to zero if and only if the field of horizontal subspace
p → Qp is involutive, i.e., if X and Y are two horizontal vector fields on P , then
[X, Y ] is a horizontal vector field.

101 Some authors, such as R. Deheuvels, Tenseurs et Spineurs, P.U.F., Paris 1993, chapitre IX-6,
define � as follows: �(X, Y ) = dw(X, Y ) + [w(X),w(Y )], for every X, Y ∈ Tp(P ).
Then � satisfies the following structure equation: � = dw + [w,w] and we have
d�(h(X), h(Y ), h(Z)) = 0 for any X, Y,Z ∈ Tp(P ).
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2.8.4 Extensions and Restrictions of Connections

2.8.4.1 Definitions

Let P = (P, π,M,G) be a principal fiber bundle and let us assume that P has a
reduced fiber bundle P ′. We want to study the relation between the connections of P
and of P ′. Let H be a Lie subgroup of G and let H be its Lie algebra. We will denote
by j both the injection of H into G and the injection of H into G. If there exist a differ-
entiable principal fiber bundle P ′ = (P ′, π ′,M,H) and a differentiable embedding
f of P ′ into P such that π ◦f = π ′ and f ◦Ra = Rj(a) ◦f , for every a ∈ H , are sat-
isfied, then (P ′, f ) is said to be a reduced fiber bundle of P . Then we have df (A∗x) =
j (A)∗f (x), for every A ∈ H and x ∈ P ′ (with the previous definition of A∗ (cf. 2.8.1)).

Given a connection in P ′, we denote the horizontal space at the point x of P ′ by
Q′x .At the pointf (x) ofP , we take df (Q′x) as the horizontal space and transform it by
right translations of G. Thus we obtain a connection on P . Let us denote respectively
by w and w′ the corresponding connection forms. Then we have j ◦w′ = f ∗(w) on
P (here, for a mapping l, l∗ denotes the “pull back” of l).

Conversely, let us assume that a connection is given in P with the connection
form w. If the induced form f ∗(w) on P ′ has values always in j (H), we can write
f ∗(w) = j ◦ w′, and w′ defines a connection in P ′. Thus, the connection in P is
called an extension of the connection in P ′, and the connection in P ′ is called the
restriction of the connection in P .

2.8.4.2 Connections Associated with a Principal Connection102

2.8.4.2.1 Definitions

Let ξ = (P, π, B,G) be a principal bundle. Let Rg be the right action on P of g ∈ G.
We write Rg(p) = p · g, p ∈ P . Let F be a C∞-differentiable manifold. We assume
that G acts differentiably on the left on F . We denote by Lg the left action on F of
g ∈ G and we write Lg(f ) = g · f, f ∈ F . We define a right action of G on P × F

by assuming that

(p, f ) · g = (p · g, g−1 · f ), p ∈ P, f ∈ F, g ∈ G.

The quotient space E = P ×G F inherits a fibered structure with base B, fiber
F . Such a bundle is said to be associated with P . Let πE be the canonical projection
from E onto B. Any point p in P defines a diffeomorphism, denoted by p̃, of F on
π−1
E (b), where b = π(p): we associate with any f ∈ F the class (p, f ), which we

agree to denote again by p · f , constituted by the elements (p · g, g−1 · f ) of P ×F .

2.8.4.2.2 Example Let V be a C∞ differentiable manifold of dimension n. Let R(V )

be the principal bundle of frames of V . The fiber bundle with typical fiber Rn

102 Cf., for example, Phan Mau Quan, Introduction à la Géométrie des Varietés Différentiables,
Dunod, Paris, 1969.
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associated with R(V ) can be identified with the tangent fiber bundle of the manifold
T (V ). For any p ∈ R(V ), p̃ is then the diffeomorphism from Rn onto Tπ(p)(V )

defined by the frame P .

2.8.4.2.3 Theorem Any principal connection on ξ defines a unique differential sys-
tem K : z→ Kz on E such that for any point z in E, Kz is a complementary subspace
in Tz(E) of Wz, the subspace of vertical vectors in z.

Let z0 ∈ E and p0 ∈ π−1(πE(z0)). There exists a unique f0 ∈ F such that
p̃0(f0) = z0. We put Kz0 = (dφf0)p0(Hp0) where φf0 is the mapping from P

into E defined by φf0(p) = p̃(f0) = p · f0. Kz0 is independent of the choice of
p0 ∈ π−1(πE(z0)), according to the invariance of Hp0 for the action of G on P and
satisfies the relation Tz0(E) = Wz0 ⊕Kz0 .

2.8.4.2.4 Definition K is called the connection associated with the principal connec-
tion H .

A continuously differentiable path ψ : t → zt = ψ(t) in E is called horizon-
tal if żt ∈ Kzt , for any t . (Cf. footnote 110.) As previously, one defines the notion
of horizontal lift of a path γ : t → bt = γ (t) of B. We can give the following
result:

2.8.4.2.5 Theorem If γ : t → bt = γt is a continuously differentiable path in B, for
any z0 in the fiber π−1

E (b0) over b0, there exists a unique horizontal lift of γ , with
origin z0.

Let p0 be in P and f0 in F such that p̃0(f0) = z0. We define the lift by considering
the path t → zt of E, where zt = p̃t (f0), the path t → pt of P being the unique
horizontal lift of γ in P , with origin p0. Let γ be a continuously differentiable path
in B with origin b0 and endpoint b1. Let Eb0 , respectively Eb1 , be the fibers over b0,
respectively b1. We can associate with any point z0 in Eb0 a unique horizontal lift
of γ with origin z0. Let z1 be its endpoint in Eb1 . We define, therefore, a mapping
τE
γ : Eb0 → Eb1 .

2.8.4.2.6 Definition τE
γ is a diffeomorphism from Eb0 onto Eb1 called the parallel

displacement in E corresponding to the path γ .

2.8.4.2.7 Remark Let (zt ) be a horizontal lift of the continuously differentiable path
γ . We have zt = p̃t (f0), where (pt ) is a horizontal lift of (bt ) in P and f0 the unique
element in F such that z0 = p̃0(f0), according to Theorem 2.8.4.2.5.

Therefore, we deduce that zt = p̃t ◦ p̃−1
0 (z0), and then τE

γ = p̃t ◦ p̃−1
0 .
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2.8.5 Cartan Connections103

2.8.5.1 Classical Definitions

Let M be a differentiable manifold of dimension n. Consider a homogeneous space
F = G/H of the same dimensionn, whereG is a Lie group andH is a closed subgroup
of G. Let B = (B,M,F,G) be a fiber bundle over M with fiber F and structure
group G and let P = (P,M,G) be the principal fiber bundle associated with B.

Suppose that there exists a cross section f over M to B. Then the structure group
of P can be reduced to H . We denote this reduced fiber bundle by P ′ = (P ′,M,H)

and the injection of P ′ into P by j .

2.8.5.2 Definition Let us assume that a connection � is given in P . Its connection
form w is a differential form of degree 1 on P , with values in Lie(G), and the induced
form w′ = j∗(w) is also a differential form of degree 1 on P ′ with values in Lie(G).
We call the connection in P a Cartan connection on M with the fiber F = G/H if at
each point p′ of P ′, w′

p′ gives an isomorphism of TP ′(P ′) onto g as linear spaces.

We have the following equivalent definition:

2.8.5.3 Definition Let w′ be a 1-form on P ′ with values in g satisfying the following
three conditions:

(i) w′(A∗) = A, for every A ∈ Lie(H), Lie algebra of H ;

(ii) R∗a(w′) = ad(a−1)w′, for every a ∈ H ;

(iii) w′
p′ gives an isomorphism of Tp′(P ′) onto Lie(G), at each point p′ ∈ P ′.

For such w′, we can take a connection form w in P such that w′ = j∗(w). w defines
a Cartan connection.

2.8.6 Soudures (Solderings)104

We use the same definitions as in 2.8.5.1.
A cross section f over M to B gives a vector bundle T ′(B) on M as follows: for

every point p of M , the projection B → M defines a mapping Tf (p)(B)→ Tp(M).
The kernel of this mapping is denoted by Vf (p)(B). Then T ′(B) = ∪pVf (p)(B)

forms a vector bundle over M and the dimension of its fibers is equal to n = dim F .
A Cartan connection in P gives a bundle isomorphism between T ′(B) and the

tangent vector bundle T (M) as follows. Let p′ be an arbitrary point in P ′ and let

103 J. Dieudonné, Elements d’Analyse, Tome 4, Gauthier-Villars, 1971, p. 241, or S. Kobayashi,
Transformation Groups in Differential Geometry, Springer-Verlag, New York, 1978, pp.
127–130.

104 C. Ehresmann, Les connections infinitésimales dans un espace fibré différentiable, Colloque
de Topologie, Brussels, 1950, pp. 29–55.
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us put q = π(p′). The projection π : P ′ → M induces an isomorphism of Tp′(P ′)/
Vp′(P ′)ontoTq(M). On the other hand,w′

p′ gives an isomorphism ofTp′(P ′)/Vp′(P ′)
onto Lie(G)/Lie(H). As a point in P ′, p′ gives a mapping of F = G/H onto
the fiber in B over q and sends the point {H } in F to f (q). By this mapping
T0(F ) = Lie(G)/Lie(H) is mapped isomorphically onto Vf (q)(B). Combining these
isomorphisms, we obtain an isomorphism between Tq(M) and Vf (q)(B) that is inde-
pendent of the choice of p′ ∈ P ′ over q.

The set of such isomorphisms for q ∈ M defines a bundle isomorphism of T (M)

and T ′(B). If a fiber bundle B over M has an isomorphism such as above through a
cross section, then B is said to have a soudure.

Conversely, if a fiber bundle B over M has a soudure with respect to a cross
section f , then, there exists a Cartan connection in P such that the soudure given by
the connection is the original one.105

2.8.7 Ehresmann Connections

We want to present some specific results of Ehresmann.106

Let (M, π,N) be a differentiable locally trivial bundle, with dim N = n, and
dim M = m + n. Let V (M) be the vertical subbundle of T (M) and π∗(T (N)) the
induced bundle of T (N) under π .107

The maps (dπ)z : Tz(M) → Tπ(z)(N) lead to the morphism of vector bundles
d̃π : T (M)→ π∗(T (N)), corresponding to the following exact sequence of vector
bundles:

0 −→ V (M) −→ T (M)
d̃π−→ π∗(T (N)) −→ 0.

2.8.7.1 Definition A morphism � of vector bundles from π∗(T (N)) into T (M) is
called a horizontal morphism of the bundle (M, π,N) if it satisfies the following
condition:

d̃π ◦ � = idπ∗(T (N)).

105 C. Ehresmann, Les connections infinitesimales dans un espace fibré différentiable, op. cit.
106 R. Hermann, Gauge Fields and Cartan–Ehresmann Connections, Part A, Math. Sci. Press,

Brookline, 1975; and L. Mangiarotti and M. Modugno, Graded Lie algebras and connections
on a fibered space, J. Maths. Pures et Appl., 63, 1984, pp. 111–120.

107 Some classical definitions:
(a) Let ξ = (E, p, B) and ξ ′ = (E′, p′, B ′) two vector bundles, a morphism of vector

bundles (u, f ) : ξ → ξ ′ is a morphism of the underlying bundles, that is, u : E → E′,
f : B → B ′ are maps such that p′u = fp, and the restriction u : p−1(b)→ p

′−1(f (b))

is linear for each b ∈ B.
(b) Let u : ξ → η be a morphism of vector bundles over B. We define Imu to be the

subbundle of η with total space the subspace of E(η) consisting of all u(x), x ∈ E(ξ).
(c) Let ξ = (E, p, B) be a bundle and let f : B1 → B be a map. The induced bundle of ξ

under f , denoted by f ∗(ξ), has as base space B1, as total space E1, which is the subspace of
all (b1, x) ∈ B1 ×E with f (b1) = p(x), and as projection p1, the map (b1, x)→ b1 (cf.,
for example, Dale Husemoller, Fiber Bundles, 3rd edition, Springer-Verlag, 1994, chapter 2,
pp. 11–37).
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Let � be a horizontal morphism. Then we have Tz(M) = Im �z ⊕ Vz(M)106, for
each z in M . Then Im �z constitute the fibers of a horizontal subbundle H(M) of
T (M), that is, of a vector subbundle of T (M) such that T (M) = H(M)⊕ V (M).

Conversely, given a horizontal subbundle H(M), one can define a horizontal mor-
phism of the bundle. Then the set of horizontal morphisms of the bundle is equipotent
with the set of horizontal subbundles of T (M).108

We have the following classical result.109

2.8.7.2 Proposition There always exists a horizontal subbundle of T (M).

2.8.7.3 Local Characterization

Let � be the horizontal morphism corresponding to a horizontal subbundle H(M)

of T (M). Let z ∈ M and let U be an open set belonging to an atlas of the bundle
(M, π,N) such that π(z) ∈ U . There exists a diffeomorphism φ from π−1(U) onto
U × F , where F is a typical fiber, such that π ◦ φ(x, y)−1 = x, x ∈ U, y ∈ F .
We can assume that U is a domain of coordinates (xλ)λ=1,2,...,n for the manifold N .
Let W be a domain of coordinates (yi)i=1,2,...,m for the manifold F . {xλ, yi}, with
λ = 1, 2, . . . , n, and i = 1, 2, . . . , m, is a system of coordinates on the neighbourhood
of z, φ−1(U ×W).

Thus we obtain the following system of local coordinates of T (M): {xλ, yi, ẋλ,
ẏi}, with obvious notation. Let X be a vector field defined on U . X can be written
X = Xλ∂λ, where Xλ ∈ C∞(U) and ∂λ = ∂/∂xλ such that Xλ = ẋλ(X).110

Since� is a morphism of vector bundles, we can write�(X) = Xλ(A
µ
λ ∂µ+Ai

λ∂i),
where ∂i = ∂/∂yi and A

µ
λ and Ai

λ are C∞ functions defined on M .
Moreover, � satisfies the condition d̃π ◦� = idπ∗(T (M)). Then we have A

µ
λ = δ

µ
λ ,

and therefore we obtain the local following characterization: In the system of local
coordinates {xλ, yi, ẋλ, ẏi},

(xλ, yi, ẋλ, ẏi) ◦ � = (xλ, yi, ẋλ,−�i
λẋ

λ),

(�i
λ) functions in C∞(M). Therefore, H(M) is generated by the following vec-

tor fields: ∂λ − �i
λ∂i . A horizontal piecewise differentiable curve of class C1 in

M : t→p(t) that is such that ṗt ∈ Hpt for every t , locally defined by xλ(p(t)) =
xλ(t), yi(pt ) = yi(t) satisfies the equation

dyi

dt
= −�i

λ

dxλ

dt
.

108 Cf. Greub, Halperin, Vanstone, Connections, Curvature and Cohomology, vol. 2, Academic
Press, 1972, chapter VII, sect. 6.

109 Greub, Halperin, Vaustone, Connections, Curvature and Cohomology, vol. 1, Academic
Press, 1972, Proposition VII, p. 68.

110 Each dotted letter denotes the tangent vector at that point; that is, u̇j is the vector tangent
to the curve uj at the point uj .
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2.8.7.4 Definition Let s be a cross section of the bundle (M, π,N). The local 1-form
on N with values in the vector bundle V (M) defined by ∇s = KM ◦ ds, where KM

denotes the projection T (M)→V (M)) associated with H(M), is called the covariant
derivative of s.

2.8.7.5 Local Characterization of ∇s

In the previous system of local coordinates, let s be a local cross section defined on
the open set U and let X = Xµ∂µ be a vector field defined on U ; ds(X) can be
calculated locally. We put si = yi ◦ s:

ds(Xµ∂µ) = Xµ∂µ + (∂λs
i)Xλ(∂i ◦ s)

= Xµ(∂µ − �i
µ ◦ s(∂i ◦ s))+Xµ(∂µs

i + �i
µ ◦ s)(∂i ◦ s).

Therefore, according to 2.8.7.3,

KM ◦ ds(X) = Xµ(∂µs
i + �i

µ ◦ s)(∂i ◦ s),
whence

∇s = (∂µs
i + �i

µ ◦ s)dxµ ⊗ (∂i ◦ s).

2.8.7.6 Definition The mapping � : T (N)×T (N)→ V (M) defined by �(X, Y ) =
−KM([�(X), �(Y )]) = �([X, Y ])− [�(X), �(Y )], X, Y ∈ T (N), is called the cur-
vature of the horizontal subbundle H(M).

� is a C∞(N)-skew-symmetric bilinear mapping that satisfies the following
proposition.

2.8.7.7 Proposition � vanishes identically if and only if H(M) is involutive.

2.8.7.8 Remark Let us consider a connection with the form w on a principal bun-
dle P with structure group G—defined by a horizontal subbundle of T (P )—whose
curvature form (cf. Definition 2.8.3.1) satisfies the relation

�(X, Y ) = dw(h(X), h(Y )) = −w([h(X), h(Y )]).

We find that both definitions are equivalent, since for any p in P the mapping
A→ A∗p from the Lie algebra Lie(G) of G into the space Vp of vertical elements is
an isomorphism of vector spaces.

2.8.7.9 Local Characterization

� = �i∂i with �i = (∂λ�
i
µ − �

j
λ(∂j�

i
µ))dx

λ ∧ dxµ. Let us consider the local basis
θi = dyi+�i

µdx
µ in P(H(M)) = {θ ∈ D1(M): θ(X) = 0, ∀X ∈ H(M)}. We have

dθi = π∗(�i)+ (∂j�
i
λ)θ

j ∧ dxλ.
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D1(M) denotes the module of the derivations of M. We recall that a derivation
of an algebra A over a field K is a K–linear transformation of A such that for any
f, g ∈ A we have D(fg) = D(f )g+fD(g). For a manifold M the set F = C∞(M)

of differentiable functions on M constitutes an algebra over R.Any derivation of F is
called by definition a vector field over M.D1(M) denotes the set of such vector fields
and D1(M) is a module over F . The local expression can be obtained by computation
of dθi and according to the following theorem of Frobenius.111

2.8.7.10 Theorem The following conditions are equivalent:

(i) H(M) is involutive.
(ii) For any z0 in M , there exists a connected maximal unique submanifold Nz0 of

M such that z0 ∈ Nz0 and Tz(Nz0) = Hz(M) for any z in Nz0 .
(iii) For any element θ in P(H(M)),

dθ =
m∑

i=1

ηi ∧ θi,

where {θi} form a local basis of P(H(M)) and {ηi} are m differential 1-forms
on M .

2.8.7.11 Definition LetH(M) be a horizontal subbundle. Let t → q(t) and t → p(t)

be piecewise differentiable curves on N , respectively M . We say that t → p(t) is a
horizontal lift of the curve t → q(t) if π(p(t)) = q(t) and ṗ(t) ∈ Hp(t)(M) for any t .

2.8.7.12 Definition A horizontal subbundle H(M) of T (M) is called an Ehresmann
connection if it satisfies the following condition:

For any piecewise differentiable curve qt , t0 ≤ t ≤ t1, defined on N and for any
p0 ∈ π−1(q(t0)), there exists a unique horizontal lift (pt ), t0 ≤ t ≤ t1 such that
pt0 = p0.

Let γ a piecewise differentiable curve on N that starts from q0 and ends at q1. Let
Mq0 and Mq1 be the fibers over q0, respectively q1. For any point p0 of Mq0 , there
exists a unique horizontal lift of γ that starts fromp0. Letp1 be its endpoint inMq1 . We
can define the parallel displacement of fibers τγ from Mq0 into Mq1 along the curve γ .

2.8.7.13 Definition τγ is a diffeomorphism from Mq0 onto Mq1 called the parallel
displacement along the curve γ .

2.8.7.14 Example (i) Any principal connection on a principal bundle P is an
Ehresmann connection.

111 Cf., for example, S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. 1,
op. cit., p. 10, Proposition 1.2. Phan Mau Quan, Introduction à la Géométrie des Variétés
Différentiables, Dunod, Paris, 1968, p. 102. Y. Choquet-Brubet, Géométrie Differentielle et
Systèmes Extérieurs, Dunod, Paris, 1968, p. 192 and p. 197.
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(ii) According to 2.8.4.2.3 and 2.8.4.2.5, any connection associated with a prin-
cipal connection is an Ehresmann connection. But an Ehresmann connection on a
bundle E associated with a principal bundle P is not always associated with a prin-
cipal connection on P . If the structure group of the bundle P reduces to {e}, there
exists a unique principal connection on P—the trivial one—while there can exist
many Ehresmann connections on E (cf. below, exercises).

2.8.8 Ehresmann Connection in a Differentiable Bundle with Structure
Group G, a Lie Group112

2.8.8.1 Definition Adifferentiable—locally trivialized—bundle, with structure group
G is a fiber bundle (M, π,N) with typical fiber F such that:

(i) G acts differentially and effectively on the left on F ,

(ii) there exist a trivializing atlas (Uα, ϕα)α∈A of the bundle and mappings gαβ :
Uα ∩Uβ → G such that for any x in Uα ∩Uβ : ϕαβ(x) = Lgαβ(x), where ϕαβ denote
the transition functions of the bundle for the atlas (Uα, ϕα) and Lgαβ(x) the corre-
sponding diffeomorphisms from F onto F induced by the left action of the gαβ(x).

Such an atlas is called a G-trivializing atlas.

Let (M, π,N, F,G) be a bundle with structure group G, a Lie group, and
(Uα, ϕα)α∈A a G-trivializing atlas. For any x in N , let Px be the set of diffeomor-
phisms hx from F onto the fiber at x, Mx such that if hx and lx both are elements of
Px , then h−1

x ◦ lx is the diffeomorphism induced by the action on F of g in G. Let P be⋃
x∈N

Px.

The mapping πP : P → N defined by πp(hx) = x is a surjective mapping. G acts on
the right on P by hx ◦ g = hx ◦Lg . Since G acts effectively on F , such an action is a
free one. The mappings ψα : (x, g) ∈ (Uα ×G)→ ϕα,x ◦ Lx ∈ π−1

p (Uα) are bijec-

tive mappings. The mappings ψαβ : (x, g) ∈ (Uα ∩Uβ)×G→ (ψ−1
α ◦ψβ)(x, g) ∈

(Uα ∩ Uβ)×G are diffeomorphisms. From this we deduce the following theorem:

2.8.8.2 Proposition (Definition) P is a principal bundle with base space N , pro-
jection πP , structure group G. P is called the principal bundle associated with
(M, π,N, F,G).

There exists the structure of a manifold on P for which P is a differentiable
bundle.113

One can verify that P is a principal bundle and that (Uα,ψα)α∈A is a trivializing
atlas for this bundle with cocycles the gαβ .

112 C. Ehresmann, Les connections infinitésimales dans un espace fibré différentiable, Colloque
de Topologie, Brussels, 1950, pp. 29–55.

113 Greub, Halperin, Vanstone, Connections, Curvature and Cohomology, vol. 1, Academie
Press, Proposition X, p. 39.
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2.8.8.3 Definition An Ehresmann connectionH(M) on a bundle with structure group
G, (M, π,N, F,G) is called a G-Ehresmann connection if it satisfies the following
condition: for any piecewise differential curve γ of N , the parallel displacement τγ
along γ , viewed as a diffeomorphism from F onto F (by identification of fibers and
typical fibers) is the diffeomorphism induced by the left action onF of an element inG.

2.8.8.4 Proposition Let (M, π,N, F ) be a bundle with structure group G, a Lie
group, and let P be its corresponding principal bundle. G-Ehresmann connections on
(M, π,N, F ) are connections associated with principal connections on P .

The proof will be given in the exercises.

2.8.8.5 Proposition Let H(M) be a G-Ehresmann connection on the bundle (M, π ,
N,F,G). According to Proposition 2.8.8.4, H(M) is associated with a principal
connection with form w on the principal bundle P associated with (M, π,N, F,G).

Let (Uα, ϕα)α∈A be a G-trivializing atlas for the bundle (M, π,N, F,G). Let
t → zt be a horizontal piecewise differential curve in π−1(Uα) and (ψt ) the cor-
responding piecewise differential curve in P defined by ψt = σα(γt ), where σα is
the local cross section in P over Uα defined by σα(x) = ϕα,x , x ∈ Uα , and γt the
projection onto N of the curve zt . The piecewise differential curve (yt ) in F defined
by yt = ψ−1

t (zt ) satisfies the following equation: ẏt0 = (µ(−(σ ∗α .w)(γ̇t0)))yt0
, where

µ is the isomorphism of Lie algebras from g onto D1(F )114 defined by

(µ(A))y = d

dt
(Lexp(tA) · y)t=0, A ∈ g, y ∈ F.

The proof will be given below in the exercises.
We can now give the relation between the connection form w on the asso-

ciated principal bundle and local forms of the Ehresmann connection defined by
φi = �i

λdx
λ.

2.8.8.6 Characterization

Let (EI ) be a basis for the Lie algebra Lie(G). The isomorphism µ from Lie(G) onto
D1(F ) is defined by µ(EI ) = µi

I ∂i , µ
i
I ∈ C∞(F ). If we set w = wIEI , with wI

1-forms defined on P , we deduce from 2.8.8.5 and 2.8.7.3 that

φi = µi
I (σα ◦ π)∗wI .

We can deduce the relation between the curvature form � on the associated princi-
pal bundleP and the local forms of the curvature of the Ehresmann connectionH(M).

2.8.8.7 Proposition The local components (�i) of the curvature � of the Ehresmann
connection H(M) are

�i = µi
I σ
∗
α .�

I .

114 Definition: D1(F ) denotes the space of vector fields on F .
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2.8.8.8 Example Let F be a real m-dimensional vector space and let {ei}i=1,...,m
be a given basis of F . We consider a differentiable—locally trivialized—bundle
(M, π,N, F ) with structure group GL(F )—the group of linear isomorphisms from
F onto F . We can provide this bundle with the structure of a vector bundle by us-
ing diffeomorphisms ϕα,x associated with a GL(F )-trivializing atlas (Uα, ϕα)α∈A,
for the transfer of the structure of vector space of F on the fibers. Let H(M) be a
GL(F)-Ehresmann connection on the vector-bundle (M, π,N, F ).

According to Proposition 2.8.8.4, H(M) is associated with a connection with 1-
form w with values in the Lie algebra gl(F ) of GL(F) on the associated principal
bundle P , called the bundle of frames.

The local expression will be studied below in the exercises.

2.8.8.9 Example Let F be an affine space with dimension m and let {0, {ei}} be a
given frame in F . We consider a differentiable bundle (M, π,N, F ) with structure
group the Lie group A(F) of affine transformations of F .

2.8.8.10 Definition We call any A(F)-Ehresmann connection on the bundle (M, π,

N, F ) an Ehresmann affine connection.

According to Proposition 2.8.8.4,H(M) is associated with a connection with form
w̃ with values in the Lie algebra a(F ) of A(F) on the principal bundle P associated
with (M, π,N, F ). A(F) is isomorphic to the semidirect product of GL(F) by F ,
since any affine transformation on F is the composite of a linear isomorphism on the
vector space associated with F and a translation. The Lie algebra a(F ) can be written
as a(F ) = gl(F )⊕ F . The local expression of H(M), the study of the curvature �̃

of the Ehresmann affine connection H(M), and the specific study of the Ehresmann
affine connection on a vector bundle will be given below in the exercises.

2.9 Conformal Ehresmann and Conformal Cartan Connections

2.9.1 Conformal Ehresmann Connections115

Let Mn be the Möbius space (cf. 2.4.1) associated with the standard pseudo-Euclidean
space En(p, q). Let Cn(p, q) be the conformal group of En(p, q) viewed as the
restriction of PO(p + 1, q + 1) = O(p+1,q+1)

Z2
to the Möbius space Mn. Since

PO(p+ 1, q+ 1) acts on the projective space P(En+2), we can give two definitions.

2.9.1.1 Definition Aconformal Ehresmann connection is aG-Ehresmann connection
with G = PO(p + 1, q + 1) on a fiber bundle ξ with typical fiber Mn and structure
group PO(p + 1, q + 1).

115 Most of the results given in Section 2.9.1 can be found in J. L. Milhorat, Sur les connections
conformes, Thesis, Université Paul Sabatier, Toulouse, 1985.
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2.9.1.2 Definition Aprojective Ehresmann connection is a G-Ehresmann connection
with G = PO(p + 1, q + 1) on a fiber bundle η1 with typical fiber P(En+2) and
structure group PO(p + 1, q + 1).

We want to study some properties of conformal Ehresmann connections and the
links between conformal Ehresmann connections according to Definition 2.9.1.1 and
projective Ehresmann connections according to Definition 2.9.1.2.

2.9.1.3 Local Characterization

In 2.4.2 we have defined u as the injective mapping from En(p, q) into the isotropic
cone of En+2(p + 1, q + 1) by u(x) = x2x0 + x − y0 = q(x)x0 + x − y0 with
x0 = (e0 + en+1)/2 and y0 = (e0 − en+1)/2.

For the sake of convenience we put now, once and for all, yn+1 = (e0 − en+1)/2. We
recall that 2B(x0, yn+1) = 1.

2.9.1.3.1 Lemma Let z = αx0+x+βyn+1 be an element of En+2(p+1, q+1), with
x ∈ En(p, q) and (α, β) ∈ R2. Any element of Mn, the Möbius space, is the class z̄ of
an element z = αx0+x+βyn+1 that satisfies the condition αβ + q(x) = 0 as Mn =
P(Q(F)\{0})with previous notation (1.4.3.2; 2.4.1), whereP is the canonical projec-
tion from En+2 = F onto its projective space and Q denotes the isotropic cone of F .

We define the open set U of Mn by the set of z̄ with β �= 0 and z̄ = (u(−x/β)) =
(−(α/β)x0 − (x/β)− yn+1) as αβ = −q(x) and q(−x/β) = (1/β2)q(x). One can
verify immediately that the mapping ϕ̂, z̄ → −x/β is a homeomorphism from U
onto En(p, q).

Thus, (U, ϕ̂) is a local chart of Mn.

2.9.1.3.2 Local Characterization

Let ξ = (M̄, π̄, N,Mn,PO(p+1, q+1)) be a bundle with typical fiberMn and struc-
ture group PO(p+1, q+1). We put now dim N = m and we recall that dim Mn = n

and that dim M̄ = n+m.
According to 2.8.8.4, H(M̄) is associated with a principal connection with form w̄

on the principal bundle Pξ associated with ξ . Let (Uα, ϕα)α∈A be a PO(p+1, q+1)-
trivializing atlas for ξ ; we assume that the (Uα)α∈A constitute an atlas with coordinates
(xµ)µ=1,2,...,m of N . Let {xλ, yi}, with λ = 1, 2, . . . , m and i = 1, 2, . . . , n, be the
system of coordinates of M̄ defined on the open set ϕα(Uα × U), where (U, ϕ̂) is the
above local chart (Lemma 2.9.1.3.1), by (xλ, yi)(m̄x) = (xλ(x), ei ◦ ϕ̂ ◦ ϕ−1

α,x(m̄x)),
m̄x ∈ M̄x , x ∈ Uα .116

116 ej denotes the mapping
∑

zj εj → zj , and the coordinates yi(m̄x) are the coordinates of

the element yx in En such that ϕ−1
α,x(m̄x) = u(yx), where u is the mapping defined above.
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Let w̄α
β be the components in the canonical basis (eαβ)α,β=0,1,2,...,n,n+1 of the Lie

algebra gl(En+2) of the local 1-form σ ∗α (w̄), where σα is the local cross section of the
principal associated bundle Pξ defined by σα(x) = ϕα,x , x ∈ Uα, σ

∗
α (w̄) with values

in the Lie algebra po(p + 1, q + 1) isomorphic to the Lie algebra o(p + 1, q + 1).
One can verify the following results:

w̄0
n+1 = w̄n+1

0 = 0 w̄0
i = −2gij w̄

j

n+1

w̄0
0 + w̄n+1

n+1 = 0 w̄n+1
i = −2gij w̄

j

0

}
, i, j = 1, 2, . . . , n,117

w̄i
j gik + gij w̄

i
k = 0, i, j, k = 1, 2, . . . , n.

If φi is the local 1-form on ϕα(Uα × U) defined by φi = �i
µdx

µ, where the
(�i

µ) are the local components of the Ehresmann connection H(M̄) in the system of
coordinates (xµ, yi), we obtain

φi = −π̄∗(w̄i
n+1)+ π̄∗(w̄i

j )y
j + π∗(w0

j )(
1

2
y2gji − yjyi).

Proof. Let t → m̄t be a horizontal piecewise differential curve in π̄−1(Uα). Let
(ϕt ) be the corresponding piecewise differential curve in Pξ defined by ϕt = σα(γt ),
where (γt ) is the projection on N of the curve (m̄t ). According to 2.8.8.5, the curve
(z̄t ) in Mn defined by z̄t = ϕ−1

t (m̄t ) satisfies the equation

d

dt
(z̄t )t=t0 =

d

dt
(exp(t − t0)A.z̄t0)t=t0 , with A = −σ ∗α .w̄(γ̇t0), (I)

where A ∈ o(p + 1, q + 1).
Let (yt ) be the curve in En defined by yt = ϕ̂(z̄t ) such that u(yt ) = z̄t . According

to (I) let us take t in some reduced neighborhood of t0. We have

u(yt ) = exp(t − t0)A.u(yt0),

and therefore

u(yt ) = u(ft (yt0)) with ft = h1(exp(t − t0)A),

where h1 is the isomorphism from PO(p+1, q+1) onto Cn(p, q) = Conf (En(p, q))

defined in 2.5.1.2 (cf. below, exercises). Therefore, yt = ft (yt ) with ft = h1(exp(t−
t0)A), whence ẏt0 is a conformal infinitesimal transformation of En(p, q). We give
now the following statement before concluding.

117 The fundamental bilinear symmetric formB onF = En+2(p+1, q+1) = En(p, q)⊕H =
En(p, q) ⊕ E2(1, 1) is defined by Bn+2(x, y) = B(x, y) for x, y in En(p, q), by O for
x ∈ En(p, q), y ∈ E2(1, 1), O for x ∈ E2(1, 1), y ∈ En(p, q), and B2(x, y) for any x, y

in H . (B2 is the standard usual scalar product on the hyperbolic plane H .) We put for any
x in En(p, q), x2 = gij x

ixj , as usual.
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Table 2.1.

Elements of o(p + 1, q + 1) written in the
basis {fi j , f0 n+1, fi 0, fi n+1}

Associated infinitesimal conformal trans-
formations

fij = eij − eji = gike
k
j
− gjke

k
i

1 ≤ i ≤
j ≤ n basis of the Lie algebra o(p, q)

Eij = xi
∂

∂xj − xj
∂

∂xi (corresponding to
elements of O(p, q))

2fn+1 0 = 2(en+1 0−e0 n+1) = e0
0−en+1

n+1 E0 = xi
∂

∂xi (corresponding to dilations)

2fi 0 = 2(ei 0 − e0 i ) = −en+1
i
+ 2gike

k
0 Ei = ∂

∂xi (corresponding to translations)

2fn+1 i = 2(en+1 i − ei n+1) = e0
i
−

2gike
k
n+1

Fi = x2 ∂
∂xi − 2xix

k ∂
∂xk (corresponding to

transversions or special conformal transla-
tions)

2.9.1.3.3 Table of Infinitesimal Conformal Transformations of En(p, q)

(Infinitesimal version of the table given in 2.4.2.4) The isomorphism h1 given in
2.5.1.2 from En(p, q) onto Cn(p, q) leads to an isomorphism H1 from the Lie alge-
bra po(p+ 1, q + 1) onto the Lie algebra of conformal infinitesimal transformations
of En(p, q) classically defined as the Lie algebra of vectors fields X on En(p, q)

such that LXq = µXq, µXq being a scalar, where LX denotes the Lie derivative by
the vector field X and q the fundamental quadratic form on En(p, q).118

Let {(fi j , f0 n+1, fi 0, fi n+1)1≤i<j≤n} be the basis of the Lie algebra of o(p +
1, q + 1) with fαβ = eαβ − eβα; α, β = 0, 1, 2, . . . , n, n + 1, where eαβ = gαγ e

γ
β

and where eαβ is the canonical basis of the Lie algebra gl(En+2).
We can easily obtain Table 2.1 (cf. below exercises).
The (n+ 1)(n+ 2)/2 elements (Eij , E0, Ei, Fi) constitute a basis119 of the Lie

algebra of infinitesimal conformal transformations of En(p, q). One can easily verify
that

[Eij , Ekl] = gjkEil + gilEjk − gjlEik − gikEjl (table of the Lie algebra o(p, q)),

[Ei, Fj ] = 2Eij − 2gijE0,

118 Let us recall the following fact (cf., for example, Yvette Kosmann, C.R. Acad. Sc. Paris, t.
280, 27 Janvier 1975, serie A, pp. 229–232). Let G be the Lie algebra of infinitesimal con-
formal transformations of Vn, an n-dimensional riemannian or pseudo-riemannian manifold
Vn, whose tensor metric is denoted by g. G is the Lie algebra of infinitesimal conformal
transformations of Vn, that is, of vector fields X on Vn such that L(X)g = −2(δX/n)g,
where δ(X) is the divergence of the vector field X and L(X) the Lie derivative by X.
dim G ≤ (n+ 1)(n+ 2)/2 and dim G = (n+ 1)(n+ 2)/2 if Vn is a pseudo-Euclidean
or Euclidean vector space or a sphere. If Vn is the flat standard Minkowski space dim,
G = 15. For a standard pseudo-Euclidean space of type (p, q), En(p, q) G is isomorphic
to so (p + 1, q + 1) 	 o(p + 1, q + 1).

119 Such a classical result is given, for example, in A. Crumeyrolle, Fibrations spinorielles et
twisteurs généralisés, Periodica Math. Hungarica, vol. 6.2, 1975, pp. 143–171.
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[Ei,Ej ] = [Fi, Fj ] = 0,

[Ei,E0] = Ei,

[Fi, E0] = −Fi,

[Eij , E0] = 0,

[Eij , Ek] = −gikEj + gjkEi,

[Eij , Fk] = −gikFj + gjkFi.

Thus, the Lie algebra po(p + 1, q + 1) is isomorphic to the Lie algebra
Rn ⊕ co(p, q) ⊕ (Rn)∗, where co(p, q) denotes the Lie algebra associated with
the classical group CO(p, q) of similarities of En(p, q).120

One can easily verify this result in the following way: the Lie subalgebra gen-
erated by (Eij , E0) is identified with o(p, q) ⊕ R; the Lie subalgebra generated by
(Ei) is identified with Rn, by identifying Ei and ei ; the Lie subalgebra generated by
(F i) is identified with (Rn)∗ by identifying

F i =
(

1

2
x2gij − xixj

)
∂

∂xj
with ei .

2.9.1.3.4 Remark Since the action of PO(p+ 1, q + 1) on the Möbius space Mn is
transitive, all the groups of isotropy are isomorphic one to the other.

We will use this result later.
Now we can achieve the proof of 2.9.1.3.2.
According to the table, given 2.9.1.3.3, we can write

dyi

dt
= w̄i

n+1(γ̇t )− w̄i
j (γ̇t )y

j − w̄0
0(γ̇t )y

i + w̄n+1
j (γ̇t )(

1

2
y2gji − yjyi),

whence we can deduce the result given above, since the coordinates yi(m̄t ) of the hor-
izontal curve (m̄t ) satisfy the equations given in 2.8.7.3, dyi/dt = −�i

λ(pt )(dx
λ/dt)

and since φi = �i
µdx

µ.

120 We recall that the “generalized” Lorentz group O(p, q) has n(n−1)
2 parameters, the group of

translations Tn has n parameters, the Poincaré group P(p, q) semidirect product of O(p, q)

and Cn has n(n+1)
2 parameters. The group CO(p, q) of similarities of En(p, q) if p �= q

is the direct product of O(p, q) and R+, the group of positive dilatations (or dilations). If
p = q and then En is of even dimension, CO+(p, q) is normal and of index 2 in CO(p, q)

and CO+(p, q) the group of positive (or direct) similarities is the direct product of O(p, q)

and R+. If p �= q, CO(p, q) has n(n−1)
2 + 1 parameters and if p = q, CO+(p, q) has

n(n−1)
2 +1 parameters. The group of conformal affine transformations of En has n(n+1)

2 +1
parameters.

Conf (En(p, q)) = Cn(p, q) has (n+1)(n+2)
2 parameters. Its Lie algebra Lie(Cn(p, q))

is isomorphic with po(p + 1, q + 1).
The notation CO(p, q) is used by S. Kobayashi, Transformations groups in differential

geometry, op.cit., p. 10, for example, to denote the group of similarities. The corresponding
notation used by J. Dieudonné, La géomètrie des groupes classiques, op. cit., for the same
group is GO(p, q). Cf. also 2.4.2.6.2 above.
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2.9.1.3.5 Remark If we decompose an element A in po(p+1, q+1), identified with
o(p+ 1, q + 1) and defined in the canonical basis (eαβ)α,β=0,1,2,...,n,n+1 of gl(En+2)

as A = Aα
βe

β
α , we can write

A = Biei + Bi
j e

j
i + B0

i ei with Bi = −Ai
n+1, B

i
j = Ai

j + A0
0δ

i
j , B

0
i = −An+1

i .

The local 1–form σ ∗α (w̄) can be written as σ ∗α (w̄) = wiei + wi
j e

j
i + w0

i e
i with

wi = −w̄i
n+1, w

i
j = w̄i

j + w̄0
0δ

i
j , w

0
i = −w̄n+1

i . Therefore the preceding result given
in 2.9.1.3.2 can now be written

φi = π̄∗(wi)+ π̄(wi
j )y

j + π∗(w0
j )

(
1

2
y2gji − yjyi

)
.

We give now three propositions (see exercises below).121

2.9.1.4 Proposition Let H(M̄) be a conformal Ehresmann connection on a fiber bun-
dle ξ = (M̄, π̄, N,Mn,PO(p+1, q+1)). With the same notation as above, the local
1-forms of the Ehresmann connection φi = �i

λdx
λ satisfies the relation

φi = π̄∗(wi)+ π∗(wi
j )y

j + π̄∗(w0
j )

(
1

2
y2gji − yjyi

)
with {wi,wi

j , w
0
j } being (n+ 1)(n+ 2)/2 local 1-forms on N such that wi

jgik +
gjiw

i
k = (2/n)

∑
k w

k
kgjk .

2.9.1.5 Proposition Let H(Mη) be a projective Ehresmann connection on a fiber
bundle η = (Mη, πη,N, P (En+2),PO(p + 1, q + 1)). With the same notation as
above, the local 1-forms φ̃0 = �̃0

λdx
λ, φ̃i = �̃i

λdx
λ, where (�̃0

λ, �̃
i
λ) are the local

components of the Ehresmann connection H(Mη), satisfy the relations

φ̃i = π∗η (σ i)+ π∗η (σ i
j )z

j + π∗η (σ 0
j )

(
1

2
gjiz0 + zj zi

)
,

φ̃0 = 2

n

∑
k

π∗η (σ k
k )z

0 − 2zjπ
∗
η (σ

j )− π∗η (σ 0
k )z

kz0,

where the (σ i, σ i
j , σ

0
j ) are (n+ 1)(n+ 2)/2 local 1-forms on N such that σ i

j gik +
gjiσ

i
k = (2/n)

∑
k σ

k
k gjk .

2.9.1.6 Proposition Let P be a principal bundle with base space N and structure
group PO(p + 1, q + 1) and let H(P ) be a principal connection on P . Let η,

121 These results are due to J. L. Milhorat, Sur les connections conformes, Thesis, Université
Paul Sabatier, 1986.
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respectively ξ , be the corresponding fiber bundle with typical fiber P(En+2), re-
spectively Mn, and with the same structure group PO(p+1, q+1) as defined above.
Let H(Mη), respectively H(M̄), be the connection on η, respectively ξ , associated
with the principal connection H(P ). Let j denote the identical mapping from M̄ into
Mη (locally the inclusion Mn ⊂ P(En+2)). Then j is an embedding and satisfies the
relation j∗(H(M̄)) = j∗(T (M̄)) ∩H(Mη).

2.9.2 Cartan Conformal Connections

2.9.2.1 Classic Cartan Conformal Connections122

2.9.2.1.1 Jets and r-Frames

Let M be a manifold of dimension n.

2.9.2.1.2 Definition LetM be a manifold of dimensionn ≥ 3. Let V be the set of open
neighborhoods of 0 in Rn. Let f and g be respectively two mappings, f : U → M ,
g : V → M , where U,V ∈ V . f and g are said to define the same r-jet at 0 if
f (0) = g(0) and if there exists a local chart (�, h) of M at a = f (0) = g(0) such
that the mappings h ◦ f : U → Rn and h ◦ g : V → Rn have the same partial
derivatives up to order r at 0.

The same is true for any other chart (�′, h′) at a. Thus the relation “f and g

define the same r-jet at 0” is an equivalence relation on the set of mappings such that
f : U → M , with U ∈ V . Any equivalence class is denoted by j r

0 (f ) and called an
r-jet at 0. If f : U → M is a diffeomorphism from an open neighborhood of 0 onto
an open subset of M , the r-jet j r

0 (f ) is called an r-frame at a = f (0) Then (f (U),
f−1) is a local chart of M at a.

2.9.2.1.3 Proposition The set of r-frames of M , denoted by P r(M), is a principal
bundle over M with projection p : P r(M) → M , the natural projection defined by
p(jr

0 (f )) = f (0) that sends any r-frame onto its origin.
The structure groupGr(n) is the set of r-frames j r

0 (ϕ)whereϕ : U → Rn,U ∈ V ,
is a diffeomorphism such that ϕ(0) = 0, provided with the following composition of
jets, namely

(j r
0 (ϕ
′), j r

0 (ϕ))→ j r
0 (ϕ
′ ◦ ϕ).

Gr(n) acts on P r(M) on the right by

j r
0 (f ).j r

0 (ϕ) = j r
0 (f ◦ ϕ) for j r

0 (f ) ∈ P r(M) and j r
0 (ϕ) ∈ Gr(n).

122 Most of the following results can be found on pp. 127–149 in the following book of reference:
S. Kobayashi, Transformations Groups in Differential Geometry, Springer-Verlag, 1972;
and in the following thesis: A. Toure, Divers aspects des connections conformes, Thesis,
Université de Paris VI, 1981. Cf. also R. Hermann, Vector Bundles in Mathematical Physics,
vol. 1, W.A. Benjamin, Inc., New York, 1970, chapter II.
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The proof123 is straightforward. The Lie algebra of Gr(n) will be denoted
by gr(n).

2.9.2.1.4 Examples

1. P 1(M) is the bundle of linear frames over M with structure group G1(n) =
GL(n,R).

2. P 1(Rn) can be identified with the group A(n,R) of affine bijections of Rn

whose Lie algebra is Rn ⊕ gl(n,R). P 1(Rn) is a principal bundle with base
Rn and structure group GL(n,R). The neutral element of A(n,R) will be
denoted by e.

In the same way as above, one can consider for U , a given open set of Rn, the mapping
HU : P r(U)→ Rn ×Gr(n) defined by HU(jr

0 (f )) = (f (0), j r
0 (f − f (0))).

It is a bijective mapping that provides P r(U) with the structure of a product
of manifolds. The result is true for U = Rn. P r(U) is an open set of P r(Rn).
If f : U → M is a diffeomorphism, the mapping f̃r : P r(U) → P r(f (U)),
j r

0 (ϕ)→ j r
0 (f ◦ϕ) satisfies f̃r (e) = j r

0 (f ) and is a bijective mapping that allows the
transfer of the structure of product of manifolds onto P r(f (U)). Thus, by varying
the chart (f (U), f−1) we can obtain the structure of a fiber bundle of P r(M). Then,
f̃r appears as an isomorphism from the bundle P r(U) = p−1(U), which is an open
set of P r(Rn)- onto P r(f (U)) = p−1(f (U)), which is an open set of P r(M).

2.9.2.1.5 Study of P 2(M)

2.9.2.1.5.1 Local Coordinates Let (ei)i=1,2,...,n be the natural basis for Rn and
(x1, . . . , xn) the natural system of coordinates in Rn. Any element u = j2

0 (ϕ) of
P 2(Rn) is defined by the polynomial representation

ϕ(x) =
∑
i

ui +
∑
j

ui
j x

j + 1

2

∑
j

∑
k

ui
j kx

j xk

 ei,

where
x =

∑
i

xiei

and ui
j k = ui

k j

2.9.2.1.5.2 Definitions (ui, ui
j , u

i
j k) are called the natural canonical coordinates of

u = j2
0 (ϕ), and we write simply j2

0 (ϕ) = (ui, ui
j , u

i
j k). By restriction, G2(n) is

constituted of elements (0, ai
j , a

i
j k) simply written a = (ai

j , a
i
j k). The right action

123 It is sufficient to remark that the right action defined above is simply transitive on any
of the fibers p−1(a), where a ∈ M , since if f : U → M and g : V → M are two
diffeomorphisms such that f (0) = g(0) = a, then ϕ = f−1 ◦ g is a diffeomorphism such
that jr0 (g) = jr0 (f )jr0 (ϕ).
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of G2(n) onto P 2(Rn) is defined by the mapping P 2(Rn)×G2(n)→ P 2(Rn) that
sends (j2

0 (ϕ), a) = (u, a) into j2
0 (ϕ ◦ α) if we set a = j2

0 (α), i.e.,

(ui, ui
j , u

i
j k) ∗ (ai

j , a
i
j k) =

(
ui,

∑
r

ui
ra

r
j ,
∑
r

ui
ra

r
j k +

∑
r

ui
rsa

r
j a

s
k

)
.124

2.9.2.1.5.3 Canonical Form on P 2(M): Definition We want to define a 1-form
with values in the Lie algebra of A(n,R), namely Rn ⊕ gl(n,R), which will be
described. Let X be a tangent vector to P 2(M) at a point u = j2

0 (f ). Let X′ be its
image via the canonical projection P 2(M)→ P 1(M) that sends j2

0 (g) into j1
0 (g). X

′
is a tangent vector to P 1(M) at j1

0 (f ). From the results given above, we can deduce
that f induces an isomorphism f̃1 from an open set P 1(U) of P 1(Rn) onto the open
set P 1(f (U)) of P 1(M); here, U denotes the set of definition for f . We know that
f̃1(e) = j1

0 (f ). There exists a unique tangent vector Y to P 1(Rn) at e such that
f̃ ′1(e).Y = X′. Since the tangent space to P 1(Rn) = A(n,R) at e can be identified
with the Lie algebra of A(n,R), Y takes its values in Rn ⊕ gl(n,R).

By definition we put θ(X) = Y , and thus define a 1-form θ , and the value of θ at u
depends only on j2

0 (f ) = u.

On the other hand, if h : P 2(M)→ P 2(M̄) is a morphism of fiber bundles and
if θ and θ̄ denote respectively the canonical forms of P 2(M), respectively P 2(M̄),
we have

h∗(θ̄) = θ.

In particular, if f : U → M is a diffeomorphism that defines local coordinates and
f̃2 : P 2(U) → P 2(M) is the corresponding morphism of fiber bundles associated
with f , we have f̃ ∗2 (θ) = θ̄ , where θ̄ denotes the canonical form of P 2(Rn).

Such a form θ̄ = f̃ ∗2 (θ) will be called an expression of θ in the system of local
coordinates defined by f on P 2(M). In order to determine such an expression, it is
sufficient to calculate the form θ , denoted here by θ̄ , in the case M = Rn.

With the same notation as above, let u = j2
0 (f ) be an element of P 2(Rn).

We put u = (ui, ui
j , u

i
j k) with ui = f i(0), ui

j = (∂f i/∂xj )(0), and ui
j k =

(∂2f i/∂xj ∂xk)(0). If y = j1
0 (ϕ) = (yj , yi

j ) is an element of P 1(Rn), we have

f̃1(y) = j1
0 (f ◦ ϕ) =

(
f 1(y1, . . . , yn),

∑
k

∂f i

∂yk
(y1, . . . , yn)yk

j

)
.

124 We note that the multiplication in G2(n) is given by

(bij , b
i
j k)(a

i
j , a

i
j k) =

∑
k

bika
k
j ,
∑
r

bira
r
j k +

∑
r

birsa
r
j a

s
k

 .
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Thus by differentiation at y = e = (0, δij ),

f ′1(e).dy =
(∑

k

∂f i

∂yk
(0)dyk,

∑
k

∂2f i

∂yk∂yj
(0)dyk +

∑
k

∂f i

∂yk
(0)dyk

j

)

=
(∑

k

ui
kdy

k,
∑
k

ui
k j dy

k +
∑
k

ui
kdy

k
j

)
.

Let us denote by Ei = ∂/∂yi , Ej
i = ∂/∂yi

j the canonical basis of Rn⊕gl(n,R)—the

Lie algebra of G2(n).
Any tangent vector X to P 2(Rn) at u = j2

0 (f ) can be written in the system of
coordinates (ui, ui

j , u
i
j k):

X =
∑
i

∂

∂ui
Xi +

∑
i,j

∂

∂ui
j

Xi
j +

∑
j,k,i

∂

∂ui
j k

Xi
j k.

The image of X by the canonical projection: P 2(M)→ P 1(M) is then given by

X′ =
∑
i

∂

∂ui
Xi +

∑
i,j

∂

∂ui
j

Xi
j .

Solving these equations in Y k, Y k
j , we obtain, from the definition,

θ̄ (X) = Y i =
∑
k

vi
kX

k, θ̄ i
j (X) = Y i

j =
∑
k

vi
kX

k
j −

∑
k,h,l

vi
ku

k
h j v

h
l X

l,

where (vi
k) denotes the inverse matrix of (ui

k). We write simply

θ̄ i =
∑

vi
kdu

k, θ̄ i
j =

∑
vi
kdu

k
j −

∑
k,h,l

vi
ku

k
h j v

h
l du

l,

whence we deduce
dθ̄ i = −

∑
k

θ i
k ∧ θk,

since d(ui
kv

k
j ) = 0⇒ ui

kdv
h
j = −dui

kv
k
j = −

∑
vh
i du

i
kv

k
j ,

dθ̄ i =
∑
k

dvi
k ∧ duk = −

∑
k,h,l

vi
hdu

k
l v

l
k ∧ duk = −

∑
h,l

vi
hdu

h
l ∧ θ̄ k.

On the other hand,∑
k,h,l

vi
ku

k
hj v

l
hdu

l ∧ θ̄ j =
∑
k,h,l

vi
ku

k
hj θ̄

h ∧ θ̄ j = 0,

taking account that uk
j h = uk

h j . Then,

dθ̄ i = −
∑
h,l

vi
hdu

h
l ∧ θ̄ l = −

∑
θ̄ i
l ∧̄θ̄ l .
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We have obtained the following result:

2.9.2.1.5.4 Proposition125 Let θ = (θ i, θ i
j ) be the canonical form on P 2(M). Then

dθi = −∑
θi
k ∧ θk .

2.9.2.1.5.5 Fundamental Vector Fields We know that Gr(n) acts on the right on
P r(M) according to the following law: P r(M) × Gr(n) → P r(M) defined by
(u, g) → Rg(u). With any element L in the Lie algebra gr(n) of Gr(n) we can
associate a fundamental vector field L∗ on P r(M) defined in 2.8.1.1.

For any a ∈ Gr(n), the vector field R∗aL∗ is the field X defined on P r(M) by
X(Ra(u)) = dRa(u) ·L∗(u) (often denoted R′a(u) ·L∗(u)). Since (Rexp tL)t∈R is
the 1-parameter group generated by L∗, we can deduce that the 1-parameter group
generated by X = R∗aL∗ is (Ra−1 exp(tL)a

)t∈R . Since a−1 exp(tL)a = exp(tM) with

M = ad(a−1)L, we find that R∗aL∗ = (ad(a−1)L)∗.
The fundamental vector fields are vertical, i.e., tangent to the fiber. Moreover, if

X is a fundamental vector field on P 2(M), namely X = L∗, with L ∈ g2(n), the
fundamental form θ satisfies θ(X(u)) = L′ for any u ∈ P 2(M), where L′ stands
for the canonical projection of L onto g1(n) = gl(n,R) that can be identified with
Hom(Rn), the space of morphisms from Rn to Rn.

2.9.2.2 G-Structures and Conformal Structure

Let M be a n-dimensional differentiable paracompact manifold.

2.9.2.2.1 Introductory Notes

2.9.2.2.1.1 Definition Let H be a closed subgroup of Gr(n). A reduction to H of the
structure group Gr(n) of P r(M) is a principal subbundle of P r(M) with structure
group H . Simply, we say that such a bundle is an H-reduction of P r(M). It is given
by the datum of an open covering (Uα)α∈A of M and a family (Sα)α∈A of local cross
sections such that:

(i) Sα : Uα → P r(M) defined by x → j r
0 (S

x
α) where the function Sx

α satisfies
Sx
α(0) = x such that for any (α, β, x) with x ∈ Uα ∩ Uβ there exists an element ax

αβ

in H such that

(ii) Sβ(x) = Sα(x)a
x
αβ . (The group H acts on the right on P r(M).)

The reduced bundle is then defined by the morphisms hα : Uα × H → P r(M)

that send (x, h) into Sx
αh, with transition functions ax

αβ . Two families (Uα, Sα)α∈A,
(Ui , Si)i∈A of local cross sections define the same H -reduction if their union satisfies
(ii) above.

125 This result is given in the following book: S. Kobayashi, Transformations Groups in Dif-
ferential Geometry, Springer, 1972, p. 141, Proposition 5.2.
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Since H acts on the right on P r(M), the quotient space P r(M)/H is a bundle
associated with P r(M), with typical fiber Gr(n)/H (right-quotient), and condition
(ii) is equivalent to Sα(x) and Sβ(x) belong the same equivalence class modulo H ,
namely S̄α(x) = S̄β(x). The datum of local cross section Sα satisfying (ii) is equiv-
alent to the datum of a cross section σ : x → σ̄α(x) of the bundle P r(M)/H . Since
M is a paracompact manifold, a sufficient condition for the existence of such a cross
section is that Gr(n)/H be homeomorphic to a standard Euclidean space Rp that is
a solid space.126

2.9.2.2.1.2 Proposition Extension of a Reduction Let G,H be two closed sub-
groups of Gr(n) such that G ⊂ H and let G(M) be a G-reduction of P r(M).
There exists an H-reduction canonically associated with G(M) such that G(M) is an
H-reduction.

Let assume that G(M) is defined by the cross section σ : M → P r(M)/G and let
π denote the canonical projection fromP r(M)/GontoP r(M)/H that sends any class
modulo G onto the class modulo H that contains it. Then π ◦ σ : M → P r(M)/H

is a cross section that defines an H -reduction determined by the datum of G(M),
namely H(M).

We need to notice that the datum of H(M) does not determine G(M). More
precisely, with the above notation, we have the following result.

2.9.2.2.1.3 Proposition Two G-reductions of P r(M) respectively defined by the sec-
tions σ and σ ′ of P r(M)/G determine the same H-reduction H(M) if and only if for
any x ∈ M , σ(x) and σ ′(x) are in the same class modulo H .

The proof is left as an exercise.

126 We recall the following definition and properties (N. Steenrod, The Topology of Fiber Bun-
dles, Princeton University Press, 1951, pp. 54–56.) A space Y will be called solid if for
any normal space X, a closed subset A of X, and map f : A → Y , there exists a map
f ′ : X→ Y such that f ′|A = f .

Examples: Rn, a Euclidean n-space is a solid space. Let X be a normal space with the
property that every covering of X by open sets is reducible to a countable covering (e.g., X
is compact, or has a countable basis). Let A be closed in X. Let G be a Lie group and H a
closed subgroup such that G/H is solid. Then any (G,H)-bundle over (X,A) is (G,H)-
equivalent to an (H,H) bundle.

Corollary: With the same assumptions, any bundle over X with group G is equivalent in
G to a bundle with group H .

A normal space is a topological space that is a separated space that satisfies the following
property: any pair of closed subsetsF,F ′, withF∩F ′ = ∅possesses a pair of neighborhoods
V , for F , V ′, for F ′, such that V∩V ′ = ∅. A separated space is normal if each pair of disjoint
closed sets have disjoint neighborhoods.
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If we suppose that σ and σ ′ are respectively defined by families of local cross
sections (Uα, Sα), (U ′β, S′β) of P r(M), the result means that for any α, β, x such that
x ∈ Uα ∩ U ′β , there exists bx

αβ in H such that S′β(x) = Sα(x)b
x
αβ .

2.9.2.2.1.4 Definition Let P 1(M) be the principal bundle of 1-frames of M , with
structure group GL(n,R), and let G be a subgroup of GL(n,R). A G-structure on
M is a subbundle of P 1(M) with structure group G, namely a restriction to G of the
structure group of P 1(M).

2.9.2.2.1.5 Proposition Such aG-structure exists if and only if the associated bundle
with P 1(M) with typical fiber GL(n,R)/G admits a section. Since we assume that
M is paracompact, such a section exists if the quotient GL(n,R)/G is diffeomorphic
to a Euclidean space Rp.

2.9.2.2.1.6 Examples–Definitions A riemannian structure on M is an O(n)-
structure. A pseudo-riemannian structure on M is an O(p, q)-structure. A confor-
mal structure on M is a CO(n)-structure, where

CO(n) = {A ∈ GL(n,R) : tAgA = ρg, ρ ∈ R+},
with Lie algebra

co(n) = {A ∈ gl(n,R) : tAg + gA = ρg, ρ ∈ R}.
A generalized conformal structure on M is a CO(p, q)-structure, where CO(p, q)

stands for the group of similarities of En(p, q), CO(p, q) = O(p, q)×R+∗, and the
Lie algebra po(p+ 1, q + 1) is isomorphic Rn ⊕ co(p, q)⊕ (Rn)∗ where co(p, q)

denotes the Lie algebra of CO(p, q). (Cf. above, 2.9.1.3.2 and footnote 128.)
According to 2.9.2.1.2.2, the datum of a riemannian, respectively a pseudo-

riemannian, structure implies that of a conformal, respectively generalized conformal,
structure. Conversely, since CO(n)

O(n)
, respectively CO(p,q)

O(p,q)
, is diffeomorphic to R+∗ and

then to R, any conformal structure, respectively generalized conformal structure, is
reducible to a riemannian structure, respectively a pseudo-riemannian structure. But
such a reduction is not unique (cf. 2.9.2.2.1.5).

2.9.2.2.1.7 Equivalent Definitions We consider only the case of the usual Möbius
group (2.2), M̃(n). Since the Möbius classical group acts transitively on the Möbius
space Mn, all the groups of isotropy are isomorphic one to the other. Let M̃0(n) denote
the group of isotropy of the origin for the standard Möbius group M̃(n).

One can easily identify127 M̃0(n) with the closed subgroup of G2(n) consisting of
jets j2

0 (ϕ) such that ϕ(0) = 0 and ϕ′(x) ∈ CO(n), for x in some neighborhood of 0.
Let us consider M̃1(n), the subgroup of M̃0(n) consisting of jets such that ϕ′(0) = Id.

127 The proof is left as an exercise. (cf. below 2.13, Exercise XV.1.)



www.manaraa.com

2.9 Conformal Ehresmann and Conformal Cartan Connections 145

One can see that M̃1(n) is a normal subgroup of M̃0(n) (isomorphic to the group

of the translations of the standard space En) and that M̃0(n)

M̃1(n)
is isomorphic to CO(n).

Thus if P is a subbundle of P 2(M) with structure group M̃0(n), the homogeneous
space P/M̃1(n) is a principal bundle with typical fiber CO(n) and thus defines a
conformal structure on M .

Conversely, let Q(M) be a subbundle of P 1(M) with typical fiber CO(n) that
defines a conformal structure M . According to the general theory of prolongations of
G-structures,128 one can associate with it a subbundle of P 2(M) with typical fiber
M̃0(n): its first prolongation Q1(M). Thus, an equivalent definition of a conformal
structure on M is the following:

A conformal structure on M is the datum of a subbundle P(M) of P 2(M) with struc-
ture group M̃0(n).

2.9.2.2.1.8 Notation Let (ui, ui
j , u

i
j k) be the 2-jet of a map ϕ : U → Rn, where

U ∈ V the set of open neighborhoods of 0 in Rn (cf. 2.9.2.1.1). Let∑
i

(ui + ui
j x

j + 1

2
ui
j kx

j xk)ei

be the polynomial representation of j2
0 (ϕ), where (ei) is the natural basis of Rn and

x = ∑
xiei and ui

j k = ui
k j , as above. One can verify, since Rn is provided129

with the classical scalar product, that the elements of M̃1(n) are the jets of the form
(0, δij , δjkai − δjiak − δkiaj ) with (a1, . . . , an) ∈ Rn, and that the first prolongation

of the Lie algebra co(n) is the Lie algebra m̃1(n) of M̃1(n) and thus consisting of jets
(ai

jk) such that

ai
jk = δjkai − δjiak − δkiaj .

Finally, the Lie algebra m̃0(n) is equal to co(n)⊕ m̃1(n).

2.9.2.2.2 Conformal Classical Connections

According to the results given in 2.8.5, we make the following definition:

2.9.2.2.2.1 Definition A conformal classical connection is a Cartan connection for
the case G = M̃(n), the classical Möbius group, and H = M̃0(n).

Since the Lie algebra of M̃(n): Lie(M̃(n))= m̃(n) is Rn ⊕ co(n) ⊕ (Rn)∗, a
conformal connection ω on P is defined by its components: (ωi, ω

j
i , ωj ), where129

ω
j
i ∈ co(n).

128 S. Kobayashi, Transformations Groups in Differential Geometry, Springer, 1972, chapter 1,
section 5, pp. 19–23.

129 Rn is provided with its canonical standard Euclidean scalar product such that gij = δij and

‖x‖2 = gij x
ixj .
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The classical Maurer–Cartan structure equations of M̃(n) are as follows:130

dωi = −
∑
k

ωi
k ∧ ωk,

dωi
j = −

∑
k

ωi
k ∧ ωk

j − ωi ∧ ωj − ωi ∧ ωj + δikωk ∧ ωk, (1)

dωj = −
∑
k

ωk ∧ ωk
j .

If ω denotes a conformal connection on the fiber P with structure group H = M̃0(n),
the curvature forms (�i

j ,�i) and the torsion form (�i)131 of the connection ω are
defined by

dωi = −
∑

ωi
k ∧ ωk +�i,

130 This result is given in S. Kobayashi, Transformations Groups in Differential Geometry, op.

cit., p. 135. The Maurer–Cartan form ω can be written ω =∑
ωiei +

∑
ωi
j
e
j
i
+∑

ωj e
j ,

where (ωi
j
) is co(n)-valued.

131 Notes: We consider P , the bundle of linear frames over M , dim M = n. G = GL(n,R).
π denotes the projection P → M . The canonical form θ of P is the Rn-valued 1-form on P

defined by (θ(X) = u−1(π(X)) for X ∈ Tu(P ), where u is considered as a linear mapping
of Rn onto Tπ(u)(M) [If u = (X1, . . . , Xn) is a linear frame at x = π(u), u can be given
as a linear mapping u : Rn → Tx(M) such that uei = Xi , where {e1, . . . , en} is the natural
basis for Rn, e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1), for i = 1, 2, . . . , n. The action of
GL(n,R) on P can be interpreted as follows:

Consider a = (ai
j
) ∈ GL(n,R) as a linear transformation of Rn that maps ej into∑

i a
i
j
ei . Then ua : Rn → Tx(M) is the composite of the following two mappings:

Rn a→ Rn u→ Tx(M).

A connection in the bundle P of linear frames over M is called a linear connection of M .
The torsion form � of a linear connection � is defined as � = Dθ , the exterior covariant
differential of θ , the canonical form of P .

In the same way, a generalized affine connection of M is defined as a connection in the
bundle A(M) of affine frames over M . Now we recall briefly that the torsion tensor field—or
simply torsion—T and the curvature tensor field—or simply curvature R—such as T is a
tensor field of type (1, 2) and R is a tensor field of type (1, 3) can be expressed in terms of
covariant differentiation as follows:

T (X, Y ) = ∇XY − ∇YX − [X, Y ]

and
R(X, Y )Z = [∇X,∇Y ]Z − ∇[X,Y ]Z,

where X, Y , and Z are vector fields on H .
All these classical results can be found, for example, in the book by S. Kobayashi and

K. Nomizu, Foundations of Geometry, volume I, op. cit.
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dωi
j = −

∑
ωi

k ∧ ωk
j − ωi ∧ ωj − ωi ∧ ωj + δij

∑
ωk ∧ ωk +�i

j , (2)

dωj = −
∑

ωk ∧ ωk
j +�j .

The Lie algebra m̃0(n) of H = M̃0(n) is the Lie subalgebra of M̃(n) defined by
ωi = 0 (1 ≤ i ≤ n).

Since ω(A∗) = A for any fundamental vector field generated by an element A of
the Lie algebra of H , the restrictions of the forms ωi vanish on the fibers of P , and
the forms (ωi

j ) and (ωj ) generate the cotangent space to these fibers. The restrictions

of the forms (ωi
j ) and (ωj ) to the fibers can be identified with the Maurer–Cartan

forms of M̃0(n) and satisfy the system (1) above with ωi = 0 for 1 ≤ i ≤ n. Thus
the relations ωi = 0 (1 ≤ i ≤ n) imply that �i = 0, �j

i = 0, �j = 0. Then
there exist functions Ki

jk,K
i
jkh,Kjkl on P such that �i = 1

2K
i
jkω

j ∧ ωk,�i
j =

1
2K

i
jkhω

k ∧ ωh,�j = 1
2Kjkhω

k ∧ ωh.

2.9.2.2.2.2 Definition A conformal connection on P is called a normal connection
if it is without torsion, i.e., �i = 0, for any i = 1, 2, . . . , n, and if its curvature tensor
satisfies the following relation: ∑

i

Ki
jil = 0. (3)

We are going to show that a normal connection is uniquely determined by the da-
tum of the principal bundle P with structure group M̃0(n) and of the forms (ωi, ωi

j )

and that it satisfies the relation ∑
i

�i
i = 0.

2.9.2.2.2.3 Theorem Let P be a subbundle of P 2(M) that defines a conformal struc-
ture. Let (ωi, ωi

j ) be a system of n+ n2 differential forms on P such that

(i) ωi(A∗) = 0 and ωi
j (A

∗) = Ai
j for any fundamental vector field A∗ generated

by an element (Ai
j , Ai) of the Lie algebra of M̃0(n); according to the structure

of this Lie algebra M̃0(n) given in 2.9.2.2.1.8.
(ii) R∗a(ωi, ωi

j ) = ad(a−1)(ωi, ωi
j ) for any a ∈ M̃0(n).

(iii) The vertical vectors (i.e., tangent to the fibers) are those that satisfy ωi(X) = 0,
1 ≤ i ≤ n.

(iv) dωi = −∑
ωi

k ∧ ωk .

Then there exists a unique system of forms (ω1, . . . , ωn) on P that (ωi, ωi
j , ωi) define

a normal connection on P .

Proof. (a) First, let us show that the relations∑
i

Ki
jil = 0
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imply that ∑
i

�i = 0,

i.e., ∑
i

Ki
ij l = 0. (4)

By using exterior differentiation, we get from (iv)∑
k

dωi
k ∧ ωk +

∑
k,j

ωi
k ∧ ωk

j ∧ ωj = 0.

Then, using the second relation of the system (2) above, which defines �i
j , and writing

that the terms that do not contain the forms ωi, ω
j
i vanish, we obtain∑

i

�i
k ∧ ωk = 0. (5)

Writing explicitly, we get Ki
jkl +Ki

jlk +Ki
lkj = 0, whence if k = i, according to the

relation (4); ∑
i

Ki
jil = 0,

and taking account of the skew symmetry of Ki
jkl relative to j, l, we get∑

i

Ki
ij l = −

∑
i

Ki
jli −

∑
i

Ki
lij = 0.

(b) Now we are going to prove that the required connection is unique. Let us as-
sume that there exist two systems of forms (ωi), (ω̄i) that define normal connections.
Taking account of (i), we have ω̄i(A

∗) − ωi(A
∗) = 0, for any fundamental vector

field, and then ω̄i(X) − ωi(X) = 0 for any vertical vector X, which implies that
ω̄i − ωi is a linear combination of the forms ωi . We put

ω̄i − ωi =
∑
k

Aikω
k.

Let us denote by �
j
i ,�i , the curvature forms of the connection (ωi, ω

j
i , ωi) and by

�̄
j
i , �̄i , the curvature forms of the connection (ωi, ω

j
i , ω̄i). Taking account of the

system (2) above, we have

�̄i
j −�i

j = ωi ∧ (ω̄j − ωj )+ (ω̄i − ωi) ∧ ωj − δ
j
i

∑
(ω̄k − ωk) ∧ ωk,

whence we obtain that∑
(�̄i

i −�i
i) = −δij

∑
(ω̄k − ωk) ∧ ωk = −n

∑
i

Akiω
i ∧ ωk.
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Thus, the conditions
∑

�̄i
i =

∑
�i

i = 0 imply the symmetry Aki = Aik . We
have now

�̄
j
i −�

j
i = ωi ∧ (ω̄j − ωj )+ (ω̄i − ωi) ∧ ωj =

∑
k

(Ajkω
i ∧ ωk + Aikω

k ∧ ωj ).

Looking after the skew-symmetric coefficient of ωk ∧ ωl in �̄i
j −�i

j , we get that

K̄i
jkl −Ki

jkl = −δil Ajk + δikAjl + δ
j
l Aik − δ

j
kAil (6)

and∑
i

(K̄i
j il−Ki

jil) = −Ajl+nAjl+δ
j
l

∑
Aii−Ajl = (n−2)Ajl+δ

j
l

∑
Aii = 0,

whence we find that Ajl = 0 if j �= l and∑
i

Aii = (2− n)Ajj

for any j = 1, 2, . . . , n, which implies that n
∑

Aii = (2 − n)
∑

Aii . Therefore,∑
Aii = 0 and, finally, Ajj = 0 for any j . Finally, the relations (3) and (4) imply

that Ajl = 0 for any j, l.

(c) Now we prove the existence. Let (Uα, hα) be an atlas of M such that (Uα) is
a locally finite open covering of M and let (fα) be a partition of unity subordinate to
(Uα). Since p−1(Uα)

132 is diffeomorphic to the product Uα × M̃0(n), one can build a
cross section σα over Uα , that is a mapping σα : Uα → P such that p ◦ σα = Id. For
any z ∈ p−1(Uα) there exists a unique a ∈ M̃0(n) such that Ra−1(z) ∈ σα(Uα), and
any vector Y tangent to P at z can be uniquely written Y = Ra(X) +W , X being
tangent to σα(Uα) at Ra−1(z) and W being a vertical vector, since the tangent space
to σα(Uα) is a complementary of the tangent space to the fiber.

The vertical vector W is the value at z of a fundamental vector field A∗, where
A belongs to m̃0(n). Now let us put ωα(X) = (ωi(X), ωi

j (X), 0) and ωα(Y ) =
ad(a−1)ωα(X) + A. Then the form ω defined on P by ω(Y ) = ∑

fαωα(Y ) leads
to a conformal connection of the form (ωi, ωi

j , ωj ). In order to obtain a normal
connection, it is sufficient to replace the forms ωj by the forms

ω̄j = ωj +
∑
k

Ajkω
k

with

Ajk = 1

2(n− 1)(n− 2)
δkj

∑
i,l

Ki
lil −

1

n− 2

∑
i

Ki
jik,

if we denote by Ki
jkl the curvature tensor of the connection (ωi, ωi

j , ωj ). This fact is

a consequence of the relations (3) above with the assumption
∑

K̄i
j il = 0.

132 Here, p denotes the projection: P → M .
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2.9.2.2.2.4 Properties of Normal Connections

2.9.2.2.2.4.1 Theorem Let (ωi, ωi
j , ωj ) be a normal connection on the fiber bundle

P . Then the curvature forms �i,�
j
i satisfy the following relations:

(i)
∑

�i
j ∧ ωj = 0, that is Ki

jkl +Ki
klj +Ki

ljk = 0.

(ii)
∑

ωi ∧�i = 0, that is Kjkl +Kklj +Kljk = 0.

Proof. The relations (i) have already being given (formula (5) above). The formula
(ii) can be obtained by exterior differentiation of the last formula of the system (2)
taking account of

∑
�i

i = 0.

We can therefore deduce the following statement:

2.9.2.2.2.4.2 Theorem Let P(M) be a conformal structure on M and let (θ i, θ i
j ) be

the restriction to P(M) of the canonical form of P 2(M). Then there exists a unique
conformal normal connection (ωi, ωi

j , ωj ) on P(M) such that ωi = θi and ωi
j = θi

j .
Such a connection satisfies the following relations:∑

�i
i = 0

and ∑
i

Ki
jil = 0.

The theorem is an immediate consequence of the fact that the forms (θ i, θ i
j ) sat-

isfy the assumptions of the previous theorem.

2.9.2.2.2.4.3 Extension of the Connection to P 2(M) In order to extend to P 2(M)

a conformal normal connection ω, we need to keep in mind that the Lie algebra
of M̃0(n) is the Lie subalgebra of G2(n) consisting of elements (αi

j , α
i
jk) such that

(αi
j ) ∈ co(n) and (αi

jk) are given by

α
j
k = δjkai − δij ak − δikaj , (7)

where (a1, . . . , an) ∈ Rn. The extension to P 2(M) of the connection ω, will be a
form π with values in Rn ⊕ g2(n) with components (πi, πi

j , π
i
jk) in the canonical

basis of Rn ⊕ g2(n) such that

(i) the restriction of π to P(M) is of the form (ωi, ωi
j , δjkωi − δijωk − δikωj ),

(ii) for any a ∈ G2(n), R∗aπ = ad(a−1)π .

The links between conformal connections and riemannian connections will be studied
in the exercises.
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2.9.2.2.3 Conformal Cartan Connections133

Let G̃n+1 be the isotropy subgroup of P(yn+1) ∈ M = Mn, with notation of 1.4 or
2.4, the generalized Möbius space, where P denotes the projection to the projective
space, as usual. Since the Möbius group PO(p + 1, q + 1) acts transitively on the
Möbius space Mn and since all the isotropy subgroups are isomorphic one to the
other, Mn = PO(p + 1, q + 1)/G̃n+1.

We assume that dim N = dim Mn, i.e., m = n with notation of 2.9.1.3.2.

2.9.2.2.3.1 Definition Let P̃ be a principal bundle with base N and structure group
G̃n+1. By definition, a Cartan connection on P̃ with values in the Lie algebra
LPO(p + 1, q + 1) = po(p + 1, q + 1) is called a conformal (generalized) Cartan
connection.

We can now give the following results. The proof will be given in the exercises.

2.9.2.2.3.2 Proposition (i) If there exists a conformal Cartan (generalized) connec-
tion on a fiber bundle (P̃ , π̃ , N, G̃n+1), then there exists a conformal Ehresmann
connection on the bundle

ζ = P̃ ×
G̃n+1

Mn = (M̄, π̄, N,Mn,PO(p + 1, q + 1))

such that if ∇ denotes the covariant associated derivative and σM̄ the canonical
section of M̄ , ∇σM̄ is a soudure between N and M .

(ii) Conversely, if there exists a conformal Ehresmann connection on a bundle
ζ = (M̄, π̄, N) with typical fiber Mn and structure group G̃n+1 such that (∇σM̄)

defines a soudure, where ∇ stands for the covariant derivative subordinate to the
Ehresmann connection and σM̄ the canonical section of M̄ , then there exists a Cartan
connection on the principal bundle associated with M̄ .

2.9.2.2.3.3 Proposition Let P̃ be a principal bundle with baseN and structure group
G̃n+1 and let ζ = (M̄, π̄, N) be the bundle with typical fiber Mn, associated with P̃ .

(i) If there exists a soudure between N and M̄ , then there exists a reduction with
structure group CO(p, q) of the bundle of frames R(N) of the manifold N . Such a
bundle is called a CO(p, q) structure on N .

(ii) Conversely, if there exists a CO(p, q) structure Q(N) on N , then there exists
a soudure between N and the bundle Q(N) ×CO(p,q) Mn, once CO(p, q) has been
identified with a subgroup of G̃n+1.

133 Most of the results given here have been revealed by J. L. Milhorat, op. cit., starting from
the following works: S. Kobayashi, Transformations Groups in Differential Geometry,
op. cit.; K. Oguie, Theory of conformal connections, Kodai Math., Sem. Rep. 19, 1967,
pp. 193–224; N. Tanaka, Conformal connections and conformal transformations, Trans.
Amer. Math. Soc., 92, 1959, pp. 168–190; A. Toure, Divers aspects des connections
conformes, op. cit.
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2.9.2.2.3.4 Corollary (i) If there exists a conformal Cartan connection on the prin-
cipal bundle (P̃ , π̃ , N, G̃n+1), then there exists a CO(p, q) structure on N .

(ii) If there exists a CO(p, q) structure Q(N) on a paracompact manifold N ,
then there exists a conformal Cartan connection on the principal bundle Q̃(N) =
Q(N)×CO(p,q) G̃n+1.

2.10 Conformal Geodesics

2.10.1 Cross Sections and Moving Frames: A Review of Previous Results

2.10.1.1 Classical Results

Let P(M) be a principal bundle with base space M and structure group G. A connec-
tion form ω on P(M) is a differential form ω of degree 1 given on P(M) with values
in the Lie algebra L(G) of G such that:

(i) For any z ∈ P(M), the tangent vectors toP(M) that satisfyω(X) = 0 constitute a
subspace Hz of Tz(P (M)) complementary to Vz the tangent space to the fiber at z.

(ii) For any a ∈ G, if we denote by Ra the right action of a on P(M), we have
R∗aω = ad(a−1)ω.

(iii) If we denote by A∗ the fundamental vector field generated by an element A of
G, we have ω(A∗z) = A, for any z ∈ P(M).

The datum of a connection form on P(M) is equivalent to what follows: for any
z ∈ P(M) there is a distinguished subspace Hz of Tz(P (M)), called horizontal,
transversal to the fibers, such that for any a ∈ G, Hza = R∗aHz.134

2.10.1.2 Induced Connection in a Local Cross Section

Let U be an open set of M and s : U→P(M) a local cross section. We define the
pullback of the form ω by s or induced connection associated with ω by s as the
1-form defined by

s∗ω = ω(s′(x)dx).

134 The proof is straightforward. First let w be a connection form on P(M). We get a distribution
Hz that satisfies the required conditions. Conversely, if the distribution Hz satisfies these
conditions, any vector X tangent to P(M) at z can be uniquely written X = Xh+XV , with
Xh ∈ Hz and XV ∈ Vz, the tangent space to the fiber at z. Since the action of G is simply
transitive on the fibers, there exists a unique element A ∈ L(G) such that A∗z = XV . We
put w(X) = A, which defines the connection form w. (L(G) is identified with the space of
left-invariant vector fields on G.) For any A ∈ L(G), we denote by aA the value at a ∈ G of
the field generated by A. Then, if da is a tangent vector to G at a, we can denote by a−1da

the element A ∈ L(G) such that da = aA.
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Let (Ei
j ) be a basis of L(G). We define the forms ωi

j such that

ω =
∑
i,j

ωi
jE

j
i .

Let (θi)1≤i≤n be the basis of the corresponding cotangent space to M . We put

s∗ωi
j =

∑
k

�i
jkθ

k.

The functions �i
jk are the coefficients of the connection in the local cross section s

and the corresponding basis.

2.10.1.3 Passage from One Section to Another

First, we remark that any local section s : U→P(M) defines a diffeomorphism h

from U ×G onto p−1(U) such that for any (x, g) ∈ U ×G, h(x, g) = s(x)g. Any
other sectionσ aboveU is such thatσ : U→P(M), x→ s(x)a(x), where a : U→G

is a differentiable mapping. The differential of σ is the sum of two terms:

∗ the first one obtained by differentiation of the first term above as if a(x) were
fixed, which gives R∗a(x)ds, if we denote by Ra the right translation z→za.

∗ the second one, obtained by differentiation of the second term, is the image of
da(x), the tangent vector to G at a(x) by the mapping G→ P(M) : a → az with
z = σ(x).

Then it is the value at z = σ(x) of the fundamental vector field A∗ with A = a−1da,
whence we get

σ ∗ω = ω(dσ) = ω(R∗ads)+ a−1da = ad(a−1)s∗ω + a−1da,

since ω(R∗ads) = (R∗aω)ds = ad(a−1)σ (ds), that is,

σ ∗ω = ad(a−1)s∗ω + a−1da. (1)

2.10.1.4 Associated Bundles

Let F be a manifold. We assume that G acts differentiablely on F , on the left. We
define a right action of G on P(M)× F by the following law:

(z, y)a = (za, a−1y) for any z ∈ P(M), y ∈ F, a ∈ G.

The quotient space E = P(M) × F/G is a bundle with base M typical fiber F ,
structure group G. Such a bundle is said to be associated with P(M). We denote by
pE the canonical projection from E onto M . Any point z of P(M) defines a bijective
mapping from F onto p−1

E (x), where x = p(z). We associate with any y ∈ F the
class zy consisting of the elements (za, a−1y) of P(M)× F .
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2.10.1.5 Parallel Displacement

Horizontal curves of P(M) are curves � such that for any z ∈ �, the correspond-
ing tangent line lies in the horizontal space Hz. Such curves are those t→ z(t)

(t ∈ I, z(t) ∈ P(M), with I an interval of R) that satisfy

ω(z′(t)dt) = z∗ω = 0.

Horizontal curves of the corresponding associated bundle are curves t → z(t)y,
where y is fixed in F and where t → z(t) is a horizontal path of P(M). We recall
the following classical result.

2.10.1.5.1 Theorem Any differentiable curve t → x(t) with t ∈ [0, 1] admits a
unique horizontal lift in P(M), respectively in E, whose starting point is a given
point of p−1(x(0)), respectively a given point of p−1

E (x(0)).

2.10.1.6 Moving Frames

Let us assume that the structure group G be a subgroup of a linear group GL(m,R)

for a value m not necessarily equal to n = dim M .

2.10.1.6.1 Definition Any a ∈ G can be identified with the image by a of the canoni-
cal basis of Rm. Local sections s : U → P(M) are called moving frames and denoted
by s : x → (ei(x))1≤i≤m.

The corresponding local bundle homomorphism associated with s is then

U ×G→ P(M) : (x, a)→ s(x)a =
(∑

k

ak
i ek

)
1≤i≤m

.

Let us denote by ωi
j the components of the connection form in the canonical basis

of the Lie algebra of GL(m,R). The relation s∗ωi
j = ω̄i

j can be also written as
ds = s(x)ω or

dei =
∑
k

ω̄k
i ek. (2)

Let σ : x → s(x)a(x) be another local section. Such a formalism allows us to find
again formula (1) above (2.10.1.3). Put σ(x) = (e′i (x)). We have

e′i (x) =
n∑

k=1

ak
i (x)ek(x),

whence by differentiation,

de′i =
∑
k

dak
i ek +

∑
k

ak
i dek =

∑
k

(
dak

i +
∑
r

ar
i ω̄

k
r

)
ek

=
∑
k

(
dak

i +
∑
r

ar
i ω̄

k
r

)
b
j
k e
′
j ,
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where b
j
k stands for the inverse matrix of aj

i . Then, the new forms ω̄
′j
i = σ ∗ωj

i satisfy

ω̄
′j
i =

∑
k

(
dak

i +
∑
r

ar
i ω̄

k
r

)
b
j
k . (3)

We find again formula (1) as ∑
k

b
j
kda

k
i = (a−1da)

j
i

and ∑
r

ar
i ω̄

k
r b

j
k = (ad(a−1)s∗ω)

j
i .

The relations (3) can be used to extend the definition of the connection form to the
bundle with structure groupGL(m,R), obtained by embedding of the structure group.

The parallel displacement of the moving frame (ei) is defined by the differential
system

dei −
∑
k

ω̄k
i ek = 0 (1 ≤ i ≤ m). (4)

Let E be the associated bundle with typical fiber F = Rm. The action of P(M) on
F can be denoted by P(M)× F → E, (z, y)→ zy,

(ei, y
i)→

m∑
i=1

yiei .

The parallel displacement of the point zy =∑
yiei is then defined by the differential

system d(yiei) = 0, that is,

∑
i

(
dyi +

∑
k

ω̄i
ky

k

)
ei = 0,

that is

dyi +
∑
k

ω̄i
ky

k = 0 (1 ≤ i ≤ m). (5)

2.10.2 Conformal Moving Frames

Let P(M) be a conformal structure on M , that is an M̃0(n) reduction135 of the
bundle P 2(M); see 2.9.2.2.1.7. Let (θ i, θ i

j ) be the components of the restriction

to P(M) of the canonical form and θ = (θ i, θ i
j , θi) the normal connection form;

135 We recall that M̃0(n) is the isotropy group of the origin for the standard Möbius group
M̃(n).
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see 2.9.2.2.2.4.2—that satisfies θi
j = −θ

j
i if j �= i and θ1

1 = · · · = θn
n (cf. 2.9.2.2.1.7

and 2.9.2.2.1.8).136 But such a conformal connection is not a connection on P(M),
since θ does not take values in the Lie algebra m̃0(n). But nevertheless, we can
consider θ as a connection on the bundle P

M̃(n)
(M) obtained by embedding the

structure group M̃0(n) into the group M̃(n), whose elements are said to be “affine
2-frames.”

We consider M̃(n) as the subgroup of GL(n+ 2,R) consisting of elements that
leave the quadratic form q such that

q(X) =
n∑

i=1

(Xi)2 − 2X0Xn+1

invariant. The connection form θ will be represented by the matrix with values in the
Lie algebra m̃(n),  τ θj 0

θi θ i
j − τδij θi

0 θj τ

 ,

where τ = θ1
1 = · · · = θn

n . Any local section s : U → P(M) will be represented by
an orthonormal moving frame consisting of (n + 2) analytic spheres of the Möbius
space obtained by “completing” the tangent space TxM , that is, (A0, A1, . . . , An+1)

such that (cf. 2.2.1.1)

dAp =
n+1∑
q=0

ω
q
pAq

with ω
Q
p = s∗θ̄Q

p with the following conventions:

θ̄ i = θ̄ n+1
i = θi and θ̄0

i = θ̄ i
n+1 = θi,

θ̄
j
i = θ

j
i if i �= j and θ̄ i

i = 0,

θ̄0
0 = −θ̄ n+1

n+1 = −θi
i .

By assumption, we have

A2
0 = A2

n+1 = 0, A0.An+1 = −1, A0.Ai = An+1.Ai = 0, Ai.Aj = δij ,

(1)
for 1 ≤ i, j ≤ n. If

A =
n+1∑
p=0

ypAp

136 This result comes from the fact that with the standard canonical scalar product the Lie

algebra co(n) consists of matrices (a
j
i
) such that a

j
i
+ ai

j
= 0 if j �= i and that ai

i
is

independent of i.
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is a point of the corresponding bundle, we put

A.A =
n∑

i=1

y2
i − 2y0yn+1.

2.10.2.1 Cartan’s Theory137

E. Cartan introduces a moving frame Ap such that the relations (1) are satisfied. Then,
he defines

dAp =
n+1∑
q=0

ω
q
pAq

ωn+1
0 = ω0

n+1 = 0; ω0
0 + ωn+1

n+1 = 0; ωi
0 = ωn+1

i ; ωi
n+1 = ω0

i ; ωj
i + ωi

j = 0 (2)

(formulas obtained by differentiation of previous formulas (1)). E. Cartan assumes
that M is endowed with a riemannian metric g, and introduces a moving co–frame
ωi such that the metric

∑
(ωi)2 is conformal to g, that is that the dual frame ei con-

sists of vectors of the same norm, orthogonal to each other. He assumes then that
dA0 = ∑n

i=1 ωiAi, whence ω0
0 = ωn+1

n+1 = 0 and ωi
0 = ωi , which permits him to

identify the sphere-point A0 with the origin of the affine moving frame (x, ei(x)).
Then, he assumes that the connection (ω

j
i ) is without torsion, that is,

dω
p

0 =
∑
q

ω
q

0 ∧ ω
q
p.

And then for p = 0, ∑
j

ωj ∧ ω
j

0 = 0,

and for p = i,

dωi =
n∑

j=1

ωj ∧ ωi
j .

The formulas ωi
j + ω

j
i = 0 and

dθi =
n∑

j=1

ωj ∧ ω
j
i

show that the forms ωi
j are equal to the forms of the riemannian connection associated

with the quadratic form
∑

(ωi)2. Moreover, the relations∑
j

ωj ∧ ω
j

0 = 0

137 E. Cartan, Les espaces à connexions conformes, Annales de la Société polonaise de Maths.,
2, 1923, pp. 171–221. E. Cartan used the quadratic form q ′ such that q ′(X) =∑

(Xi)2 +
2X0Xn+1, which leads to replace An+1 by −An+1.
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show that if we put

ωj = ω0
j =

n∑
k=1

πjkω
k,

we have πjk = πkj .
Finally, E. Cartan shows that one can determine the symmetric coefficients πjk

in order that the curvature tensor Kj
ikh defined by �

j
i = K

j
ikhω

h ∧ ωk ,

dωi
j = −

∑
ωi

p ∧ ω
p
j + δij

∑
k

ωk ∧ ωk +�i
j

satisfies ∑
j

K
j
ijh = 0.

Then he shows that such a condition determines uniquely the πjk . This connection is
called a normal connection. It is the connection defined in 2.9.2.2.2.2. The consistency
of E. Cartan’s presentation with the previous one will be studied in the exercises.

2.10.3 The Theory of Yano

K. Yano starts from conformal moving frames not necessarily orthonormal, associ-
ated with the standard frame (δ/∂xi) subordinate to a system of coordinates. The
tangent space Tx(M) is completed by a point at infinity not fixed beforehand and
becomes a Möbius space. The “Ap” are the “analytic spheres” of such a space such
that A0(x) stands for the “point-sphere” x. The fundamental quadratic form is now
gijX

iXj − 2X0Xn+1 with the following conditions:138A2
0 = A2∞ = 0, A0 ·A∞ = 1,

Ai ·Aj = gij, where gij denotes the “metric tensor”
of the riemannian manifoldM.

(1)

By differentiation of these relations and putting dAp =∑
ω

q
pAq , one obtains

ω∞i =
∑

gijω
j

0 , ω0
i =

∑
j gijω

j∞,

ω∞0 = 0, ω0∞ = 0, ω0
0 + ω∞∞ = 0,

dgij =∑
k,h gikω

k
j + ghjω

h
j .

(2)

Then one assumes that ωi
0 = dxi and then

dA0 = ω0
0A0 +

n∑
i=1

Aidx
i.

138 K. Yano, Sur les circonférences généralisées dans les espaces à connexion conforme, Proc.
Imp. Acad. Tokyo, 14, 1938, pp. 329–332.
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The moving frames that satisfy such conditions are called seminatural moving
frames.

Conditions (2) imply that d(ln
√|g|)= ∑

ωi
i , where g denotes the classical

g = det(gij ). We can thus deduce that there exists a conformal change of the metric

tensor g, g→ e2λg, such that the components ω̄
j
i corresponding to the new met-

ric tensor ḡ, subordinate to the same moving frame Ap, satisfy
∑

i ω̄
i
i = 0. We can

effectively determine the connection by the following assumptions:

(i) The connection is without torsion, that is, satisfying∑
k

ωk ∧ ωi
k = 0,

which is equivalent to �i
kh = �i

hk if we put

ωi
k =

∑
�i

khdx
h.

(ii) The conformal curvature tensor defined by �
j
i = K

j
ikhdx

k ∧ dxh with �
j
i =

dω
j
i +

∑
ω

j
p ∧ ω

p
i − δ

j
i

∑
k ωk ∧ ωk satisfies

∑
j K

j
ijh = 0.

2.10.4 Conformal Normal Frames Associated with a Curve

Subsequently, we assume that the manifold M is endowed with a class (C) of rieman-
nian conformal metric tensors. Let γ : I → M , t → x(t) be a curve in M , where I

denotes an interval of R. A lift of γ in P(M) is a mapping σ : I → P(M) such that
p ◦σ(t) = x(t) for any t in I , where p : P(M)→ M denotes the standard canonical
projection.

The mapping σ can be represented by a conformal moving frame (Bp) in the
same way as the local sections of P(M) (see 2.10.2 above and the exercises be-
low). Such a frame will be called a normal moving frame subordinate to γ if it
satisfies

n∑
i=1

σ ∗θi
i = 0,

and then σ ∗θi
i = 0 for any i. Let s = (Ap) be a normal moving frame defined on an

open set U of M containing γ . One obtains such a frame (Bp) by putting

Bp(t) = Ap(x(t)). (1)

Conversely, if the interval I is compact, and if the curve γ is a regular simple one and
if (Bp) is a normal frame subordinate to γ , one can prove that there exists a normal
moving frame (Ap) defined over an open set U of M containing γ that satisfies the
relation (1).
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Any normal frame σ = (Bp) subordinate to γ satisfies the following differential sys-
tem:



dB0

dt
=

n∑
i=1

πiBi,
dBn+1

dt
=

n∑
i=1

πiBi,

dBi

dt
= πiB0 +

n∑
k=1

πk
i Bk + πiBn+1,

(2)

where we put σ ∗θi = πidt, σ ∗θi = πidt, σ
∗θk

i = πk
i dt , that is, also πi =

θi(σ ′(t)), πi = θi(σ
′(t)), and πk

i = θk
i (σ

′(t)). The study of the changes of frames
will be made below in the exercises.

2.10.5 Conformal Geodesics

2.10.5.1 Basic Fields

Let us consider θ = (θ i, θ i
j , θi) the normal connection form on the bundle P(M).

For any ξ ∈ Rn, there exists a unique vector field B(ξ) : z→ Bz(ξ) on P(M) such
that

(i) θi(B(ξ)) = ξ i , for any i = 1, 2, . . . , n,
(ii) θi

j (B(ξ)) = θi(B(ξ)) = 0, for i, j = 1, 2, . . . , n.

Condition (ii) means that B(ξ) is horizontal.

2.10.5.1.1 Definition (I) The fields B(ξ) that satisfy the conditions (i) and (ii) above
with ξ �= 0 are called standard horizontal fields or basic fields.

(II) The conformal geodesics of M are the projections on M of integral curves of
basic fields.

It is convenient to start from the above definition in order to identify conformal
geodesics according to such a definition with the conformal circles of E. Cartan and
K. Yano and with the “conformal null curves” of A. Fialkow139 without comparing
the differential equations of the curves as made by K. Oguie.140

139 (a) E. Cartan, Les espaces à connexions conformes, Annales de la Société polonaise de
Maths., 2, 1923, pp. 171–221. (b) K. Yano, α) Sur la théorie des espaces à connexion
conformes, Journal of Faculty of Sciences, Imperial University of Tokyo, vol. 4, 1939, pp.
40–57. (β) Sur les circonférences généralisées dans les espaces à connexion conforme,
Proc. Imp. Acad. Tokyo, 14, 1938, pp. 329–332. (γ ) see also: The theory of Lie derivatives
and its applications, North-Holland, 1957, Chapter VII, pp. 158–160. (c) A. Fialkow, The
conformal theory of curves, Ann. Math. Soc. Trans., 51, 1942, pp. 435–501.

140 K. Ogiue, Theory of conformal connection, Kodai. Maths. Sem. Rep., 19, 1967, pp. 193–224.
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2.10.5.2 Conformal Moving Frames Associated with a Conformal Geodesic

Let γ : I→M be a conformal geodesic ofM .According to the above definition, there
exists a lift of γ inP(M), σ : t→ σ(t) such that σ ∗θi = ξ i = c, σ ∗θi

j = 0, σ ∗θi = 0.
In terms of moving frames, one can give the equivalent following statement:

There exists a normal frame associated with γ , σ : t→ (B0(t), . . . , Bn+1(t)) such
that

dB0

dt
=

n∑
i=0

ξ iBi,
dBi

dt
= ξ iBn+1,

dBn+1

dt
= 0. (1)

The corresponding lift of γ in the bundle P 1(M) satisfies the following differential
system:

x′(t) =
n∑

i=1

ξ iei,
dei

dt
= 0, 1 ≤ i ≤ n. (2)

Therefore, we can deduce that γ is a geodesic for a riemannian structure of the class
C. The fact that the forms σ ∗θi = θi(x

′(t)dt) vanish shows that x′(t) is an eigen-
vector of the corresponding Ricci tensor (cf. exercises below). Therefore, conformal
geodesics are Fialkow conformal null curves (cf. footnote 139c). The converse will
be studied later.

2.10.5.3 Generalized Yano Circles

Let us start from a normal frame (Bp) that satisfies condition (1) above. We put

C0 = B0 − t
∑

ξ iBi + t2

2

∑
ξ2
i Bn+1,

Ci = Bi − t
∑

ξ iBn+1, Cn+1 = Bn+1.

We obtain a normal frame associated with γ such that dCp/dt = 0 for any
p = 0, 1, . . . , n+ 1.

One can give the following interpretation of conditions (1): the frame (Bp(t)) is
deduced from a fixed frame (Cp) by the translation

B0 = C0 + t
∑

ξ iCi + t2

2

∑
ξ2
i Cn+1,

Bi = Ci + tξ iCn+1, Bn+1 = Cn+1.

(3)

The relative trajectory of the point B0(t) in the frame (Cp) is defined by the first
relation of the system (3). Its canonical projection on the Möbius space is a circle or
a line. In particular, if M = Rn, conformal geodesics of Rn are circles or lines.
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In the general case, it appears that conformal geodesics are generalized Yano
circles.141 The converse results from the following theorem, which will be proved
below in the exercises.

2.10.5.3.1 Theorem Let γ : I→M be a curve and (Ap) a normal frame subordinate
to γ . Then γ is a conformal geodesic of M if and only if there exists a function ρ that
does not vanish on I and such that (d3/dt3)(ρA0) = 0.

According to this theorem there is identity between the notions of conformal
geodesic and of generalized circle as already proved by K. Ogiue142 by comparing
the corresponding differential equations of these curves.

2.10.5.3.1 The Elie Cartan’s definition

First, we notice that the relations (1) above can be simplified by the choice of a fixed

orthogonal matrix a
j
i such that aj

i = ξj

ξ
, for any j , where ξ = (∑

(ξ i)2
) 1

2 and by the

consideration of the normal frame B̄p subordinate to γ defined by B̄0 = 1
ξ
B0, B̄i =∑

a
j
i Bj , B̄n+1 = ξBn+1. This frame satisfies the following relations:

dB̄0

dt
= B̄1,

dB̄1

dt
= B̄n+1, and

dB̄p

dt
= 0, for p ≥ 2. (4)

Moreover, we can notice that a nonlinear change of variable cannot in general
conserve the conditions (1) and the property of γ to be a conformal geodesic.

We are now going to transform the relations (4) by a change of parameter and a
change of frame not necessarily normal and we will get a characterization of confor-
mal geodesics in any parametrization.

By a change of the parameter t = t (u) such that dt
du
= π , the system (4) above

can be written:
dB̄0

du
= πB̄1,

dB̄1

du
= πB̄n+1,

dB̄n+1

du
= 0. (5)

Then we use the following change of orthonormal conformal frame:

A0 = ρB̄0, A1 = B̄1 + ρaB̄0, Ai = B̄i for 2 ≤ i ≤ n, (6)

An+1 = 1

ρ
B̄n+1 + aB̄1 + 1

2
ρa2B0,

with ρ = 1
π

and where a is any function. We obtain:{
dA0
du
= π0A0 + A1

dA1
du
= π1A0 + An+1

dAn+1
du
= π1A1 − π0An+1 and dAi

du
= 0 if 2 ≤ i ≤ n.

(7)

141 K. Yano, Sur les circonférences généralisées dans les espaces à connexion conforme, Proc.
Imp. Acad. Tokyo, 14, 1938, pp. 329–332.

142 K. Ogiue, Theory of conformal connection, Kodai. Maths. Sem. Rep., 19, 1967, pp. 193–224.
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with

(7 bis)π0 = ρ′

ρ
− a, π1 = a

ρ′

ρ
+ a′ − a2

2
.

That is the moving nonnormal frame considered by E. Cartan.143

Conversely, if Ap is a moving conformal orthonormal frame which satisfies a dif-
ferential system of the form (7), one can determine two functions a, ρ which satisfy the
differential system (7 bis). The relations (6) determine, then, a moving orthonormal
frame (Bp) which satisfy (5). Then, we have obtained:

2.10.5.4 Theorem There exists a change of parameter that allows us to transform a
curve γ into a conformal geodesic if and only if we can subordinate to it a moving
conformal frame (Ap) that satisfies a differential system of the form (7).

Then there is identity between the notion of conformal geodesic in any parametriza-
tion and that of E. Cartan’s “conformal circles.”

2.10.5.5 Fialkow’s Definition144

Theorem 2.10.5.4 allows us to study the identification of the conformal null curves
(cf. 2.10.5.2 above).

2.10.5.5.1 Theorem There exists a change of parameter that allows the transforma-
tion of a curve γ into a conformal geodesic if and only if γ is a Fialkow’s “conformal
null curve,” that is to say, if and only if there exists a “riemannian metric” of the class
C such that γ is a corresponding geodesic and that the tangent vector to γ is at any
point an eigenvector of the Ricci tensor.

The proof will be given below in the exercises.

2.11 Generalized Conformal Connections145

2.11.1 Conformal Development

2.11.1.1 Definition Let (M, π,N) be a fiber bundle and let H(M) be an Ehresmann
connection on M . Let t → zt be a differentiable curve on M and γ : t → γt = π(zt )

its projection onto N . The differentiable curve (ut ) defined in the fiber π−1(γt0) over
a point γt0 of (γt ) by ut = τ−1

γ (zt ), where τγ is the parallel displacement of π−1(γt0)

onto π−1(γt ) subordinate to γ , is called the development of the curve zt in the fiber
π−1(γt0).

143 E. Cartan, Les espaces à connexions conformes, Annales de la Société polonaise de Maths.,
2, 1923, pp. 171–221.

144 A. Fialkow, The conformal theory of curves, Ann. Math. Soc. Trans., 51, 1942, pp. 435–501.
145 These results are due to J. L. Milhorat, Sur les connections conformes, Thesis, 1985,

Université Paul Sabatier, Toulouse.
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2.11.1.2 Special Case

Let (M, π,N, F,G) be a fiber bundle with typical fiber F and structure group G and
let H(M) be an Ehresmann G-connection on this bundle. We consider a differentiable
curve t → zt of M and γ : t → γt its projection on N and (ut ) the development of
zt in the fiber π−1(γt0) over a point γt0 of (γt ). We have zt = τγ (ut ), where τγ is the
parallel displacement in M subordinate to γ .

If we denote by (pt ) the horizontal lift of γ in the principal bundle P associated
with M , with origin p0, a point belonging to the fiber over γt0 , according to 2.8.8.4,
we have

ut = τ−1
γ (zt ) = p0 ◦ p−1

t (zt ). (a)

We can notice that p−1
0 allows us to identify the development of (zt ) and the curve

yt of F defined by
yt = p−1

t (zt ) (b)

(but such a curve (yt ) obviously depends of the choice of p0).

2.11.1.3 Definition Let P be a principal bundle with base N , structure group H ,
where H is a closed subgroup of a Lie Group G such that dim G/H = dim N , and
let w be a Cartan connection on P . According to 2.8.5 and 2.8.6 above, w defines
an Ehresmann connection on the fiber bundle X with typical fiber G/H subordinate
to P . Let σX be the canonical section of this bundle X and let γ : t → γt be a
differentiable curve in N . The development in the fiber of X over a point of (γt ) of
the differentiable curve (σX ◦X) of X is called by definition the development of the
differentiable curve γ of N in the fiber of X over a point of (γt ).146

2.11.1.4 Study of the Conformal Case

Let P̃ be a principal bundle on an n-dimensional manifold N with n > 2. We denote
by π̃ the projection and the structure group by G̃n+1, where according to 2.9.1.3,
G̃n+1 is the isotropy subgroup of the point of the Möbius space Mn : P(yn+1) =
P((e0 − en+1)/2)147 with the notation of 2.9.1.3 and 2.9.2.2.3. Let w̃ be a Cartan
conformal connection on P̃ . According to 2.9.2.2.3.2, we know that w̃ defines an
Ehresmann conformal connection H(M̄) on the fiber bundle ζ = (M̄, π̄, N) with
typical fiber the Möbius space M = Mn, subordinate to P̃ .

More precisely, let us consider the principal bundle

P̄ = P̃ ×
G̃(n+1) PO(p + 1, q + 1),

ζ can be identified with the fiber bundle with typical fiber Mn subordinate to P̄ , and
H(M̄) is the connection on ζ associated with the principal connection with form w̄ on

146 J. Dieudonné, Elements d’Analyse, tome 4, Gauthier-Villars, Paris, 1971.
147 P denotes the projection from En(p, q) onto P(En(p, q)), the corresponding projective

space.
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P̄ such that i∗1 w̄ = w̃, where i1 denotes the injective morphism of the principal bundle
from P̃ into P̄ defined by i1(p̃) = (p̃, e), where e = P(Id(En+2(p + 1, q + 1)))
and (p̃, e) denotes the class of (p̃, e). Abusively, for any p̃ ∈ P̃ , respectively p̄ ∈ P̄ ,
that are projected onto x ∈ N , we will denote by the same letter, p̃, respectively p̄,
the diffeomorphism of Mn on the fiber of ζ over x defined by p̃(z̄) = p̃ • z̄, respec-
tively p̄(z̄) = p̄ • z̄, for any z̄ ∈ Mn, where p̃ • z̄, respectively p̄ • z̄, denotes the
corresponding class modulo G̃n+1 of (p̃, z̄) ∈ P̃×Mn, respectively (p̄, z̄) ∈ P̄×Mn.

The canonical section σM̄ of the bundle ζ , according to 2.9.2.2.3, is defined by
σM̄ = p̃(ȳn+1) = p̃ • ȳn+1 for x ∈ N , p̃ ∈ P̃x , and where ȳn+1 = P(yn+1) =
P((e0 − en+1)/2) with the above notation.

2.11.1.4.1 Definition Let γ : t → γt be a differentiable curve of N . According to
Definition 2.11.1.3 above, the development of the path (σM̄ ◦ γ ) in the fiber over a
point of (γt ) is called the conformal development of the path γ of N .

Let γ : t → γt be a path of N . Let p̄0 be an element of the fiber of P̄ over a point
γt0 and let (p̄t ) be the horizontal lift of the path γ in P̄ with origin p̄0. There exists
a path in PO(p + 1, q + 1) such that

p̄t • gt = i1(p̃t ), (c)

where (p̃t ) is a path in P̃ . According to 2.11.1.2 (formula (a)), the conformal devel-
opment (ut ) of the path γ in the fiber M̄γt0

satisfies

ūt = p̄0 ◦ p̄−1
t (σM̄(γt )) = p̄0 ◦ gt ◦ (i1(p̃t ))

−1(i1(p̃t )(ȳn+1)),

where abusively p̃t (ȳn+1) is identified with i1(p̃t )(ȳn+1). Thus

ut = p̄0(gt • ȳn+1). (c1)

Using the derivative of (c), we obtain that

˙̄pt • gt + p̄t • ġt = (i1)∗( ˙̃pt ),

(We recall that given a mapping f of a manifold M into another manifold M ′, the
differential at p of f is the linear mapping f∗ of Tp(M) into Tf (p)(M) defined as fol-
lows. For each X ∈ Tp(M), choose a path x(t) in M, such that X is tangent to x(t) at
p = x(t0). Then f∗(X) is the vector tangent to the path f (x(t)) at f (p) = f (x(t0)).

Cf. for example, S. Kobayashi and K. Nomizu, Foundations of Differential Geometry,
vol. 1, op. cit., p. 8.)

Whence

w̄(p̄t • gt + p̄t • ġt ) = g−1
t • ġt = w̄((i1)∗( ˙̃pt )) = w̃( ˙̃pt ),
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and therefore,

g−1
t • ġt = w̃( ˙̃pt ). (d)

2.11.1.4.2 Definition Let a be an element of Rn. We call by definition the basic field
on P̃ the vector field Ha on P̃ defined by w̃(Ha) = a.

The existence and uniqueness of the vector field Ha come from the fact that by
definition, w̃

P̃
is a bijective map fromT

P̃
(P̃ )onto the Lie algebra LPO(p+1, q+1) =

po(p+1, q+1) isomorphic to the Lie algebra Rn⊕co(p, q)⊕(Rn)∗, for any p̃ ∈ P̃ .
Thus Hei , with (ei) a basis of Rn, and A∗ with A in the Lie algebra (Rn)∗ ⊕ co(p, q),
define a parallelism on P̃ .

In the paper given in footnotes 140 and 142 in section 2.10.5, as a reference,
K. Oguie calls the projections onto N of the integral curves of basic fields on P̃

conformal geodesics of N .

Let t → γt be a conformal geodesic on N . By definition, there exists a path t → ϕt

in P̃ such that {
π̃(ϕt ) = γt ,

w̃(ϕ̇t ) = a, a ∈ Rn.

Let (p̄t ) be the horizontal lift of the path (γt ) in P̄ with origin i1(ϕt0). There exists a
path (gt ) in PO(p+ 1, q+ 1) such that p̄t • gt = i1(ϕt ) and gt = e (where e denotes
the identity element in PO(p + 1, q + 1)).

According to 2.11.1.4.1, formulas (c1) and (d), the conformal development of the
conformal geodesic (γt ) in the fiber M̄γt0

is the path (ut ) defined by

ut = p̄0(gt • ȳn+1), (e)

with

g−1
t • ġt = w̃(ϕ̇t ) = a, (f )

where there, a ∈ Rn is identified with an element of the Lie algebra

LPO(p + 1, q + 1) = po(p + 1, q + 1).

2.11.1.4.3 Definition (α) By definition we call a “conformal circle” of the Möbius
space Mn any subset Mn : Mn ∩ P(H), where P is the classical projection from
the space onto its projective associated space and where H = P1 ⊕ Vect{a}, with
P1 a hyperbolic plane in En+2(p + 1, q + 1) and a a nonisotropic element in
En+2(p + 1, q + 1), a �∈ P1.

(β) Then by definition, we call the projective subspace P(F), where F is a totally
isotropic plane in En+2(p + 1, q + 1), a “minimal line” in Mn.
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2.11.1.5 Study of a “Conformal Circle”

Let C̃ = Mn∩P(H) be a “conformal circle,” with H = P1⊕Vect{a}, where a2 �= 0
in En+2(p+1, q+1). We can assume that a2 = ε = ±1. Let {ε0, εn+1} be a standard
basis of P1 with (ε0)

2 = 1, (εn+1)
2 = −1.As usual, one can construct an orthonormal

basis {εi}, i = 1, 2, . . . , n, of P⊥1 such that ε1 = a.

2.11.1.5.1 Lemma Let P be the classical projection from En+2, onto P(En+2), its
projective associated space. Then C̃ = P((Sp × Sq) ∩H).

First, we note that according to a classical result,148 P(Sn+1) = P(En+2), where
Sn+1 is the unit sphere in En+2. Then Mn is homeomorphic to Sp×Sq

Z2
. We consider

En+2(p+1, q+1) as the product of the Euclidean spaces Rp+1 and Rq+1. The corre-
sponding quadratic form q defined on En+2 can be written as q(x, y) = ‖x‖2−‖y‖2,
for any x ∈ Rp+1, any y ∈ Rq+1. Then Mn appears as the image by P of the set of
(x, y) ∈ Rp+1×Rq+1\{(0, 0} such that ‖x‖2−‖y‖2 = 0 and ‖x‖2+‖y‖2 = 1, and,
then of the product of the corresponding spheres with radius 1√

2
of Rp+1 and Rq+1.

Moreover, if P((x, y)) = P((x′, y′)), then x′ = kx and y′ = ky with ‖x′‖ =
‖y′‖ = ‖x‖ = ‖y‖ = 1/

√
2, then k = ±1. Then P((Sp×Sq)∩H) = P((Sp×Sq)∩

(H∗)), where H∗ = H \ {0}, whence we find that C̃ = P((Sp × Sq) ∩ H). If a2 =
ε2

1 = 1, then C̃ = P(C×{−εn+1, εn+1}), whereC is the circle inEn+2 defined asC =
Sp∩Vect{ε0, ε1}. Ifa2 = ε2

1 = −1, then C̃ = P({−ε0, ε0}×C′), whereC′ is the circle
in En+2 defined as C′ = Sq∩Vect{ε1, εn+1}. When En is an Euclidean space, Mn can
be identified with Sn, and the corresponding circles are the usual “big circles” of Sn.

2.11.1.5.2 Equivalence of Such a Definition of a Conformal Circle with
the Analytic Definition Given in the Euclidean Case by E. Cartan149

Proof. First we prove that the previous definition implies that of Elie Cartan. Put
x′0 = (ε0 + εn+1)/2 and y′n+1 = (ε0 − εn+1)/2. We can consider the conformal cir-

cle C̃ as the path (zr ) in Mn defined as zr = (εr2x′0 + rε1 − y′n+1).
150 Let us consider

the following vectors:

F0(r) = A(εr2x′0 + rε1 − y′n+1), where A denotes a nonzero function
with values in R,

F1(r) = d
dr

(A−1F0)+ B1F0,

Fn+1(r) = −A−1x′0 − ε
2B1F1 + ε

4B
2
1F0, where B1 denotes any function from

R into R.

148 M. Berger, (a) Géométrie, vol. 1, Cedic Nathan, Paris, 1977, p. 121; or (b) Géométrie
différentielle, A. Colin, Paris, 1972, pp. 79–82.

149 Elie Cartan, Les espaces à connection conforme, Annals of the Polish Math. Soc., 2, 1923,
pp. 171–221.

150 We recall that any element in the Möbius space is the class z̄ of an element z = λx0 + a +
µyn+1 of En+2 with a ∈ En and (λ, µ) ∈ Rn such that λµ+ a2 = 0.
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The plane generated by F0 and Fn+1 is a hyperbolic plane and one can find (n − 1)
vectors Fi , i = 2, 3, . . . , n, in En+2 such that {F1(r), F2(r), . . . , Fn(r)} is an
orthonormal basis of (Vect{F0, Fn+1})⊥ (the subspace of vectors orthogonal to
Vect{F0, Fn+1}), the hyperbolic plane generated by F0 and Fn+1. Then

zr = F0(r), (g)

with the following fundamental relations:

dF0

dt
= A0F0 + A1F1,

dF1

dt
= A2F0 − 2εA1Fn+1, (h)

dFn+1

dt
= −A0Fn+1 − ε

2
A2F1,

where we put

A0 = dr

dt

(
dA

dr
A−1 − AB1

)
,

A1 = A
dr

dt
, (i)

A2 = dr

dt

(
dB1

dr
+ B1

dA

dt
A−1 − AB2

1

2

)
.

First, Elie Cartan has given such relations in the given reference p. 206, in order to
define what he has called “conformal circles in Mn.”

Conversely, let us assume that there exists a path (zu) in Mn and a basis {F0(u),
Fi(u), Fn+1(u)} for i = 1, 2, . . . , n in En+2, where {F0, Fn+1} defines a Witt ba-
sis of Vect{F0, Fn+1} and {Fi(t)} is an orthonormal basis of (Vect{F0, Fn+1})⊥, the
orthogonal of Vect{F0, Fn+1}, such that F0(u) = zu and equations of type (h) above
are satisfied with A1 �= 0. Then we can find numerical functions A,B, and r that
satisfy the relations (i) above.

Now, we have (d3/dr3)(A−1F0) = 0, that is A−1F0 = (r2/2)A′ + rB ′ + C′
where A′, B ′, C′ are fixed vectors in En+2 such that A

′2 = C
′2 = 0, B(A′, B ′) =

B(B ′, C′) = 0, where B is the fundamental bilinear symmetric form associated with
the quadratic form defined on En+2. Moreover B(A′, C′)+ B

′2 = 0 and B
′2 �= 0 as

(d/dr)(A−1F0) is non isotropic. Thus

zu = F0(u) =
(
r2

2
A′ + rB ′ + C′

)
is the conformal circle

Mn ∩ P(Vect{A′, C′} ⊕ Vect B ′).
Thus we find the previous definition.
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2.11.1.6 Study of a Conformal Line

Let P(F) be a projective subspace, where F = Vect{a, b} is a totally isotropic sub-
space of En+2. Put y′n+1 = −b. We can find a vector x′0 in En+2 such that (x′0)2 = 0,
B(x′0, a) = 0, 2B(x′0, y′n+1) = 1 and construct an orthonormal basis {ε1, ε2, . . . , εn}
of (Vect{x′0, y′n+1})⊥, the subspace of vectors orthogonal to Vect{x′0, y′n+1} such that
(ε1)

2 = ε, (ε2)
2 = −ε, with ε = ±1 and a = ε1 + ε2.

2.11.1.6.1 Equivalence of Such a Definition with That Given by
E. Cartan in the Euclidean Case

First, we prove that the previous definition implies that of Elie Cartan. P(F) can
be viewed as the path (zr ) in Mn defined by zr = (ra − y′n+1). Let us consider the
following vectors:

G0(r) = A(ra − y′n+1), where A is nonzero numerical function defined on R;
G1(r) = 2εrx′0 + ε1 + B1G0, where B1 is any numerical function;
G2(r) = 2εrx′0 − ε2 + B2G0, where B2 is any numerical function.

One can find Gn+1(r) ∈ (Vect{G1,G2})⊥ such that 2B(G0,Gn+1) = 1 and (n− 2)
orthonormal vectors Gi(r) ∈ (Vect{G0,Gn+1,G1,G2})⊥. Then we have

zr = G0(r), ( j)

and the following relations:

dG0

dt
= D0G0 +D1(G1 −G2),

d

dt
(G1 −G2) = D2G0 +D3(G1 −G2),where t is any parameter, (k)

with

D0 = dr

dt

(
dA

dr
A−1 − A(B1 − B2)

)
,

D1 = A
dr

dt
,

D2 = d

dt
(B1 − B2)+ (B1 − B2)D0,

D3 = dr

dt
A(B1 − B2). (l)

First, Elie Cartan has given in the above reference (see 2.11.1.5.2), p. 204, the analytic
definition—in the case that En is a Euclidean space—of what he has called “minimal
lines” in Mn.

Conversely, let us assume that there exists a path (zu) in Mn and a basis
{G0(u),Gi(u),Gn+1(u)}, i = 1, 2, . . . , n, in En+2, where the set {G0,Gn+1} defines
a Witt basis of Vect{G0,Gn+1} and {Gi(u)}, i = 1, 2, . . . , n, is an orthonormal
basis of (Vect{G0, Gn+1})⊥, such that G0(u) = zu and equations of type (k)
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above. One can find numerical functions A,B1, B2, and r satisfying the relations
(l) above. Then, we have (d2/dr2)(A−1G0) = 0, that is, A−1G0 = ra′ + b′ with
(a′)2 = (b′)2 = B(a′, b′) = 0. zu = G0(u) = (ra′ + b′) is then the “minimal line”
P(Vect{a′, b′}). Then we find the previous definition.

2.11.1.7 Definition Let P̃ be a principal fiber bundle on a n-dimensional manifold
N , with structure group G and let w̃ be a conformal Cartan connection on P̃ . Let M̄
be the fiber bundle with typical fiber Mn associated with P̃ . A path γ : t → γ (t) in
N is called a “conformal circle,” respectively a “minimal line,” if its development
in the fiber in N over a point of γt — the fiber that can be identified with Mn—is a
“conformal circle,” respectively a “minimal line.”

Such a definition is intrinsic, as the image by an element of PO(p + 1, q + 1) of
a “conformal circle” is a “conformal circle,” respectively a “minimal line.”

2.11.1.8 Proposition Oguie conformal geodesics are “conformal circles” or “mini-
mal lines.”

Let us consider again the equations (e) and (f) above in 2.11.1.4.2. The equation (f)
admits the unique solution gt = exp((t− t0)a), where exp is the classical exponential
mapping defined on po(p + 1, q + 1) = LPO(p + 1, q + 1). Here, a is identified
with an element of this Lie algebra. From results given above in 2.4.2.3, gt appears as
the equivalence class modulo ±IdEn+2 of the element of O(p+ 1, q + 1) defined by

z→ (1+ (t − t0)x0a)z(1+ (t − t0)ax0)

such that the path yt = gt • ȳn+1 in Mn satisfies

yt = gt • ȳn+1 = (t − t0)2a2x0 + (t − t0)a − yn+1.

We recognize the “conformal circle” (Mn ∩ P(Vect{x0, yn+1} ⊕ Vect{a}) if a2 �= 0
or the “minimal line" P(Vect{a, yn+1} if a2 = 0, whence the result appears.

2.11.1.9 Proposition (i) If a path (zt ) in N is a “conformal circle” or a “minimal
line,” it is a conformal geodesic up to a change of parameter.

(ii) Any path that can be deduced from a conformal geodesic by a change of
parameter is a “conformal circle" or a “minimal line.”

Proof. (i) Let zt be a “conformal circle” or a “minimal line” in N . Let (p̄t ) be
the horizontal lift of (zt ) in P̄ with origin p̄0 ∈ P̄γt0

. There exists a path (gt ) in
PO(p + 1, q + 1) such that (p̄t • gt ) is the image by i1—defined in 2.11.1.4—of a
path (ϕt ) in P̃ . The development of (zt ) in the fiber M̄γt0

is then the path defined by

ut = p̄0(gt•ȳn+1)withg−1
t •ġt = w̃(ϕ̇t ) (see 2.11.1.4.1 above, formulas (c1) and (d)).

By assumption, the path defined by yt = gt • ȳn+1 is a “conformal circle” or
a “minimal line” in Mn. By using the remarks made after Definition 2.11.1.4.3,
there exists a basis {ε0, εn+1, εi}, i = 1, 2, . . . , n, where {ε0, εn+1} is a Witt basis of
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Vect{ε0, εn+1} and {εi} is an orthonormal basis of (Vect{ε0, εn+1})⊥, such that

y(t) = r(t)2a
′2ε0 + r(t)a′ − εn+1,

where a′ is a vector in En+2 and r a numerical function.
Let us consider k0 ∈ O(p + 1, q + 1) that sends the basis {x0, ei, yn+1}

(i = 1, 2, . . . , n) onto the basis {ε0, εi, εn+1} (i = 1, 2, . . . , n). Then we have

yt = k̄0 • r(t)2a2x0 + r(t)a − yn+1,

where a = k−1
0 · (a′) ∈ En. Moreover, we have

r(t)2a2x0 + r(t)a − yn+1 = exp(r(t) · a)yn+1,

where exp is the exponential mapping defined on LPO(p + 1, q + 1) = po(p + 1,
q + 1); (r(t) · a is identified with an element of that Lie algebra . Then we have{

yt = k̄0 • exp(r(t) · a)ȳn+1,

yt = gt • ȳn+1.

Thus, there exists a path (ht ) in G0 such that

gt • ht = k̄0 • exp(r(t)a). (m)

Let (ψt ) be the path in P̃ defined by ψt = ϕt • ht . It is a lift of the path (zt ) in P̃ that
satisfies

w̃(ψ̇t ) = w̃(ϕ̇t • ht + ϕt • ḣt ) = adh−1
t • w̃(ϕ̇t )+ h−1

t • ḣt

= adh−1
t (g−1

t • ġt )+ h−1
t • ḣt = r ′(t)a,

by (m). It is the integral curve of a basic field on P̃ , up to a change of parameter,
whence the result.

(ii) Let z : t → zt be an Oguie conformal geodesic. There exists a lift ϕ : t → ϕt

of z in P̃ such that w̃(ϕ̇t ) = a, a being a fixed vector in Rn. Let λ be a numerical
function and let γ̃ = γ ◦λ and ϕ̃ = ϕ ◦λ. Let (p̄t ) be the horizontal lift of z̃ in P̃ with
origin i1(ϕ̃t0); there exists a path gt in PO(p+1, q+1) such that p̄t •gt = i1(ϕ̄t ). By
using formula (c1) in 2.11.1.4.1 above, the development of z̃ in the fiber Mz̃t0

is the

path (ut ) defined by ut = i1(ϕ̃t0)(gt • ȳn+1), where the path (gt ) satisfies g−1
t • ġt =

w̃( ˙̃ϕt ) = λ′(t)a. Since gt0 = e (the unit element in PO(p + 1, q + 1)), we have

gt = exp((λt − λt0)a),

where exp is the classical exponential mapping defined on

LPO(p + 1, q + 1) = po(p + 1, q + 1).

The path yt = gt • ȳn+1 satisfies the relation

yt = (λt − λt0)
2a2x0 + (λt − λt0)a − yn+1,

that is, it is a “conformal circle” or a “minimal line,” whence the result.
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2.11.2 Generalized Conformal Connections

We want to present the construction made by J. L. Milhorat in his thesis.151 Milhorat
finds again the conformal connections found by R. Hermann152 by an intrinsic method
using Greub extensions of structures. As already seen in Section 2.4, En can be
identified with an open set of the Möbius space Mn, and the action of an element of
the Möbius group PO(p+1, q+1) on Mn induces a conformal transformation of En.

Let ξ = (M, π,N) be a pseudo-riemannian bundle with typical fiber En; J. L.
Milhorat constructs a bundle ζ with typical fiberMn such that ξ can be identified with a
subbundle of ζ .Aconformal Ehresmann connection on the bundle ζ defines a horizon-
tal subbundle of the bundle ξ , called a “generalized conformal connection.” Such gen-
eralized conformal connections are effectively the Hermann conformal connections.

2.11.2.1 Preliminary Definitions

2.11.2.1.1 Definitions

• Let ξ = (M, π,N) be a bundle with typical fiber En over a manifold N of dimen-
sion n. We assume that this bundle is pseudo-riemannian, i.e., that there exists a
vector field g : x → gx that assigns a nondegenerate symmetric bilinear form of
type (p, q), gx : π−1(x)× π−1(x)→ R to any x in N . (p + q = n, n > 2).
Therefore, there exists a trivializing atlas (Uα, ϕα)α∈A of ξ such that ϕα,x : En→
Mx belong to the classical pseudoorthogonal group O(p, q) that is the Lie struc-
ture group of ξ . The corresponding transition functions are gαβ : Uα ∩ Uβ →
O(p, q).

• Let ξ1 = (M1, π1, N) be the bundle Whitney sum of the bundle ξ and the trivial
bundle ξ2 = (N × E2, π2, N), where E2 is the standard hyperbolic plane E1,1
provided with a bilinear symmetric form g2 of type (1, 1). ξ1 is a bundle with typi-
cal fiber En+2 and a pseudo-riemannian bundle corresponding to the fundamental
bilinear symmetric form of type (p + 1, q + 1) g1 defined by

g1(x; z,w) =


gx(z,w), for any z,w ∈ Mx,

0, for any z ∈ Mx, w ∈ {x} × E2,

0, for any z ∈ {x} × E2, w ∈ Mx,

g2(z, w), for any z,w ∈ {x} × E2 	 E2.

The mappings ψα,x : En+2 → (M1)x , ψα,x ∈ O(p + 1, q + 1) such that
ψα,x = ϕα,x on En and ψα,x = IdE2 on E2 define a trivializing atlas (Uα,ψα)α∈A
of ξ1 with transition functions j ◦gαβ , where j denotes the classical injective map-
ping from O(p, q) into O(p + 1, q + 1).

151 J. L. Milhorat, Sur les connections conformes, Thesis, Université Paul Sabatier, Toulouse,
1985.

152 R. Hermann, Gauge Fields and Cartan–Ehresmann Connections, Part A, Math. Sci. Press,
Brookline, 1945.
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• Let P be the principal fiber bundle of the frames associated with ξ , the (gαβ) are
the cocycles of P for the trivializing atlas (Uα)α∈A—and let P1 be the j -extension
of P , i.e., the bundle with typical fiber O(p+ 1, q+ 1) associated with P , where
O(p, q) acts on the left on O(p + 1, q + 1) via the morphism of Lie groups j .
P1, principal bundle with cocycles the (j ◦ gαβ), is by definition the principal
bundle of frames associated with ξ1. We agree to denote by the same letter j the
morphism from P into P1 defined by

j (P ) = (p, IdEn+2), for any p ∈ P.

Following the diagram given above in 2.5.1.2, we denote by h̃ the canonical map-
ping from O(p+1, q+1) onto PO(p+1, q+1) and denote by P̄ the h̃-extension
of the bundle P1. P̄ is the principal bundle with cocycles the (h̃ ◦ j ◦ gαβ) for the
trivializing atlas (Uα)α∈A. We agree to denote by h̃ the morphism from P1 into
P̄ defined by

h̃(p1) = (p1, e),

where e denotes the identity element in PO(p + 1, q + 1).
• Let us consider a = h̃ ◦ j , which is a canonical injective mapping from O(p, q)

into PO(p+1, q+1).Thea-extension ofP has for cocycles thea◦gαβ = h̃◦j◦gαβ

and is isomorphic to the principal bundle P̄ . If we agree to denote by a the prin-
cipal morphism from P into P̄ defined by a(p) = (p, e), we have the following
commutative diagram:

P

P1 P
~ −h

j a

• Let M̄ denote the set M̄ = ∪x∈NM̄x , where the M̄x are the Möbius spaces asso-
ciated with the fibers (M1)x of ξ1.

• Let π̄ be the mapping from M̄ onto N defined by π̄(z̄x) = x, for any z̄x ∈ Mx .
Then we have the following result.

2.11.2.1.2 Theorem M̄ is endowed with the structure of a differentiable bundle with
projection π̄ and typical fiber Mn, the Möbius n-dimensional space.

The demonstration will be given below in the exercises.
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2.11.2.2 Generalized Conformal Connections on a Pseudo-Riemannian Bundle

We use the terminology of Greub, Halperin, and Vanstone153 (chapter VII, §6). Let
α be the isomorphism of vectorial bundles α : VM → M ×N M, where M ×N M is
the fiber product of M with itself and VM, defined in 2.8.7 is the vertical subbundle
of TM (α identifies the space tangent to the fiber Mx at z ∈ Mx with Mx) given in the
exercise associated with section 2.8.8.8 and ϕ̄ is the morphism of differential bundles
given in the exercise associated with 2.11.2.1.2.154

2.11.2.2.1 Definition Let η = (M, π,N) be a vectorial bundle and let H(M) be a
horizontal subbundle of T (M) and let KM : T (M) → V (M) be the corresponding
projection. The mapping D from the module �(η) of sections of η into the module
of 1-forms on N with values in η, defined by DS = α ◦KM ◦ ds, s ∈ �(η), is called
by definition a generalized connection on η associated with H(M).

Such a definition is a generalization of the definition of a linear connection of the
vector bundle η. Moreover, we do not assume any hypothesis of Ehresmann type on
the horizontal subbundle H(M).

2.11.2.2.2 Definition Let ξ = (M, π,N) be a pseudo-riemaniann vectorial bundle
and let ζ = (M̄, π̄, N) be the bundle, the fibers of which M̄x, x ∈ N , are the Möbius
spaces associated with the (Mx ⊕ E2). Since the morphism ϕ̄ defined in 2.11.2.1.2
from ξ into ζ is a local diffeomorphism, any horizontal subbundle H(M̄) of T (M̄)

“induces” a horizontal subbundle H(M) of T (M) and therefore a generalized con-
nection on ξ . In particular, if H(M̄) is a conformal Ehresmann connection, then by
definition, the generalized connection associated with H(M) is called conformal.

153 Greub, Halperin, Vanstone, Connections, Curvature and Cohomology, vol. 2, Academic
Press, 1972.

154 • α is the isomorphism of vector bundles α : V (M) → M induced by the identification
between the fiber Mx at a point x of N and the tangent space Tz(Mx) to Mx at a point z of
Mx ; we can define the covariant derivative ∇ associated with H(M) (cf. Definition 2.8.4)
as a mapping from the module �(M) of sections of the vector bundle (M, π,N, F ) into the
module of 1-forms on N with values in the vector bundle M , by putting ∇s = α ◦KM ◦ds,
s ∈ �(M), where KM denotes the projection T (M)→ V (M) associated with H(M).
• ϕ̄ is the following morphism of differentiable fibrations from ξ into ζ . Let (U, ϕ̂) be the

local chart introduced in 2.9.1.3.1 above. For any y ∈ En, we put ϕ̂−1(y) = u(y), where
u is defined by u(y) = y2x0 + y − yn+1. Let yx ∈ Mx • p ∈ Px and y ∈ En such that
p(y) = yx . We put ϕ̄(yx) = i(p)(u(y)); i(p) can be considered an element of the principal
bundle associated with ζ , that is, as a diffeomorphism from Mn onto M̄x .

Such a definition is intrinsic, since if p′ ∈ Px and y′ ∈ En are such that p′(y′) = p(y),
then there exists g ∈ O(p, q) such that p′ = p • g and g′ = g−1(y). According to 2.4.2.2,
2.9.1.3.1 and 2.9.1.3.3 above, we have u(y′) = u(g−1•y) = j (g−1)•u(y) (cf. 2.11.2.1.1),
whence i(p′)u(y′) = i(p)•i(g)[h̃◦j (g−1)•u(y)] = i(p)•u(y), as i = h̃◦j , with previous
notation. Thus, the mapping ϕ̄ : M → M̄ that sends fiber into fiber is an N -morphism of
differentiable fibrations from ξ into ζ . Since ϕ̄ is locally the mapping ϕ̂−1 : En → Mn, the
conclusion follows.
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We recall that u from En(p, q) into the isotropic cone of En+2(p + 1, q + 1) is
such that u(z) = z2x0 + z− yn+1.

Let us define uM as the mapping from M into M1, by (1) (cf. 2.11.2.1.1
Definitions),

uM(yx) = j (p) ◦ u ◦ p−1(yx), y ∈ Mx, p ∈ Px. (1)

Such a definition is intrinsic since if p and p′ belong to the fiber at x ∈ N of the prin-
cipal bundle P of frames, there exists g in O(p, q) such that p′ = p.g (cf. 2.11.2.2
and the corresponding exercise) and

u ◦ p′−1(yx) = j (g−1) ◦ u ◦ p−1(yx),

whence we find that

j (p′) ◦ u ◦ p′−1(yx) = j (p).j (g)[j (g−1) ◦ u ◦ p−1(yx)] = j (p)u ◦ p−1(yx).

The mapping uM : M → M1, which maps a fiber into a fiber, is therefore by definition
an N -morphism of differential bundles from ξ into ξ1. We have the following result.

2.11.2.2.3 Proposition Let ξ = (M, π,N) be a vector pseudo-riemannian bundle.
We can bijectively associate with any generalized conformal connection D corre-
sponding to a horizontal subbundle H(M) of T (M) a linear pseudo-riemannian con-
nection ∇ on the bundle ξ1 = ξ ⊕ ξ2 = (M1, π1, N) associated with a horizontal
subbundle H(M1) of T (M1) such that

• if (zt ) is a horizontal path of M , relative to H(M), there exists a path (λt ) of R∗
such that the path (λtuM(zt ) of M1 is horizontal relative to H(M1).

• Conversely, if (zt ) is a path of M that satisfies the condition there exists a path
(λt ) of R∗ such that the path (λtuM(zt )) of M1 is horizontal relative to H(M1),
then the path (zt ) is horizontal, relative to H(M).

Proof. Let H(M) be a horizontal subbundle of T (M) that defines a conformal gen-
eralized connection. By definition, H(M) is induced by a conformal Ehresmann
connection H(M̄) on the bundle ζ = (M̄, π̄, N), the fibers of which are the Möbius
spaces associated with the fibers of ξ1 .

According to 2.8.8.4, the connection H(M̄) is associated with a principal con-
nection with form w̄ on the principal fiber bundle associated with ζ , isomorphic, as
already seen, to P̄ , the h̃-extension of the principal fiber bundle of frames associated
with ξ1. We need now the following lemma:

2.11.2.2.4 Lemma We can bijectively associate with any principal connection with
form w̄ on P̄ a principal connection with form σ on the principal bundle P1 such that

σ = (dh)−1
e′ .h̃

∗(w̄),

where

e′ = IdEn+2 . (2)
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Proof.

• If w̄ is the form corresponding to a principal connection on P̄ , then the 1-form σ

defined by (2) is the form corresponding to a principal connection on P1.
• Conversely, if σ is the form of a principal connection onP1, there exists a principal

connection with form w̄ on P̄ such that w̄ satisfies the relation (2).155

• We can now come back to the proof of Proposition 2.11.2.2.3. The principal con-
nection with form w̄, which defines the conformal Ehresmann connection H(M̄)

on ξ , is associated, according to Lemma 2.11.2.2.4, with a unique principal con-
nection H(P1) on P1. According to a classical result,156 H(P1) defines on ξ1 a
linear pseudo-riemannian connection ∇.

• Conversely, any linear pseudo-riemannian connection ∇ on ξ1 is induced by a
unique principal connection H(P1) on P1. Let H(P̄ ) be the principal connection
bijectively associated with H(P1) according to Lemma 2.11.2.2.4. H(P̄ ) induces
a conformal Ehresmann connection on ξ and then a generalized conformal con-
nection D on ξ .

2.11.2.2.5 Characterization

• Let (yt ) be a horizontal path ofM relative toH(M). By definition, the path (ϕ̄(yt ))

is a horizontal path of M̄ for the conformal Ehresmann connection, where ϕ̄ is
the morphism of differential bundles defined by

ϕ̄(yx) = i(p)(u(y)), yx ∈ Mx, p ∈ Px, and y ∈ En such that p(yx) = yx

(cf. the exercise associated with 2.11.2.1.2).
• Let y be a fixed element in En. There exists a path (ϕt ) in P such that yt = ϕt (y).

We have

ϕ̄(yt ) = i(ϕt )(u(y)). (3)

• Let (γt = π(yt )) be the projection of the path (yt ) onto N and let (ψt ) be the
horizontal lift of the path (γt ) in P1 with origin (ψt0), a point in the fiber of P1
over γt0 (for the connection with form σ on P1). According to (2), (h(ψt )) is the
horizontal lift of (γt ) in P̄ with origin h̃(ψt0) for the connection with form w̄ on P̄ .

Since the path (ϕ̄(yt )) is a horizontal path in M̄ , we have

ϕ̄(yt ) = τ̄γ .ϕ̄(yt0),

where τ̄γ is the parallel displacement in M̄ associated with the path (γt ) corre-
sponding to the conformal Ehresmann connection H(M̄). According to the previous

155 Kobayashi S. and Nomizu K., Foundations of Differential Geometry, vol. 1, Interscience
Publishers, New York, 1963, Proposition 6.1, p. 79.

156 Pham Mau Quan, Introduction à la Géométrie des Variétés Différentiables, Dunod, Paris,
1969, Théorème 1, p. 267.
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Remark 2.8.4.2.7, we have

ϕ̄(yt ) = h̃(ψt ) ◦ h̃(ψt0)
−1 • ϕ̄(yt0),

i.e., according to (3),

i(ϕt )(u(y)) = h̃(ψt ) ◦ h̃(ψt0)
−1.i(ϕt0)(u(y)). (4)

Therefore, y being a fixed element of En and (ϕt ) being the path in P such that
yt = ϕt (y), the proposition “(yt ) is a horizontal path of M , relative to H(M)” is
equivalent to (4). Moreover, there exists a path (gt ) in O(p + 1, q + 1) such that

j ((ϕt ) = ψt · gt . (5)

Since h̃ ◦ j = i, (4) is equivalent to

h̃(gt ) • u(y) = h̃(gt0) • u(y),
which is also equivalent to the following proposition: “There exists a path (λt ) of R∗
such that

λtgt • u(y) = gt0 • u(y).” (6)

Moreover, (λtgt • u(y) = gt0 • u(y)) is equivalent, according to (5), to

λtj (ϕt ) • u(y) = ψt ◦ ψ−1
t0

[j (ϕt0) • u(y)],
i.e., according to the definition of the morphism uM of differential fiber bundles, (1),

λtuM(yt ) = ψt ◦ ψ−1
t0

(λ−1
t0

uM(yt )). (7)

According to Remark 2.8.4.2.7, (7) is equivalent to the proposition, “the path
(λtuM(yt )) of M1 is horizontal, relative to H(M1).”

Thus, (6) is equivalent to the proposition, “There exists a path (λt ) of R∗ such
that the path (λtuM(yt )) of M1 is horizontal.”

We have obtained the following characterization:

The following propositions are equivalent:

(i) The path (γt ) in M is horizontal, relative to H(M).
(ii) There exists a path (λt ) in R∗ such that the path (λtuM(yt )) of M1 is horizontal,

relative to H(M1).

2.11.2.2.6 Corollary Let D be a generalized conformal connection on the pseudo-
riemannian fiber bundle ξ = (M, π,N) and let ∇ be the linear pseudo-riemannian
connection on the associated fiber bundle ξ1 = ξ ⊕ ξ2 (Proposition 2.11.2.2.3). The
two following propositions are equivalent:

(i) For any s in �(ξ), Ds = 0.

(ii) There exists a nonzero C∞ function λs on N such that

∇(λs · uM ◦ s) = 0. (8)
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Let s ∈ �(ξ),X ∈ T (N). DX(s) = 0 is equivalent to the condition, “The path
s(xt ) is horizontal, γ : t → xt being an integral curve of X,” which is equivalent
to, “there exists a path (λt ) of R∗ such that the path (λtuM ◦ s(xt )) is horizontal”
according to Proposition 2.11.2.2.3, which is equivalent to, “There exists a nonzero
C∞ function on N such that ∇Xλs · uM ◦ s = 0.” (For the necessary condition we
assume that γ is defined on a compact I of R and that γ is simple and regular.)
Therefore, there exists a function λs on N such that λs(xt ) = λt , for any t ∈ I.

2.11.2.2.7 Local Expression of a Generalized Conformal Connection D on a
Pseudo-Riemannian Fiber Bundle

Let (fi), i = 1, 2, . . . , n, be a moving frame, not necessarily orthonormal in the bun-
dle ξ . The basis of local sections {x0, fi, yn+1}, i = 1, 2, . . . , n, constitutes a moving
frame of the bundle ξ1 = ξ ⊕ ξ2.

Let (σα
β ), α, β = 0, 1, 2, . . . , n, n + 1, be the components in the moving frame

{x0, fi, yn+1} of the connection form associated with the pseudo-riemannian connec-
tion ∇ on ξ1. Since ∇g1 = 0, these components satisfy the conditions

σ 0
n+1 = σn+1

0 = 0 σ 0
i = −2gikσ

k
n+1

σ 0
0 + σn+1

n+1 = 0 σn+1
i = −2gikσ

k
0

}
i, k = 1, 2, . . . , n,

σ i
j gik + gjiσ

i
k = dgjk; i, j, k = 1, 2, . . . , n (gij = g(fi, fj )),

(9)

with obvious notation. Let s be a local section of ξ defined by s = sifi and such that
Ds = 0. Since uM ◦ s = s2x0 + s − yn+1, with s2 = g(s, s), according to (8), there
exists a nonzero C∞ function λs on N such that

∇λs(s
2x0 + s − yn+1) = 0.

Explicitly, we obtain
dλss

2 + λs(ds
2 + s2σ 0

0 + σ 0
j s

j ) = 0, (a)

dλss
i + λs(s

2σ
j

0 − σ i
n+1 + dsi + σ i

j σ
j ) = 0, (b)

dλs + λs(σ
0
0 + σn+1

j sj ) = 0. (c)

Equation (c) gives λ−1
s dλs . From (a) and (c), we can deduce, taking account of rela-

tions (9),

dsi − σ i
n+1 + σ i

j s
j + σ 0

0 s
i − σ 0

n+1

(
1

2
gjis2 − sj si

)
= 0. (10)

Thus we have obtained the expression of (Ds)
i in the left part of the equality (10).

Equation (a) is always verified if we have (b) and (c), since (b) and (c) give

ds2 + 2s2σ 0
0 + σ 0

j s
j + s2σn+1

j sj = 0, (11)

equality is always satisfied: from ∇g1 = 0, we can deduce that

0 = ∇g1(s, s) = d[g(s, s)]− 2g1(∇s , s) = ds2 − 2g1(∇s , s).

If we develop the last equality, taking account of (10), we obtain (11). Thus we have
obtained the following result:
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2.11.2.2.7.1 Proposition Let D be a generalized conformal connection on a pseudo-
riemannian fiber bundle ξ = (M, π,N). Let {fi}, i = 1, 2, . . . , n, be a moving frame
of the bundle ξ . We can write

Ds =
(
dsi + wi + wi

j s
j + w0s

i + w0
j

(
1

2
gjis2 − sj si

))
fi, s = sifi, (12)

where the (wi, wi
j , w0, w

0
j ) are (n+ 1)(n+ 2)/2 local 1-forms on N such that

wi
jgik + gjiw

i
k = dgjk, where gjk = g(fj , fk). (13)

These local 1-forms are called the local 1-forms in the moving frame {fi} of the
generalized connection D.

2.11.2.2.8 Proposition Let D be a generalized conformal connection on a pseudo-
riemannian fiber bundle ξ = (M, π,N). Let {fi} and {f ′i } be moving frames of ξ

such that on the intersection U of their domains of definition we have f ′i = A
j
i fj ,

where the (A
j
i ) are C∞ functions on U , the matrix with coefficients (Ai

j (x)) being

an element of GL(n) for any x in U . Let {wi,wi
j , w0, w

0
j } and {w′i , w′ij , w′0, w

′0
j } be

respectively the local 1-forms of the generalized conformal connection in the moving
frames {fi} and {f ′i } respectively. We have

w
′i = (A−1)ijw

j ,w
′i
j = (A−1)ikw

k
i A

i
j + (A−1)ij dA

k
j , w

′
0 = w0, w

′0
j = w0

jA
i
j .

(14)
Conversely, if we consider a covering (Uα) of N , where (Uα) is the domain of defini-
tion of a moving frame of ξ and on each Uα if we consider 1-forms {wi,wi

j , w0, w
0
j }

that satisfy the relations (13) and relations (14) on the intersections Uα ∩ Uβ , we
define a generalized conformal connection on ξ .

The proof will be given in the exercises.

2.11.2.2.9 Fundamental Remarks

According to Propositions 2.11.2.2.7 and 2.11.2.2.8, we can define a generalized con-
formal connection on a pseudo-riemannian fiber bundle by considering a mapping D

locally defined by the relations (12) with local 1-forms {wi,wi
j , w0, w

0
j } that satisfy

the relations (13) and transformation formulas such as (14) by changing the mov-
ing frame. But such generalized conformal connections are not generally Ehresmann
connections. In order that a generalized conformal connection be an Ehresmann con-
nection, we need to find, for any path (xt ) in N defined on an interval I of R, a
horizontal lift (yt ) of (xt ) in M , defined on I .

If we consider local coordinates {yi}, i = 1, 2, . . . , n, on M associated with a
moving orthonormal frame {ei} of ξ , the horizontal lift (yt ) of (xt ) needs to satisfy
the equations

dyi

dt
= −wj(x′j )− wi

j (x
′
j )y

j − w0(x
′
j )y

i − w0
j (x
′
j )

(
1

2
gjiy2yjyi

)
(15)

following the relations (12) above.
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Locally, we are led to the search of the integral curve, defined on all I , of an
infinitesimal conformal transformation on En (See 2.9.1.3.3.). Now, some of those
infinitesimal conformal transformations, for example those that correspond to confor-
mal special transformations (or transversions), generate only a local parameter group.
We cannot generally prove that there exists a solution of (15) defined on all I .

2.11.2.3 Curvature of a Generalized Conformal Connection

2.11.2.3.1 Definition Let D be a generalized conformal connection on a pseudo-
riemannian fiber bundle ξ = (M, π,N). Let H(M) be the horizontal subbundle of
T (M) associated with D. According to Definition 2.8.7.6, the curvature associated
with the subbundle H(M) is the mapping (15),

� : T (N)× T (N)→ V (M) : (X, Y )→ �(X, Y ) = �([X, Y ])− [�(X), �(Y )],

where � is the horizontal morphism associated with H(M).

2.11.2.3.2 Characterization

Let us consider the local coordinates {yi}, i = 1, 2, . . . , n, of M associated with
a moving frame {fi} of ξ . According to the results of Section 2.8.7 above, we can
give the local expression of � in such a moving frame by using the 2-forms dθi ,
where the

θi = dyi + wi + wi
jy

j + w0y
i + w0

j

(
1

2
y2gji − yjyi

)
constitute a local basis of P(H(M)). We apply an integrality condition.
We find that

� =
{
�i +�i

jy
j +�0y

i +�0
j

(
1

2
gjiy2 − yjyi

)}
∂

∂yi
, (16)

with

�i = dwi + (wi
j + w0δ

i
j ) ∧ wj , (17)

�i
j = dwi

j + wi
k ∧ wk

j + wi ∧ w0
j + wi

0 ∧ wj , (18)

�0 = dw0 − w0
k ∧ wk, (19)

�0
j = dw0

j + w0
k ∧ (wk

j + w0δ
k
j ). (20)

2.11.2.3.3 Remark Let ∇ be the pseudo-riemannian connection on ξ1 = ξ ⊕ ξ2
bijectively associated with D according to Proposition 2.11.2.2.3. According to (10),
the local 1-forms {wi,wi

j , w0, w
0
j } of the generalized connection D in the mov-

ing frame {fi} of ξ are the components {−σ i
n+1, σ

i
j , σ

0
n+1,−σn+1

j } of the form
of connection associated with ∇ in the moving frame {x0, fi, yn+1} of ξ1. It results
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from equations (17), (18), (19), (20) that the {�i,�i
j ,�0, �

0
j } are the compo-

nents {−�i
n+1, �

i
j , �

0
n+1,−�n+1

j } of the curvature form of ∇ in the moving frame
{x0, fi, yn+1} of ξ1. For example,

�i = dwi + (wi
j + w0δ

i
j ) ∧ wj = −(dσ i

n+1 + σ i
k ∧ σk

n+1 + σ i
n+1 ∧ σn+1

n+1 )

= −�i
n+1.

2.11.2.3.4 Study of the Peculiar Case of a Pseudo-Riemannian Manifold N

with a Scalar Product of Signature (p, q)

This study will be given in the exercises below.

2.11.2.3.5 Applications

Two examples will be given in the exercises. The first one corresponds to the study of
a conservative dynamical system with holonomic complete constraints with n degrees
of freedom, satisfying the hypothesis of Painlevé. The second one concerns the equa-
tions of a charged particle in an electromagnetic field in classical general relativity.

2.12 Vahlen Matrices157

2.12.1 Historical Background158

In 1902,159 K. Theodor Vahlen initiated the study of Möbius transformations of vec-
tors in Rn by 2×2 matrices with entries in the Clifford algebra C0,n. Such a study was
reinitiated by L.V. Ahlfors.160 A more precise study has been given by J. G. Maks.161

Such matrices are used by J. Ryan162 in Clifford analysis.

157 See, for example, chapter 19 of the excellent book by the late Pertti Lounesto, Clifford
Algebras and Spinors second edition, Cambridge University Press, London Mathematical
Society, Lecture Notes Series, 286, 2001.

158 Cf. Appendix: A history of Clifford algebras in the previous book of P. Lounesto.
159 Vahlen K. Th., Über Bewegungen und complexen Zahlen, Math. Ann., 55, pp. 585–593,

1902.
160 L. V. Ahlfors, (a) Old and new in Möbius groups, Ann. Acad. Sci. Fenn., serie A.1 Math.,

9, pp. 93–105, 1984. (b) Möbius transformations and Clifford numbers, pp. 65–73 in I.
Chavel and M. M. Farkas (eds.), Differential Geometry and Complex Analysis, Springer,
Berlin, 1985. (c) Möbius transformations in Rn expressed through 2×2 matrices of Clifford
numbers, Complex Variables Theory Appl., 5, pp. 215–224.

161 J. G. Maks, Modulo (1, 1) periodicity of Clifford algebras and the generalized (anti-) Möbius
transformations, Thesis, Technische Universiteit, Delft., 1989.

162 J. Ryan, (a) Conformal Clifford manifolds arising in Clifford analysis, Proc. R. Irish Acad.,
Section A.85, pp. 1–23, 1985. (b) Clifford matrices, Cauchy–Kowalewski extension and
analytic functionals, Proc. Centre Math. Annal Aust. Natl. Univ., 16, pp. 284–299, 1988.
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2.12.2 Study of Classical Möbius Transformations of Rn

The concerned space is there the compactified Rn ∪ {∞} of Rn. Some authors such
as P. Lounesto use the following classical terminology.

2.12.2.1 Definition A Möbius transformation is called sense-preserving if
det(df ) > 0, and sense-reserving if det(df ) < 0.

As already seen, the Möbius group of Rn∪{∞} has two components, the identity
component being the sense-preserving Möbius group. We have already noticed that
the full Möbius group of Rn ∪ {∞} is generated by translations, reflections, and the
inversions x→ x−1= x

x2 , or equivalently, by reflections in affine hyperplanes and
inversions in spheres not necessarily centered at the origin. We have already noticed
that the sense-preserving Möbius group is classically generated by the following four
types of transformations: rotations, translations, positive dilatations, and transversions
(or conformal special transformations). Transversions can be written

x → x + x2c

1+ 2B(x, c)+ x2c2

with c ∈ Rn or in the equivalent forms x → (x−1 + c)−1 and x → x(cx + 1)−1. As
emphasized by Pertti Lounesto,163

This might suggest the following: Let a, b, c, d in the Clifford algebra Cn.
If (ax + b)(cx + d)−1 is in Rn for almost all x ∈ Rn and if the range of
g(x) = (ax + b)(cx + d)−1 is dense in Rn, then g is a Möbius transforma-
tion of Rn. Although this is true, the group so obtained is too large to be a
practical covering group of the full Möbius group.

Using Lounesto’s notation for any a in Cn, we put π(a) = â, where π is the main
automorphism of the considered Clifford algebra τ(a) = ũ and for ν = π ◦τ = τ ◦π ,
ν(a) = ā.164 π is called by Pertti Lounesto the grade involution, τ is called the rever-
sion, and ν the Clifford conjugation. One can easily verify that with previous notation
for u belonging to the space called the space of p-vectors, we have π(u) = (−1)pu
and τ(u) = (−1)(1/2)p(p−1)u.

The following definition has been given by H. Maass165 and L. V. Ahlfors.166 We
denote there by �n the Clifford group—also called the Lipschitz group.

163 P. Lounesto, Clifford Algebras and Spinors, op. cit., p. 246.
164 P. Lounesto, op. cit., p. 29 and p. 56.
165 H. Maass,Automorphe Funktionen von mehreren Veränderlichen und Dirichletsche Reihen,

Abh. Math. Sem. Univ. Hamburg, 16, pp., 1949.
166 L. V. Ahlfors, Old and new in Möbius groups, Ann. Acad. Sci. Fenn., serie A.1 Math., 9,

pp. 93–105, 1984.
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2.12.2.2 Definition The matrix
(
a b
c d

) ∈ M2(Cn) (the set of 2 × 2 matrices with
entries in the Clifford algebra Cn) satisfying the conditions

(a) a, b, c, d ∈ �n ∪ {0},
(b) ab̃, b̃d, dc̃, c̃a ∈ Rn,
(c) ad̃ − bc̃ ∈ R \ {0},

is called a Vahlen matrix of the Möbius transformation g of Rn given by g(x) =
(ax + b)(cx + d)−1.

2.12.2.3 Some Results167

The Vahlen matrices form a group under matrix multiplication: the Vahlen group.
The Vahlen group has a normalized subgroup in which condition (c) is replaced by
(c′) ad̃ − bc̃ = ±1. The normalized Vahlen group is a fourfold, or rather double
twofold, covering group of the full Möbius group of Rn. The kernel of the covering
homomorphism consists of

±
(

1 0
0 1

)
, ±

(
e12···n 0

0 −ê12···n

)
,

where e12···n denotes the product of elements of the chosen basis of En. The
sense-preserving Möbius group has a nontrivial twofold covering group formed by
normalized Vahlen matrices with even diagonal (and odd off-diagonal) and pseudo-
determinant ad̃−bc̃ equal to 1. The full Möbius group has a nontrivial twofold cover-
ing group with two components. The nonidentity component consists of normalized
Vahlen matrices with odd diagonal (and even off-diagonal) and pseudodeterminant
ad̃ − bc̃ equal to −1.

2.12.3 Study of the Anti-Euclidean Case En−1(0, n − 1)

We consider a (n − 1)-dimensional anti-Euclidean space. For x ∈ En−1(0, n − 1),
q(x) = −(x2

1 + · · · + xn−1)
2, where q denotes the quadratic form.

2.12.3.1 Definition By definition,168 the sums of scalars and vectors are called
paravectors. Paravectors span the linear space R ⊕ En−1(0, n − 1), denoted by
$Rn = R ⊕ En−1(0, n − 1). As an extension of the Lipschitz group, I. R. Porte-
ous169 introduced the group of products of invertible paravectors $�n.

167 H. Maass,Automorphe Funktionen von mehreren Veränderlichen und Dirichletsche Reihen,
Abh. Math. Sem. Univ. Hamburg, 16, pp. 72–100, 1949.

168 P. Lounesto, op. cit., p. 247.
169 I. R. Porteous, Topological Geometry, op. cit.
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2.12.3.2 Proposition $Rn is isometric to the Euclidean space Rn.

Let x = x0+ x ∈ R⊕En−1(0, n− 1), with x0 ∈ R and x ∈ En−1(0, n− 1). Let
us introduce the quadratic form

q1(x) = xx̄ = x2
0 − q(x) = x2

0 + x2
1 + · · · + x2

n−1,

from which the result can be deduced. K. Th. Vahlen170 originally introduced the
sense-preserving Möbius group of the paravector space $Rn.

2.12.3.3 Definition The matrix
(
a b
c d

) ∈M2(C0,n−1) satisfying the conditions

(a) a, b, c, d ∈ $�n ∪ {0},
(b) āb, bd̄, d̄c, cā ∈ $Rn,

(c) ad̃ − bc̃ = 1,

is a Vahlen matrix with pseudodeterminant ad̃ − bc̃ = 1 of the sense-preserving
Möbius transformation g of $Rn given by g(x) = (ax + b)(cx + d)−1.171

These Vahlen matrices with pseudodeterminant equal to 1 constitute a group that
is a nontrivial twofold covering of the sense-preserving group of $Rn.

2.12.4 Study of Indefinite Quadratic Spaces

In addition to the above literature, we can give the following works: Elstrodt,
Grunewald and Mennicke,172 Fillmore and Springer,173 Gilbert and Murray,174

Hestenes and Sobczyk,175 Lounesto and Springer.176 As already shown, the full
Möbius group of the compactification of En(p, q) has two components (if either
p or q is even), or four components (if both p and q are odd). With Lounesto’s
notation, �p,q stands for the Lipschitz (or Clifford) group and177

Spin+(p, q) = {s ∈ �p,q ∩ C+p,q |ss̃ = 1}.

170 K. Th. Vahlen, op. cit.
171 K. Th. Vahlen, op. cit.
172 J. Elstrodt, F. Grunewald, and J. Mennicke, Vahlen’s groups of Clifford matrices and spin

groups, Math. Z., 196, pp. 369–390, 1987.
173 J. P. Fillmore and A. Springer, Möbius groups over general fields using Clifford algebras

associated with spheres, Internat. J. Theoret. Phys., 29, pp. 225–246, 1990.
174 J. Gilbert and M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis,

Cambridge Studies in Advanced Mathematics, Cambridge University Press, 34–38 and
278–296, 1991.

175 D. Hestenes and G. Sobczyk, Clifford Algebras to Geometric Calculus, D. Reidel, Dordrecht,
the Netherlands, 1984, 1987.

176 P. Lounesto and A. Springer, Möbius transformations and Clifford algebras of Euclidean
and anti-Euclidean spaces, in Deformations of Mathematical Structures, J. lawrynowicz,
ed., Kluwer Academic, Dordrecht, pp. 79–90, 1989.

177 �p,q ={s ∈ Cp,q : (∀x∈En(p, q))sxŝ−1 ∈En(p, q)}, Pin(p, q)={s ∈ �p,q/ss̃= ± 1},
Spin(p, q)=Pin(p, q)∩C+p,q with P. Lounesto’s notations (cf. P. Lounesto, op. cit., p. 220).
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Any Möbius transformation x → (ax+b)(cx+d)−1 of En(p, q), where a, b, c, d ∈
Cp,q , can be represented by a Vahlen matrix

(
a b
c d

)
in M2(Cp,q). More precisely,

the entries a, b, c, d of
(
a b
c d

)
are products of vectors and if invertible belong to the

group �p,q .

2.12.4.1 Proposition The identity component of the Möbius group is generated by
the rotations, translations, dilatations, and transversions, which are represented re-
spectively as follows:

axa−1, a ∈ Spin+(p, q),

(
a 0
0 a

)
,

x + b, b ∈ En(p, q),

(
1 b

0 1

)
,

xδ, δ > 0,

(√
δ 0

0 1√
δ

)
,

x + x2c

1+ 2B(x, c)+ x2c2
, c ∈ En(p, q),

(
1 0
c 1

)
.

The corresponding Vahlen matrices are given on the right.

2.12.4.2 Theorem (J. G. Maks178) Let us consider four Vahlen matrices, which rep-
resent one rotation, one translation, one dilation, and one transversion. A product of
these four matrices, in any order, has always an invertible entry in its diagonal (there
are 4! = 24 such products).

Proof. For instance, in the product(
a 0
0 a

)(
1 b

0 1

)(√
δ 0

0 1√
δ

)(
1 0
0 1

)
=
(

a
√

b + abc√
δ

ab√
δ

ac√
δ

a√
δ

)
,

the lower right-hand diagonal element a/
√

δ is invertible. To complete the proof of the
fact that a product of rotation, a dilatation, and a transversion, in any order, is such
that the Vahlen matrix representing it has always an invertible entry in its diagonal;
one can verify the result in all the remaining 23 cases.

2.12.4.3 The Counterexample of J. G. Maks

In the general case (p �= 0, q �= 0), J. G. Maks179 gave an example of a Vahlen matrix
none of whose entries is invertible and all of which are nonzero. This example will be
given in the exercises and proves that condition (a) has to be modified in the definition
of a Vahlen matrix. Thus, P. Lounesto180 introduces the closure πp,q of �p,q , πp,q

being the set of products of vectors, possibly isotropic of En(p, q).

179 J. G. Maks, op. cit., p. 41.
180 P. Lounesto, op. cit., p. 250.
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2.12.4.3.1 Definition The matrix
(
a b
c d

) ∈M2(Cp,q) satisfying the conditions

(a) a, b, c, d ∈ πp,q ,
(b) āb, bd̄, d̄c, cā ∈ En(p, q),
(c) ad̃ − bc̃ ∈ R \ {0},

is a Vahlen matrix of the Möbius transformation g of En(p, q) given by g(x) =
(ax + b)(cx + d)−1.181

The Vahlen matrices here introduced form a group under matrix multiplication.
The normalized Vahlen matrices, with pseudodeterminant satisfying ad̃ − bc̃ = ±1,
form a fourfold, possibly trivial, covering group of the full Möbius group of En(p, q).
When both p and q are odd, the normalized Vahlen group is a nontrivial fourfold cov-
ering group of the full Möbius group of En(p, q). When either p or q is even, one
can find a nontrivial twofold covering group of the full Möbius group, consisting
of the identity component of the normalized Vahlen group, that is, of normalized
Vahlen matrices with even diagonal and pseudodeterminant equal to 1 and another
component not containing the (nontrivial) preimages of the identity

±
(
e12···n 0

0 ê12···n

)
.

The identity component of the normalized Vahlen group is a twofold (either p or q

is even) or fourfold (both p and q are odd) covering group of the sense-preserving
Möbius group.

2.12.4.3.2 The Counterexample of J. Cnops182

This counterexample will be given in the exercises.

2.13 Exercises

(I) Show Proposition 2.2.1.1.1. Hints: Take into account the definition of the angle θ

between two intersecting real hypersphere, defined as the angle between hyperplanes
tangent to hyperspheres at a common point.

(II) Show Proposition 2.2.1.1.2. Hints: Use an homogeneous equation of π(Y ).

(III) (We follow the method given by Ricardo Benedetti and Carlo Petronio in
their book: Lectures on hyperbolic geometry, op. cit, pp. 10–22.) Show Proposi-
tion 2.3.3.

181 J. P. Fillmore and A. Springer, op. cit.
182 J. Cnops, Vahlen matrices for non-definite matrices, pp. 155–164 in R. Ablamowicz, P.

Lounesto, J. M. Parra (eds.), Clifford Algebras with Numeric and Symbolic Computations,
Birkhäuser, Boston, MA, 1996.
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(1) First case n = 2
(a) Show that if M and N are connected oriented riemannian surfaces (naturally

endowed with complex structures), the set of all conformal diffeomorphisms of M

onto N is the set of all holomorphisms and all antiholomorphisms of M onto N .
(b) Show that the group Conf+(S2) consists of all homographies and the group

Conf(S2) consists of all homographies and antihomorgraphies, where S2 = CP 1 is
naturally identified with the set C ∪ {∞} (where∞ = 0−1) and a homography is a
mapping of CP 1 into itself such as z→ (az+ b)/(cz+ d), and an antihomography
is a mapping of CP 1 into itself such as z→ (az̄+ b)/(cz̄+ d), where

(
a b
c d

)
varies

in GL(2,C).
(c) Then, prove Theorem 2.3.3 for n = 2.

(2) Second case n ≥ 2. U and V are domains in Rn and f : U → V is assumed
to be a conformal diffeomorphism. We say that f : x → λAi(x)+ b is of type (a) if
i is the identity, and of type (b) if i is the inversion with respect to a sphere.

(A) (a) Show thatf is of type (a) if and only ifρf is constant (whereρf = (µf )
−1)

with ‖Dxf (v)‖ = µf (x)‖v‖, for any x ∈ U, v ∈ Rn.
(b) Show that f is of type (b) if and only if there exist x0 ∈ Rn and η ∈ R \ {0}

such that ρf (x) = η‖x − x0‖2.
(B) Show that there exist η, r ∈ R, z ∈ Rn such thatρf (x) = η‖x‖2+B(x, z)+r .
(C) Show that if in the case (B), η �= 0, then for some x0 ∈ Rn, we have

ρf (x) = η‖x − x0‖2.
(D) Show that in the case (B), it cannot occur that η = 0 and z �= 0. According

to (B), we will say that f is of type (α) if η = 0 and z = 0 or of type (β) if η = 0
and z �= 0, of type (γ ) if η �= 0. By (A), if f is of type (α), then it is of type (a) and
(C) and (D) can be respectively be written as follows: If f is of type (γ ) then it is of
type (b). f cannot be of type (β).

(3) Prove the following Corollary: Conf(Sn) consists of all and only all the map-
pings of the form x → µBi(x)+w, where µ > 0, B ∈ O(n), i is either the identity
or the inversion with respect to a sphere and w ∈ Rn.

(IV) Prove Theorem 2.4.1.1. Let (ε, η) be an isotropic base of H, the standard hyper-
bolic plane E2(1, 1) with 2B(ε, η) = 1. Let E = En(p, q).

(1) (a) Show that any element z in F = En(p, q)⊕H, z = x + αε+ βη belongs
to Q(F), the isotropic cone of F , if and only if αβ = −q(x), where q is the quadratic
form onEn(p, q), and that a vectoru = αε+x+βη belongs to the hyperplane tangent
to Q(F) along the generator line Rz0, with z0 = α0ε+ x+β0η, if and only if αβ0+
α0β+2B(x, x0) = 0. We introduce the mappingp : x ∈ E→ p(x) = ε+x−q(x)η.

(b) Let V0 be the intersection of Q(F) with the affine hyperplane ε+(E⊕Rη) and
V = P(V0) where P is the classical projection from F onto its associated projective
space P(F).
Show that M = P(Q(F)\{0}) can be identified with the compactified space obtained
by the adjunction to En(p, q) of a projective cone at infinity.

(2) (a) Show that PO(F ) = O(F)/{I,−I } acts on P(F) and conserves M =
Q̃(F ) = P(Q(F) \ {0}) globally. PO(F ) is called the conformal group of E.
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(b) Show that by passing to the projective space, O(E) can be identified with a
subgroup of PO(F ) of conformal automorphisms of M .

(c) Show that if a belongs to E, there exists ta ∈ O(F) such that for any x in E,
ta(p(x)) = p(x+a) and that ta leaves V0 globally invariant and satisfies the relation
ta+b = ta ◦ tb, for any a, b in E.

(d) Let λ be in R∗+. Show that we can associate with any positive dilation of E of
coefficient λ an operator tλ ∈ O(F) such that tλ(p(x)) = 1

λ
p(λx).

(e) Since the group of similarities S(E) of the affine spaceE is the product of three
subgroups of GL(E): T (E) the group of translations, H(E) the group of positive
dilatations, and O(E); show that we can associate with any s ∈ S(E), ts in O(F),
ts = tλtag, with g ∈ O(F) such that g.ε = ε and g.η = η, with λ ∈ R∗+, a ∈ E. Let
τ be the orthogonal symmetry relative to the unit vector ε + η. Show that τε = −η

and τη = −ε, and that τ leaves E invariant.
(f) Show that s → ts is an isomorphism from S(E) onto the subgroup of ele-

ments of O(F) which let the generator line Rη of Q(F) invariant together with an
orientation of it, and that s → P ◦ ts is an isomorphism from S(E) onto the isotropy
subgroup Sη̃ of the “point at infinity” η̃, in the group PO(F ).

(g) Conclude that M can be identified with PO(F )/S(E).
(h) Show that τ is the orthogonal symmetry relative to the unit vector ε + η.

Show that τε = −η and τη = −ε. Show that τ̃ , the image of τ in PO(F ), cor-
responds in E to the classical inversion with center 0 and power 1. Using a the-
orem of J. Haantjes183 that extends the theorem of Liouville (exercise III, above)
to pseudo-Euclidean standard spaces En(p, q), according to which the only con-
formal transformations of En(p, q), p + q ≥ 3, are products of affine similarities
and inversions, conclude that PO(F ) is the group of all conformal diffeomorphisms
of M .

(V) Prove Proposition 2.5.1.2 and 2.5.1.2.1, that is, ifn = 2r , then eNfr+1(−i)r−pfr+1,
where fr+1 is an (r + 1)-isotropic vector and fr+1eN = (−1)r+1(−i)r−pfr+1.

(VI) In 2.5.1.4 determine the connected components of (Sc)e. Hints: Use the method
and results given in 2.4.2.5 and also the results concerning the connected components
of the classical spinoriality groups recalled in 3.10.

(VII) Prove 2.5.1.5. Hints: Use the method given in 2.5.1.4 and the results con-
cerning the connected components of the classical spinoriality groups recalled
in 3.10.

(VIII) (1) Prove Theorem 2.8.3.2 (structure equation):
(a) If X and Y are horizontal.
(b) If X and Y are vertical.
(c) If X is horizontal and Y vertical.

183 Conformal representations of an n-dimensional Euclidean space with a nondefinite funda-
mental form on itself, Nedel. Akad. Wetensch. Proc., 40, pp. 700–705, 1937.
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Conclude by using the following lemma (prove it): If A∗ is the fundamental vector
field corresponding to an element A of Lie(G), and X is a horizontal vector field, then
[X,A∗] is horizontal.

(2) If both X and Y are horizontal vector fields on P , show that w([X, Y ]) =
−2�(X, Y ).

(3) Prove Bianchi’s identity (Theorem 2.8.3.3): D� = 0.

(IX) cf. 2.8.7.14 Prove the following Proposition: Let E be a fiber bundle with typical
fiber F , associated with a principal bundle P with structure group G, and let H(E) be
an Ehresmann connection on E. If G acts effectively on F and if H(E) satisfies the
following condition—For any differentiable path γ of the base B with origin point
b0 and for any element p0 in the fiber of P in b0, there exists a path (pt ) of P such
that τE

γ ◦ p̃0 = p̃t , where τE
γ is the parallel displacement associated with the path

γ—then there exists a unique principal connection H(P ) on P such that H(E) is the
connection associated with H(P ).

(X) A) Prove Proposition 2.8.8.4 using exercise IX.
B) Prove Proposition 2.8.8.5.

(1) (zt ) being horizontal, we have zt = τγ (z0), where τγ is the parallel displace-
ment associated with the path γt . Let t → pt be the horizontal lift of (γt ) in P with
origin ψ0. Show that τγ = pt ◦ ψ−1

0 and ψt = pt .gt , where (gt ) is a path in G, and
that the path (yt ) in F satisfies ẏt0 = (µ(−g−1

t0
.ġt0))yt0 .

(2) Show that we have ψ̇t0 = ṗt0 .gt0 + pt0 .ġt0 and w(ψ̇t0) = (σ ∗α (w)(γ̇t0)) =
g−1
t0

.ġt0 , whence the equation of the text results. Conclude.
(3) Prove the characterization given in 2.8.8.6.
(4) Prove the result given in Proposition 2.8.8.7.
(5) Find the local expression of example 2.8.8.8.
(6) Show that there is identity between the notion of GL(F)-Ehresmann connec-

tion and that of linear connection on a vector bundle (cf. below XII).
(7) Express the curvature of a GL(F)-Ehresmann connection on a vectorial bun-

dle (M, π,N, F ).
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(8) Study the example 2.8.8.9, in detail:
(a) Give the local expression of H(M).
(b) Determine the curvature �̃ of the affine Ehresmann connection H(M).
(9) Study the particular case of an affine Ehresmann connection on a vectorial

fiber bundle.
(a) Prove the following result: Let i be the N -principal morphism from P into

P ×GL(E) A(E) defined by i(p) = (p, e), p ∈ P . Then (i) and (ii) are equivalent:
(i) there exists a connection with the form w̃ on P ×GL(E) A(E).
(ii) there exists a connection with the form w and a 1-form θ with values in E,

horizontal and of type GL(E) on P .
(b) We assume now dim E = dim N = n. Let H(M) be an affine Ehresmann

connection on the vector bundle (M, π,N,E), w the form of connection on the bun-
dle of frames P , and θ the 1-form on P , with values in E, horizontal and of type
GL(Ē) induced by H(M) according to 9 (a). Let p → Hp(t) ⊂ Tp(P ) be the field
of horizontal subspaces induced by the connection of the form w on P . Show that (a)
is equivalent to (b).

(a) For any element p in P , θp is an injective map (or surjective map) from Hp(P )

into E (and then bijective, taking account of the dimension).
(b) There exists a Cartan connection, called affine on P .

(XI) Justify the table of infinitesimal conformal transformations given in 2.9.1.3.3.

(XII) Study of Example 2.8.8.8. Let F be a real vector space of dimension m and
let {ei}i=1,2,...,m be a fixed basis of F . Let (M, π,N, F ) be a differentiable bundle
with structure group GL(F), provided with the structure of a vector bundle by using
diffeomorphisms ϕα,x associated with a GL(F)-trivializing atlas for the transfer of
the structure of a vector space F on the fibers. Let H(M) be a GL(F)-Ehresmann
connection on the vector bundle (M, π,N, F ). H(M) is associated with a connec-
tion with the form w with values in the Lie algebra gl(F ) on the principal associated
bundle P , called the bundle of frames. Let (Uα, ϕα)α∈A be the previous atlas.

(1) (a) Show that the mapping σα : x→ σα(x) = ϕα,x defines a local section over
Uα of the principal bundle of frames.

(b) Show that we can associate with this section a basis of local sections of the
bundle (M, π,N, F ) defined by x → ei(x) = σα(x)ei , called the moving frame of
the bundle (M, π,N, F ).

(c) Let (wi
j ) be the components in the canonical basis (eij ) of gl(F ) of the local

form σ ∗α (w), and {xλ, yi} the system of local coordinates over π−1(Uα), and let φi

be the local 1-form on π−1(Uα) defined by φi = �i
λdx

λ, where �i
λ are the local com-

ponents of the Ehresmann connection H(M) in the system of coordinates {xλ, yi}.
Show that φi = π∗(wi

j ) • yj .
(2) (a) Useα defined in Section 2.11.2.2 to prove the following result: the mapping

∇ is a linear connection on the bundle ((M, π,N, F ) (cf. 2.8.7.4).
(b) Deduce that there is identity between the notion of GL(F)-Ehresmann con-

nection and that of linear connection on a vector bundle.
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(XIII) Links between conformal connections and riemannian connections in
2.9.2.2.2.4.3.

Notation: Let G be a subgroup of Gr(n). We denote by P r(M)/G the quotient
of P r(M) by the right action of G on P r(M), that is, the set of equivalence classes
for the equivalence relation defined on P r(M) by “j r

0 (f2) ≡ j r
0 (f1) if and only if

there exists a ∈ G such that f2 = f1 ◦ a.” We agree to denote by Gr(n)/G the right
quotient of Gr(n) by G. P r(M)/G is a bundle associated with P r(M) with typical
fiber Gr(n)/G. We will denote here by θ̄ the canonical form of P 1(M), to distinguish
it from that of P 2(M); θ̄ = (θ̄1, . . . , θ̄n) is an Rn-valued 1-form such that in any
system of coordinates (xi), we have

θ̄ i

(
n∑

k=1

Xk ∂

∂xk

)
= Xi.

If Ra denotes the right translation of P 1(M), that is, j1
0 (f ) → j1

0 (f ◦ a), where
a ∈ GL(n,R), we have R∗a θ̄ = ad(a−1)θ̄ = a−1θ̄a. If p : P 2(M) → P 1(M) de-
notes the canonical projection j2

0 (f )→ j1
0 (f ) and if (θ i, θ i

j ) denote the components

of the canonical form of P 2(M) in the canonical basis of Rn ⊕ gl(n,R), we have
p∗θ̄ i = θi , 1 ≤ i ≤ n. Let us recall (cf. 2.9.2.2.1.6) that a riemannian structure on M

is a reduction to O(n) of the structure group of P 1(M). Then it is a subbundle O1(M)

of P 1(M) with structure group O(n). We know also that the datum of such a reduction
is equivalent to that of a cross section of the bundle P 1(M)/O(n), (associated with
P 1(M), with typical fiber GL(n,R)/O(n)).

(1) Show that there exists a canonical bijective mapping between the subbundles of
P 1(M) with structure group O(n) and the subbundles of P 2(M) with structure group
O(n). Now we can assume that the riemannian structure of M is defined by a subbun-
dle of P 2(M) with structure group O(n), which we agree to denote simply by O(M).
By restriction to O(M) of the fundamental form θ , we obtain forms (θ̄ i , θ̄ i

j ) such that

θ̄ i
j is in the Lie algebra of O(n) and thus skew-symmetric relative to the indices i and

j . The forms (θ̄ i , θ̄ i
j ) are the forms of the riemannian connection of M and satisfy

dθ̄ i = −
∑
k

θ̄ i
k ∧ θ̄ k,

and the curvature form �̄i
j of the riemannian connection is defined by

dθ̄ i
j = −

∑
k

θ̄ i
k ∧ θ̄ k

j + �̄i
j . (1)

The forms �̄i
j vanish on the fibers, since the restrictions to the fibers of O(M) of the

forms θ̄ i , θ̄ i
j can be identified with the Maurer–Cartan forms of O(M). The method

is the same as that used for the �i
j and �i . We can now set

�̄i
j =

1

2

∑
k,h

Ri
jkl θ̄

k ∧ θ̄ h.
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The tensor obtained is the curvature tensor of O(M).
(2) Conformal structure associated with O(M).
(a) Verify that according to Proposition 2.9.2.2.1.2 above, any riemannian struc-

ture O(M) induces a conformal structure P(M).
(b) Show that we have onO(M) the relationswi = θ̄ i , wi

j = θ̄ i
j withwi

j+w
j
i = 0

and that the restrictions of the forms wj to the fibers of O(M) vanish.
(3) Prove the following result: two riemannian structures O(M) and O(M ′) deter-

mine the same conformal structure if and only if the riemannian associated “metrics”
are conformal.

(4) Prove now the result given in 2.10.5.2: x′(t) is an eigenvector of the corre-
sponding Ricci tensor.

(XIV) Study of 2.11.2.2.3.2, 2.9.2.2.3.2, 2.9.2.2.3.3, 2.9.2.2.3.5. Prove the four given
propositions.

(XV) Justification of Elie Cartan’s presentation (2.10.2.1). It is enough to prove the
existence of a unique local section σ of P(M) such that the forms σ ∗θi are given
forms wi , which constitute a basis of the cotangent space to M , and that with notation
of 2.10.2,

σ ∗θ̃0
0 = σ ∗θi

i =
1

n

n∑
i=1

σ ∗θi
i = 0.

We start from any local section s such that s∗θi = wi, 1 ≤ i ≺ n.
(1) As in Section 2.2, let us consider the Möbius group M̃n, which acts on the

Möbius space Qn. Any element of M̃n corresponds to a couple of opposite matrices
(V ,−V ) in O(q), with notation of 2.2, such that tV qV −1 = q (1), where q denotes,
abusively, the matrix of the form q.

(a) Show that (1) can be expressed explicitly by the (n+ 2)(n+ 3)/2 relations

n∑
r=1

n∑
s=1

grsVriVsj − V0iVn+1,j − V0jVn+1,i = qij , (2)

with qij = gij , if i, j ∈ {1, 2, . . . , n}, qij = −1 if (i, j) = (0, n + 1) or (i, j) =
(n+1, 0), andqij = 0 in all the other cases, that is, i = 0 orn+1 and j ∈ {1, 2, . . . , n},
j = 0 or n+ 1, and i ∈ {1, 2, . . . , n}, (i, j) = (0, 0), (i, j) = (n+ 1, n+ 1).

(b) Let M̃1(n) be the subset of M̃(n), the Möbius group consisting of matrices V

of the form 
1 a1 · · · an b0

0 b1

... δij

...

0 · · · · · · · · · bn

0 0 · · · 0 1

 such that for i = 1, 2, . . . , n, (3)

ai =
n∑

j=1

gij b
j and b0 = 1

2

n∑
i=1

n∑
j=1

gij b
ibj .
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Show that M̃1(n) is a commutative and invariant subgroup of O(q) isomorphic to Rn.
(c) Show that with notation of 2.2, if X = (X0, . . . , Xn+1), with the “point

sphere” π(X), the transformation associated with the matrix V associates the “point
sphere” Y defined by

Y i =
n+1∑
k=0

VikXk.

(d) Since gijX
iXj − 2X0Xn+1 = gijY

iY j − 2Y 0Yn+1 = 0, we can put
yi = Y i/Y 0 for 1 ≤ i ≤ n and express the Cartesian coordinates yi of the cen-
ter of π(Y ) in terms of the coordinates xi = Xi/X0 of the center of π(X) by

yi = Vi0 +∑
k Vikx

k + 1
2Vi,n+1

∑
j

∑
k x

j xk

V00 +∑
k V0kxk + 1

2V0,n+1
∑

j

∑
k x

j xk
(i, j, k = 1, . . . , n).

If V00 �= 0, we can put ai = Vi0/V00, ai = V0i/V00, a
i
k = Vik/V00 and thus deter-

mine yi in terms of xi, ai, a
i
k, a

i .

(e) Since all the isotropy groups are isomorphic to one another, show that M̃∞ is
the group of affine similarities of Rn, which correspond to matrices V of the form

V00 V01 · · · V0,n+1

0
...

...
...

0 · · · 0 Vn+1,n+1


with V00Vn+1,n+1 = 1,

n∑
r,s=1

grsVriVsj = gij for i, j ∈ {1, 2, . . . , n},
∑
r,s

grsVriVs,n+1 = Vn+1,n+1V0i (1 ≤ i ≤ n),

∑
r,s

grsVr,n+1Vs,n+1 = 2V0,n+1Vn+1,n+1.

(f) Show that for a matrix of type (3), the corresponding transformation is such that

yi = xi + 1
2b

i‖x‖2

1+∑
akxk + 1

2b
0‖x‖2

, with ‖x‖2 =
∑
ij

gij x
ixj .

(g) Show that any Möbius transformation can be written as the composite s ◦ ϕ
of an affine similarity s and a transformation ϕ in M1(n).

(h) Show that the Möbius space Qn can be identified with the homogeneous space
M̃(n)/M̃0(n) or M̃(n)/M̃∞(n), where M̃0(n) denotes the isotropy subgroup of the
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origin and M̃∞(n) the isotropy subgroup of the point at infinity,∞, and that M̃∞(n)

and M̃0(n) are of dimension n2+n+2
2 .

(i) Study the case of the canonical Euclidean structure gij = δij .

(1) Determine the Lie algebras of M̃(n) and M̃0(n).
(2) Using the results given in 1(b), show that if s : U → P(M) is a local given

section, there exists a unique mapping a : U → M1(n) such that

σ ∗θ̄0
0 = −

1

n

n∑
i=1

σ ∗θi
i = 0.

A moving normal frame is a moving conformal frame Ap such that the forms (w
q
p)

defined by

dAp =
n+1∑
q=0

w
q
pAq satisfy w0

0 = wn+1
n+1 = 0.

We agree to denote simply by s = (Ap) the conformal moving frame associated with
a section s of P(M).

(3) Show that if (wi)1≤i≤n is a system of differential forms over an open set U
of M that constitute a moving tangent coframe, there exists a unique normal moving
frame σ = (Ap) such that σ ∗θi = wi (1 ≤ i ≤ n), which is equivalent to

dA0 =
n∑

i=1

wiAi.

The normal frame σ = (Ap) is said to be associated with the tangent coframe (wi).
(4) Let σ = (Ap) be the normal moving frame associated with the coframe (wi)

over U and let ρ be a numerical nonvanishing function on U . The normal moving
frame σ̄ = (Āp) associated with the coframe (w̄i = ρwi) is then given by

Ā0 = ρA0, Āi = Ai + ρaiA0, Ān+1 = ραA0 +
n∑

i=1

aiAi + 1

ρ
An+1,

where the functions ai and α are respectively defined by

dρ

ρ2
=

n∑
i=1

aiw
i, α = 1

2

∑
(ai)

2.

σ̄ is said to be deduced from σ by a dilation of the coefficient ρ.

(XVI) 2.10.4 Change of frames
(1) Prove the following result: if γ is a path in M , there exists a normal moving

frame (Bp) associated with γ such that the functions π
j
i of the differential system

vanish completely.
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(a) First study the case that a normal moving frame (Bp) is deduced from a normal
moving frame (Ap) by the relation (1) of 2.10.4, and write the relations obtained and
study the converse.

(b) Then deduce the result.

(XVII) Study of conformal normal connection. Let w̃ be the 1-form with values in
the Lie algebra po(p + 1, q + 1) of a conformal Cartan connection on a principal
fiber bundle (P̃ , π̃ , N, G̃n+1) with previous notation of 2.9.2.2.3. Then w̃ satisfies
the following relations:

(i) w̃(A∗) = A∀ A ∈ L(G̃n+1) = g̃n+1 (the Lie algebra of G̃n+1).
(ii) R∗g.w̃(X) = adg−1.w̃(X), ∀ g ∈ G̃n+1.
(iii) w̃(X) = 0 is equivalent to X = 0.

Since the Lie algebrapo(p+1, q+1) is isomorphic to the Lie algebra Rn⊕co(p, q)⊕
(Rn)∗ = (Rn) ⊕ g̃n+1, let (w̃i , w̃i

j , w̃
0
i ) be the components in the canonical basis

{ei, eij , ei} of the Lie algebra Rn ⊕ co(p, q) ⊕ (Rn)∗ of the 1-form w̃. Notice that

the form of components (w̃i
j , w̃

0
i ) takes its values in the Lie algebra g̃n+1.

(1) Give the components (�̃i, �̃i
j , �̃

0
j ) in the base {ei, eij , ei} of the 2-form �̃ of

curvature of the Cartan connection defined by �̃ = dw̃ + 1
2 [w̃, w̃].

(2) Show that there exist functions K̃i
kl, K̃

i
jkl, K̃

0
jkl on P̃ such that �̃i = 1

2 ·
K̃i

klw̃
k ∧ w̃l , �̃i

j = 1
2 K̃

i
jklw̃

k ∧ w̃l , �̃0
j = 1

2 K̃
0
jklw̃

k ∧ w̃l .

A conformal Cartan connection on a principal bundle P̃ with structure group
G̃n+1 is called normal if its curvature form satisfies �̃i = 0, i= , 2, . . . , n, �̃i

j = (1/2)

K̃i
jklw̃

k ∧ w̃l with
∑

i K̃
i
j il = 0.

(3) We recall the following classical result (cf. for example Kobayashi S., Trans-
formation Groups in Differential Geometry, op. cit., chapter IV):

Let P̃ a principal bundle with base N and structure group G̃n+1 and let (w̃i , w̃i
j ) be

a system of (n+ n2) differential 1-forms on P̃ such that

(i) w̃i(A∗) = 0 and w̃i
j (A

∗) = Ai
j for any fundamental vector field A∗ generated

by an element (Ai
j , A

0
j ) of the Lie algebra g̃n+1 of G̃n+1.

(ii) R∗g(w̃i , w̃i
j ) = adg−1(w̃i , w̃i

j ), for any g ∈ G̃n+1.

(iii) Vertical vectors are those that satisfy w̃i(X) = 0.

(iv) dw̃i + w̃i
j ∧ w̃j = 0.

Then, there exists a unique system of 1-forms {w̃0
1, . . . , w̃

0
n} on P̃ such that {w̃i , w̃i

j ,

w̃0
j } define a conformal normal Cartan connection on P̃ .

Prove the following result: We can canonically associate with any O(p, q)-
structure O(N) on N a normal Cartan connection on the principal bundle Õ(N) =
O(N)×O(p,q) G̃n+1.

(4) Study the case of the Cartan connection associated with a CO(p, q)-structure
on N .
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(XVIII) (1) Prove Theorem 2.10.5.3.
(2) Prove Theorem 2.10.5.5.
(3) Prove Theorem 2.11.2.1.2.
Hints.

• Use ψα,x : En+2 → (M1)x, associated with the trivializing atlas (Uα,ψα)α∈A of
ζ1 to determine bijective mappings ψ̄α,x : Mn→ M̄x.

• Show that the mappings (x, z̄) �→ ψ̄α,x(z̄) are bijective, that ψ̄−1
α ◦ ψβ are bi-

jective and that ψ−1
α ◦ ψβ are diffeomorphisms of (Uα ∩ Uβ) ×Mn. Prove that

there exists a unique structure of manifold over M̄ such that ξ = (M̄, π̄, N,Mn)

is a C∞ differentiable bundle. Prove that the principal bundle associated with ξ

is isomorphic to bundle P̄ . Use the local chart of Mn defined in 2.9.1.3.1 and the
mappingu defined in 2.4.2.2.1, to define a morphism of differentiable bundles ϕ̄ as
follows: (We recall that for any y ∈ En we have ϕ̂−1(y) = u(y)) let y ∈ En,∈ Px

and p(y) = yx.Then we put φ̄(yx) = i(p)u(y). i(p) is identified with an element
of the principal bundle associated with ζ, that is a diffeomorphism from Mn onto
M̄x — cf. footnote 154. Prove that ϕ̄ : M → M̄ sends a fiber into a fiber and there-
fore is an N–morphism of differentiable bundles and then a local diffeomorphism.
Conclude.

(XIX) Study of 2.11.2.3.4. Let N be a pseudo-riemannian manifold provided with a
“metric” g of type (p, q). Let ξ = (T (N), π,N) and P be the principal bundle of
orthonormal frames of N .

(1) First, show that the normal Cartan connection associated with the O(p, q)

structure on N defines a conformal generalized connection on the tangent bundle to
N , which is called a normal conformal generalized connection.

(2) Let (ei) be a moving orthonormal frame of ξ . We can canonically associate a
local section S of P with (ei). Show that the local 1-forms of the normal generalized
connection are in the moving frame (ei):

(νi = S∗ • θi; νi
j = S∗ • wi

j ; ν0
j = S∗ • w0

j ),

where the (w0
j ) are the 1-forms on P defined by w0

j = i∗1 (w̃0
j ), with previous

notation.
(3) (a) Show that the {νi} constitute the dual basis of the local basis of vector

fields on N determined by the {ei}.
(b) Show that the {νi

j } are the local components in the moving orthonormal frame
{ei} of the Levi-Civita connection.

(c) Show that the {ν0
j } are defined by

ν0
j =

( −1

n− 2
Rjl + R

2(n− 1)(n− 2)
gjl

)
νl,

where the {Rjl} are the local components of the Ricci tensor in the moving frame {ei}
and R is the riemannian scalar curvature and that the local curvature 2-forms (Ni

j )

of the normal generalized connection satisfy Ni
j = (1/2)Ai

jklν
k ∧ νl , where the Ai

jkl

are the local components in the moving frame {ei} of the Weyl tensor.
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(XX) Prove Proposition 2.11.2.2.8. For the necessary condition use formulas (10)
in 2.11.2.2.7. For the converse, use the covering (Uα) of N , where each Uα is the
domain of definition of a moving frame of ξ, and over each Uα 1–forms satisfying
the relations (12) and (14) over any Uα ∪ Uβ. Conclude.

(XXI) 2.11.2.3.5.
(A) Equations of electromagnetic field in classical general relativity.

A. Lichnerowicz, in “Theories relativistes de la gravitation et l’electromagnetisme,”
op. cit., shows that in the case of a charged particle in an electromagnetic field such
that the ratio of the charge to the mass is a constant k = e/m, the motion is subordinate
to the equations

d2xi

ds2
+ �i

jl

dxj

ds

dxl

ds
= kF i

j

dxj

ds
,

where �i
jk are the Christoffel symbols of the riemannian connection ∇ on the man-

ifold V4 of general relativity and where the “metric” is of type (1, 3) and where
(xi)i=1,2,3,4 constitute a system of local coordinates of V4 and where F i

j are relative
to the skew-symmetric doubly covariant tensorF that defines the electromagnetic field
and satisfies Maxwell’s equations ∇kF

kj = J j , where (J j ) denote the components
of the electric current and 1

2η
jkli∇jFkl = 0, where (ηjkli ) denote the components of

the 4-form element of volume of the orientable manifold V4. It is shown that the last
equation implies the local existence of a potential vector ϕi such that

Fij = ∂iϕj − ∂jϕi .

We introduce the conformal generalized connection on T (V4) defined locally by

DX = dXi + wi
jX

j + w0
j

(
1

2
gjiX2 −XjXi

)
· ∂xi,

where X = X∂xi with wl
j = �i

jkdx
k and w0

j = −2Fjkdx
k .

(1) Show that D is defined intrinsically.
(2) With the previous assumptions, show that the trajectory of the considered par-

ticle is the path u→ xu of V4 that satisfies that Dx′ux
′
u vanishes identically, ds/du =

k = e/m, where s is the length of the path, and x′u is the tangent vector to the path x(u).
(B) Let S be a conservative dynamical system with holonomic complete con-

straints, with n degrees of freedom satisfying the hypothesis of Painlevé. Let V be
the space of configuration and let (qi)i=1,2,...,n be a system of local coordinates of V .
Let L = T2 + T1 + T0 + U be the Lagragian of the system.

(1) Show that in the system of coordinates (qi, q̇i ) of T (V ) we have L =
(1/2)gij q̇

i q̇j + bi q̇
i + T0 + U , with det((gij )) �= 0.

(2) Since we assume that Painlevé’s hypothesis are realized, L is such that
∂L/∂t = 0 and then T2 − T0 − U = h, with h ∈ R. We consider D, the gener-
alized conformal connection on T (V ), as the space of states locally defined by

DX = dXi + wi
jX

j + w0
j

(
1

2
gijX

2 −XiXj

)
∂qi ,
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where X = Xi∂qi with wi
j = �

′i
jkdq

k , where �
′i
jk are the Christoffel symbols as-

sociated with the “metric” g′ = ρg, where ρ = 2(T0 + U + h) (we assume that
T0 + U + h > 0), and w0

j = �0
jkdq

k with �0
jk = 2(∂khj − ∂jhk).

(a) Show that the trajectories corresponding to the energy h are the paths t → xt
of V that satisfy Dx′t (ρ−1x′t ) = 0.

(b) Show that the corresponding time law is given by ds/dt = √ρ, where s is
the corresponding length of the curve.

(c) Find again the classical Lagrange equations:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0.

(3) Study the case that T1 vanishes identically, where D is the Levi-Civita con-
nection on V and where w0

j = 0, and find the classical Maupertuis principle.

(XXII) The counterexample of J. G. Maks and the counterexample of J. Cnops.
(A) Consider the Minkowski space-time E4(3, 1) and its Clifford algebra gener-

ated by e1, e2, e3, e4 satisfying (e1)
2 = (e2)

2 = (e3)
2 = 1, (e4)

2 = −1. Consider
the Vahlen matrix

W = 1

2

(
1− e14 −e1 + e4
e1 + e4 1+ e14

)
with entries in C3,1.

(a) Justify the isomorphism C3,1 	 M(4,R).
(b) Verify that all the entries of W are noninvertible.
(c) Verify that the matrix W is connected to the identity.
(d) Conclude that W is a Vahlen matrix where none of the entries are invertible

and all are nonzero.
(B) Consider the Minkowski space-time E4(3, 1) and its Clifford algebra isomor-

phic to M(4,R) and consider the Vahlen matrix

C = 1

2

(
1+ e14 (e1 + e4)e23

(−e1 + e4)e23 1− e14

)
.

It satisfies a, b, c, d ∈ π3,1, ad̃ − bc̃ = 1, and ab̃, b̃d, dc̃, c̃a = 0 ∈ E(3, 1), but
even then āb, bd̄, d̄c, cā /∈ E(3, 1). The mapping gC(x) = (ax + b)(cx + d)−1 is
conformal. If the matrix C is multiplied on either side by

D = 1√
2

(
1+ e1234 0

0 1− e1234

)
,

then B = CD = DC is such that gB(x) = gC(x) for almost all x ∈ E(3, 1). Further-
more, B satisfies āb, bd̄, d̄c, cā ∈ E(3, 1). The matrices satisfying a, b, c, d ∈ π3,1,
ad̃ − bc̃ = 1, and ab̃, b̃d, dc̃, c̃a ∈ E(3, 1) do not form a group, but only a set that is
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not closed under multiplication. This set generates a group that is the Vahlen group
with norm 1 multiplied by the group consisting of the matrices(

cosϕ + e1234 sin ϕ 0
0 cosϕ − e1234 sin ϕ

)
.

All these matrices are preimages of the identity Möbius transformation.
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3

Pseudounitary Conformal Spin Structures

The third chapter deals with pseudounitary spin geometry and pseudounitary con-
formal spin geometry. First we present pseudounitary conformal structures over
a 2n-dimensional almost complex paracompact manifold V and the correspond-
ing projective quadrics H̃p,q associated with the standard pseudo-hermitian spaces
Hp,q . Then we develop a geometrical presentation of a compactification for pseudo-
hermitian standard spaces in order to construct the pseudounitary conformal group
of Hp,q denoted by CUn(p, q). We study the topology of the projective quadrics
H̃p,q and the “generators” of such projective quadrics. We define the conformal
symplectic group associated with a standard real symplectic space (R2r , F ), de-
noted by CSp(2r,R), where F is the corresponding symplectic form such that
CUn(p, q) = CSp(2r,R) ∩ C2n(2p, 2q), with the notation of Chapter 2.

The Clifford algebra Clp,q associated with Hp,q is defined. The corresponding
spinor group Spin U(p, q) and covering group RU (p, q) are defined. A fundamental
commutative diagram of Lie groups associated with RU (p, q) is given: a character-
ization of U(p, q) is given that gives another covering group �U(p, q) of U(p, q).
The space S of corresponding spinors is defined and provided with a pseudo-hermitian
neutral scalar product. The embeddings of spinor groups and corresponding projective
quadrics are revealed.

Then, by using the results of Chapter 2, conformal flat pseudounitary geometry
is studied. Two fundamental diagrams associated with CUn(p, q) are given. We
introduce and give a geometrical characterization of groups called pseudounitary
conformal spinoriality groups.

The study of conformal pseudounitary spin structures over an almost complex
2n-dimensional manifold V is now presented. The part played by the groups called
pseudounitary conformal groups is emphasized.

Exercises are given.
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3.1 Pseudounitary Conformal Structures1

3.1.1 Introduction

Let V be an almost complex 2n-dimensional paracompact manifold. We know that
any tangent space at V at a point x : Tx inherits a pseudo-hermitian structure of type
(p, q), p+ q = 2n by the datum of f , a pseudo-hermitian sesquilinear form of type
(p, q). Such fields are differentially dependent on x ∈ V . We say that V is endowed
with an almost pseudo-hermitian structure.

Any almost complex manifold inherits an almost pseudo-hermitian structure and
an almost symplectic one. Over an almost pseudo-hermitian manifold, the set of
normalized orthogonal bases suitable for the almost pseudo-hermitian structure con-
stitutes a principal bundle with structure group U(p, q). (So, any almost complex
manifold has its principal associated bundle of bases reducible to U(p, q).)

Conversely, as in Lichnerowicz2 for the case of almost hermitian structures, one
can show that if over a 2n-dimensional manifold, there exists a real 2-form of rank
2nF , there exists an almost pseudo-hermitian structure such thatF is the fundamental
2-form and V inherits an almost pseudo-hermitian structure (and then an almost
complex structure).

3.1.2 Algebraic Characterization

At any point x ∈ V , the tangent space Tx is equipped with a sesquilinear hermitian
form f that determines the pseudo-hermitian scalar product of type (p, q). Tx is
thus isomorphic to a standard space Hp,q of type3 (p, q) with p + q = 2n = n′
(Hp,q = (Cn′ , f ), f sesquilinear pseudo-hermitian form of type (p, q)). Let Cn′ ,
n′ = p + q be equipped with f . We write f (x, y) = R(x, y) + iI (x, y). We can
verify that sesquilinearity implies that

R(ix, iy) = R(x, y); I (ix, iy) = I (x, y),

I (x, y) = R(x, iy) = −R(ix, y); R(x, y) = I (ix, y) = −I (x, iy).

If, moreover, we assume that f is hermitian, we find that R(x, y) = R(y, x) and
I (x, y) = −I (y, x). We recall also that if f is hermitian (resp. skew-hermitian),
then if is skew-hermitian (resp. hermitian).

1 3.1 up to 3.8 have been published: cf. Pierre Anglès, Advances in Applied Clifford Algebras,
14, no. 1, 1, pp. 1–33, 2004. The following sections constitute the matter of another paper:
Pierre Anglès, Pseudounitary conformal spin structures, to appear in the Proceedings of
ICCA7, the seventh International Conference on Clifford Algebras and their Applications,
May 19–29, Université Paul Sabatier, Toulouse, France.

2 A. Lichnerowicz, Théorie globale des connexions et des groupes d’holonomie, Edition
Cremonese, Rome, 1962.

3 R. Deheuvels, Formes quadratiques et groupes classiques, Presses Universitaires de France,
Paris, 1980.
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We know that there is identity between the datum of a complex vector space
structure and that of a real vector space equipped with a linear operator J such
that J 2 = −Id. It is classical that for an n-dimensional complex space E, E is
identical (naturally isomorphic) to (RE, J ), where RE is the 2n-dimensional real
space obtained by reductions of scalars of E to real numbers and J is the complex
conjugation, i.e., an R-linear operator in E such that J 2 = −Id. (Cf. for example,
R. Deheuvels, Formes quadratiques et groupes classiques, op. cit., pp. 210–211.)

We will use special results of C. Ehresmann given in the following references: a)
Sur la Théorie des espaces fibrés, Coll. Int. du C.N.R.S., Top. Alg., Paris, 1947, pp.
3–35; b) Sur les variétés presque complexes, Proc. Int. Congr. Math. For a more recent
discussion cf. also the following remarkable publication: P. Liebermann and C. M.
Marle,. Geometrie Symplectique, Bases Théoriques de la Mécanique, t.1, U.E.R.
Math., Paris 7 (1986), chapter 1. The proofs are given in the Appendix 3.13.2.

LetW be ann-dimensional complex space. We recall (cf. Chapter 1) that a pseudo-
hermitian form on W is a mapping n from W × W into C such that (i) for any
fixed y ∈ W the mapping x �→ η(x, y) is C-linear, (ii) for all x, y ∈ W we have
η(x, y) = η(y, x) (the complex conjugate of η(x, y)). η is said to be nondegenerate
if for any x ∈ W, x �= 0, there exists y ∈ W such that η(x, y) �= 0. η is said to be
hermitian if for any x �= 0 we have η(x, x) > 0. If η is hermitian, then, automatically,
it is nondegenerate.

Let η be a pseudo-hermitian form onW, and letG and� be R-bilinear, real-valued
forms on W defined by G(x, y) = Re(η(x, y)) and �(x, y) = −Im(η(x, y)). Then
G is symmetric and � is skew–symmetric, any of them is nondegenerate if and only
if η is nondegenerate, and G is positive definite if and only if η is hermitian.

A real linear operator J on a real vector space V such that J 2 = −Id is called
a complex operator on V. V admits such an operator if and only if V is even-
dimensional. In such a case V can be given a complex structure by defining mul-
tiplication by a complex number z = a + bi a, b ∈ R as (a + bi)x = ax + bJx.
If (V ,�) is a symplectic space, where V is an even-dimensional real vector space
and � a non-degenerate skew–symmetric bilinear form on V, then a complex op-
erator J on V is said to be pseudo-adapted (resp. adapted) to � if there exists
a pseudo-hermitian (resp. hermitian) form η on (V , J ) such that � = −Imη.

It follows immediately from the definition that J is pseudo-adapted to � if and
only if J is a symplectic isomorphism that is it satisfies the following condition:
�(Jx, Jy) = �(x, y),∀x, y ∈ V. If such a condition is satisfied, the form η defined
for any x, y ∈ V by η(x, y) = G(x, y)− i�(x, y), where G(x, y) = �(x, Jy), is
pseudo-hermitian, the unique pseudo-hermitian form such that � = −Imη. Using
these facts we can give the following result the proof of which will be given in the
Appendix 3.13.2.

3.1.2.1 Theorem. Let (V ,�) be a symplectic space and let J be a complex operator
on V that is pseudo-adapted to �, with � = −Imη and G(x, y) = −�(x, Jy) as
described above. The unitary group U(V, η) satisfies then the following relation:

U(V, η) = Sp(V,�) ∩O(v,G).
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In particularU(p, q) is the set of all elementsu ∈ SO(2p, 2q) such thatu◦J = J ◦u,
and also U(p, q) = SO(2p, 2q) ∩ Sp(2(p + q),R).

3.1.3 Some remarks about the Standard Group U(p, q)4

SU (p, q) denotes the subgroup of elements of U(p, q) with determinant equal to 1.
U(p, q)/SU (p, q) is isomorphic to U(1), the center of U(p, q), for p + q = n > 1
and the index ν—as usually defined as the dimension of maximal totally isotropic
spaces such that 2ν ≤ n—such that ν ≥ 1, consists of dilatations x → λx such that
λλ̄ = 1 and λn = 1.5 The center of U(p, q) will be denoted by U(1). I as used in
the special case of U(r) by S. Kobayashi, Differential Geometry of Complex Vector
Bundles, p. 14, Proposition 4.21, Princeton University Press, 1987.

3.1.4 An Algebraic Recall

It is classical6 that any pseudo-hermitian form h on a complex finite dimensional
space E satisfies the following property (known as the law of inertia):

For any basis {e1, . . . , en} that diagonalizes h, the number p of vectors ej for
which h(ej , ej ) > 0, the number q of vectors ek for which h(ek, ek) < 0, the
number r of vectors el for which h(el, el) = 0, are independent of the basis. h is said
to be of type (p, q).

3.1.5 Connectedness

We recall the following classical result: The groups U(p, q) and SU (p, q) are
connected.

3.1.6 General Definitions

Let V be an almost complex 2n-dimensional manifold and let us denote by Tx the
tangent space at x ∈ V to V and H(Tx) the real space of hermitian forms on Tx .

3.1.6.1 Definition Apseudounitary conformal structure of type (p, q), p ≥ 0, q ≥ 0,
p + q = 2n = n′, on V is the datum in any point x of a line Cx of H(Tx) formed
by the scalar multiples of a hermitian form of type (p, q) that satisfies the following
local lifting axiom: “There exists an open covering (Vi)i∈I of V and on any Vi an
analytic section y ∈ Vi → hi

y ∈ H(Ty) such that hi
y ∈ Cy for all y ∈ V .”

4 Cf., for example, R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit., pp.
227–284, and J. Dieudonné, (a) La Géométrie des Groupes Classiques, op. cit., (b) On the
Structure of Unitary Groups, op. cit. (c) On the Automorphisms of the Classical Groups, op.
cit., (d) Sur les Groupes Classiques, op. cit., pp. 63–84.

5 J. Dieudonné, Sur les Groupes Classiques, op. cit., p. 69.
6 R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit., p. 232, for example.
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3.1.6.2 Definition A conformal isometry from V onto V ′, both equipped with a
pseudounitary structure of type (p, q), is an analytic diffeomorphism from V onto V ′
such that �(Cx) = C�(x) for any x ∈ V . We recall that any pseudo-hermitian form
can be written as the difference of two hermitian positive-definite forms.

An almost pseudo-hermitian structure on V determines an associated conformal
pseudo-hermitian structure of type (p, q). According to Deheuvels,7 the set of hermi-
tian positive forms over Tx is a convex coneP ofH(Tx), and the set of strictly positive

forms over Tx is a convex cone
◦
P ofH(Tx) andH(Tx) = P−P

df= {a−b : a, b ∈ P }.

3.2 Projective Quadric Associated with a Pseudo-Hermitian
Standard Space Hp,q

Let E = Hp,q be the standard pseudo-hermitian space Cp+q equipped with the
classical pseudo-hermitian scalar product

f (x, y) =
p∑

i=1

xi ȳi −
p+q∑

k=p+1

xkȳk,

the unitary group of which is called pseudounitary group of type (p, q) and denoted
by U(p, q). The affine space associated with E inherits an almost pseudo-hermitian
manifold structure by defining the scalar product in the vector space Ex = x +E, of
vectors with origin x, by translation of the pseudo-hermitian scalar product of E.

Let us introduce the hermitian semiquadratic form r associated with the pseudo-
hermitian sesquilinear form f . We know that r defined for any x ∈ E by r(x) =
f (x, x) is such that r(λx) = |λ|2r(x), for all λ ∈ C. Moreover,

r(x) = f (x, x) =
p∑

i=1

|xi |2 −
p+q∑

k=p+1

|xk|2.

The function r takes real values. We set p + q = n′.
Let us introduce the isotropic cone Q minus its origin, which constitutes a singular

submanifold of Hp,q = E, defined by x ∈ Q⇔ r(x) = 0. Indeed, at any point y �= 0
of a generator line Cx of Q, the affine hyperplane Ty tangent at y to Q is identical to
the hyperplane T = y⊥ with equation:

x1ȳ1 + · · · + xpȳp − xp+1ȳp+1 − · · · − xp+1ȳp+1 = 0,

which is singular with radical T ⊥ ∩ T = (y⊥)⊥ ∩ T = Cy.
Any affine subspace Sx , with origin x, complementary to the line Cx in Tx is :

Sx = x + S—translation of a complement S of Cx in T . S is a regular space of
type (p − 1, q − 1). The natural map u ∈ S → umod x ∈ T/Cx from S into the
quotient space T/Cx induces a natural hermitian quadratic form on T/Cx and the

7 R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit., p. 230.
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vector subspace Sx of vectors with origin x is a regular subspace of Tx equipped with
a hermitian form of type (p − 1, q − 1) isomorphic to T/Cx.

Let P be the classic projection from E \ {0} into its associated projective space
P(E). We assume that x1 �= 0. We can take x2/x1, . . . , xp+q/x1 for coordinates at
x̃ = P(x). Let y = (y1, . . . , yp+q) ∈ Hp,q . We can express dPx as

dPx(y) =
(
y2x1 − y1x2

(x1)2
, . . . ,

yp+qx1 − y1xp+q

(x1)2

)
.

We observe that the tangent vectors {y at x} and {(λy) at (λx)} have the same image,
with ker dPx = Cx. dP establishes natural linear isomorphisms: dPλx from (Tλx/Cx),
λ �= 0, onto Tx̃ , and Tx̃ is equipped with a pseudo-hermitian form of signature
(p − 1, q − 1).

3.2.1 Definition The projective quadric Q̃ = Q̃(Hp,q)—dim Q̃ = p + q − 2—is
naturally equipped with a pseudounitary conformal structure of type (p−1, q−1). By
definition, such a quadric is called the projective quadric naturally associated with the
hermitian space Hp,q . We agree to denote by H̃p,q the projective quadric associated
with Hp,q .

3.2.2 Remark Let us introduce RHp,q = E1, the real vector space subordinate to
Hp,q and the isotropic cone minus its origin C1

2n′ of E1. Since r(x) = 0 for x ∈ Hp,q

is equivalent to R(ξ, ξ) = 0, we can identify the isotropic cone of Hp,q with that of
E1, which has equation

p∑
j=1

{(ξ j )+ (ξn′+j )2} −
p+q∑

j=p+1

{(ξ j )2 + (ξn′+j )2} = 0.

Introduce the natural projective space P(E1) associated with E1 and the projective
quadric Q̃(E1) = P(C1∗

2n′) in P(E1). Q̃(E1) is naturally equipped with a pseudo-
riemannian conformal structure of type (2p−1, 2q−1). Such a quadric real realization
of Q̃(Hp,q) can be associated with Hp,q .

3.3 Conformal Compactification of Pseudo-Hermitian Standard
Spaces Hp,q , p + q = n

3.3.1 Introduction

LetH = H1,1 be the complex hyperbolic space equipped with an isotropic basis (ε, η)
such that, 2f (ε, η) = 1 (f denotes the pseudo-hermitian form on H ). The direct
orthogonal sum F = Hp,q ⊕H = Hp,q ⊕H1,1 is a pseudo-hermitian standard space
of type (p+ 1, q + 1). Let us introduce the isotropic cone Q(F), dim Q(F) = n+ 1
and the projective quadric Q̃ = P(Q(F)\{0}) = M1 in the projective space P(F)

with dim M1 = n. R denotes the real part of f .



www.manaraa.com

3.3 Conformal Compactification of Pseudo-Hermitian Standard SpacesHp,q ,p+q = n 211

Let us recall that Hp,q = Cp+q is identified with R2(p+q) according to the previ-
ous process, R2(p+q) equipped with the following basis: {e1, . . . , en, J e1, . . . , J en},8
an orthonormal basis adapted to the complex structure determined by the R-linear
map J such that J 2 = −Id. In the same way, we identify H1,1 with R4 of type
(2, 2) with the basis {e0, J e0, en+1, J en+1}, an orthonormal adapted basis such that
e2

0 = 1 = (J e0)
2; e2

n+1 = −1 = (J en+1)
2.

The datum of z = αε + x + βη ∈ F = Hp,q ⊕ H with αβ ∈ C and x ∈
Hp,q is equivalent to that of Z = ae0 + ben+1 + cJ e0 + dJen+1 + x with Z ∈
R2n+4(2p + 2, 2q + 2), X ∈ R2n(2p, 2q) and a, b, c, d,∈ R. Thus z ∈ Q(F) is
equivalent to r(z) = 0, i.e., R(Z,Z) = 0, i.e., R(X,X) + a2 − b2 + c2 − d2 = 0.
Moreover, R(X,X) = f (x, x) = r(x) = Q2p,2q(X), where Q2p,2q denotes the
quadratic form naturally associated with the real symmetric bilinear form R. Thus
z ∈ Q(F) iff Z belongs to the isotropic cone of R2n+4(2p + 2, 2q + 2), i.e., iff
r(x) = Q(2p, 2q)(X) = b2 − a2 + d2 − c2.

We can choose : a = c = 1
2
√

2
(r(x) − 1) and b = d = 1

2
√

2
(r(x) + 1) and

introduce the map p1 : X→ p1(X), where

p1(X) = r(x)

2
√

2
(e0 + J (e0)+ en+1 + J (en+1))︸ ︷︷ ︸

δ0

+X − 1
2
√

2
(e0 + J (e0)− en+1 − J (en+1))︸ ︷︷ ︸

µ0

id est we introduce the following mapp1 fromE intoF (E=Hp,q, F =Hp,q ⊕H1,1):

p1(x) = r(x)δ′0 + x − µ′0,

where δ′0 = δ0

2
√

2
and µ′0 = µ0

2
√

2
such that f (δ′0, δ0) = 0 = f (µ′0, µ0) and

f (δ′0, µ′0) = 1
2 . Moreover (δ′0, µ′0) constitutes an isotropic basis of H1,1 = C2

1,1.

3.3.1.1 Definition The projective quadric M1 = P((Q(F))∗), the image by P of
(Q(F))∗ = Q(F)\{0} into the corresponding projective space, is called by definition
the conformal compactification of Hp,q .

We are now going to justify such a definition. Let z = αδ′0 + x + βµ′0 with x ∈
Hp,q, α, β ∈ C. Moreover z ∈ Q(F) iff f (z, z) = 0, id est αβ̄ + ᾱβ + 2r(x) = 0.
A vector µ = αδ′0 + x + βµ′0 belongs to the tangent hyperplane at Q(F) along the
generator line Cz0 with z0 = α′0δ′0+x0+β ′0η′0 iff µ ∈ z⊥0 , i.e., iff α and β satisfy the
relation αβ̄0+ᾱ0β+2f (x, x0) = 0. Let us introduce V0, the intersection of Q(F) and
the affine hyperplane (of F ) µ′0+(E⊕Cδ′0); y belongs to V0 iff y = r(x)δ′0+x−µ′0.
The map p1 : x ∈ E → −µ′0 + x + r(x)δ′0 is one-to-one from E onto V0, and

8 It is easy to verify that there exists such a basis that satisfies (e1)
2 = (J e1)

2 =
1, . . . , (ep)2 = (J ep)

2 = 1, (ep+1)
2 = (J ep+1)

2 = −1, . . . , (ep+q)
2 = (J ep+q)

2 =
−1. Cf. R. Deheuvels, Formes quadratiques et groupes classiques, op. cit., pp. 184–191 and
pp. 220–245.
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determines a bijective map between E and the generator lines of Q(F) that do not
belong to the hyperplane T∞ = E ⊕ Cδ′0, thus a one-to-one map from E onto
P(V0) = V in the projective space P(F). V is an open set of the projective quadric
M1, and M1 is topologically V̄ (the closure of V ) in P(F). W = M1 \V is the image
in P(F) of the intersection W0 of Q(F) with the hyperplane T∞ = E ⊕ Cδ′0. T∞ is
singular with radical T ⊥∞ ∩ T∞ = Cδ′0, and so tangent to the cone Q(F) along the
isotropic line Cδ′0. W is a degenerate quadric of dimension n − 1 in the projective
hyperplane T̃∞: it is the projective cone formed by the projective lines with origin
δ′0 ∈ T∞ resting against the regular projective quadric Q̃(E) of dimension n−2 lying
in the subspace P(E) of P(F). Indeed, z = x+λδ′0, with x ∈ E, belongs to Q(F) iff
f (z, z) = 0 = f (x, x) and W0 = Q(E) + Cδ′0. So the conformal compactification
M1 of E = Hp,q can be obtained by adjunction to E of a projective cone at infinity.

Let us determine Dp1 at x ∈ E. First, we note that for all x, u ∈ E, r(x + u) =
r(x)+ r(u)+2R(x, u) with previous notation, since f (x, u)+f (u, x) = f (x, u)+
f (x, u) = 2Re(f (x, u)) = 2R(x, u).

So, p1(x + u) − p1(x) = u + 2R(x, u)δ′0 + r(u)δ′0 and then: (dP1)x(u) =
u + 2R(x, u)δ′0. (dp1)x is a linear injective map and realizes a linear isomorphism
from Ex onto Sp1(x) the tangent subspace at p1(x) to V0.

Sp1(x) is a complementary subspace of the generator line Cp1(x) in the tangent
hyperplane at p1(x) to the cone Q(F).

Moreover, as δ′0 is isotropic and orthogonal to E, r((dp1)x(u)) = r(u). Thus,
(dp1)x realizes a pseudo-hermitian isometry from E onto Sx (conservation of the
hermitian quadratic form). p1 is a pseudo-hermitian isometry from the almost pseudo-
hermitian manifold E onto its image V0 ⊂ Q(F). If we consider P ◦ p1, where P is
the classical projection onto the projective space, P ◦p1 is a pseudounitary conformal
isometry from E onto V .

3.4 Pseudounitary Conformal Groups of Pseudo-Hermitian
Standard Spaces Hp,q

Any element u of the pseudounitary group U(F) = U(Hp+1,q+1) = U(p+1, q+1)
globally conserves the isotropic cone Q(F) interchanging the generator lines and
mapping “isometrically” the tangent hyperplane at y to Q(F) onto the tangent hyper-
plane at u(y) to Q(F). By passing to the quotient space P(F), U(F ) operates on the
projective space by its image PU (F ) = PU (p+1, q+1) = U(p + 1, q + 1)/Zn+2,
where the center Zn+2 of U(p+ 1, q + 1) consists of the λI with λ ∈ C and λλ̄ = 1
and will be denoted by U(1)I ; PU (F ) = PU (p+, q + 1) globally conserves the
projective quadric M1 = Q̃(F ) and respects its pseudounitary conformal structure.

3.4.1 Definition We call by definition PU (F ) = U(p + 1, q + 1)/(U(1)I ) the
pseudounitary conformal group of E = Hp,q .

The pseudounitary group U(p, q) = U(Hp,q) can be naturally identified with
the subgroup of elements u of U(F) such that u(δ′0) = δ′0 and u(µ′0) = µ′0. Thus
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U(E) ∩ U(1)I = {I }. If u ∈ U(E),

p1(u(x)) = −µ′0 + u(x)+ r(u(x))δ′0 = u(−µ′0)+ u(x)+ r(u(x))δ′0
= u(−µ′0 + x + r(x)δ′0) = u(p1(x)),

since p1 ◦ u = u ◦p1, u globally conserves the image p1(E) = V0 ⊂ Q(F), and the
restriction of u to V0 is an “isometry” of the almost pseudo-hermitian manifold V0
onto itself. By passing the projective space, U(E) = U(p, q) can be identified with
a subgroup of PU (F ) consisting of conformal automorphisms of M1. U(E) globally
conserves the “projective cone at infinity” W .

3.4.2 Translations of E

First, we remark that the group of isometries of the almost pseudo-hermitian manifold
E, consisting of the translations T (E), cannot appear as a subgroup of U(F), since
any operator of T (E) different from zero changes the origin. On the other hand,
when transferred by p1 onto V0, the translations “become” a natural subgroup T (V0)

of U(F).

To any vector a of E corresponds an element ta of U(F) such that ta(p1(x)) =
p1(x + a) = p1 ◦ ta(x).

3.4.2.1 Definition We set by definition ta(µ
′
0) = (ta(p1(0)) = p1(a) = −µ′0 + a +

r(a)δ′0, ta(x) = x + 2R(x, a))δ′0 for all x ∈ E, ta(δ′0) = δ′0.

We can immediately verify that ta respects the pseudo-hermitian scalar product
of F ; thus ta ∈ U(F). Moreover,

ta(p1(x)) = ta(−µ′0 + x + r(x)δ′0) = −µ′0 + a + r(a)δ′0 + x + 2R(x, a)δ′0r(x)δ′0
= −µ′0 + a + x + (r(x)+ r(a)+ 2R(x, a))δ′0
= −µ′0 + a + x + r(x + a)δ′0 = p1(x + a) = p1 ◦ ta(x).

ta globally conserves V0. Its trace on V0 is the image by p1 of the translation by a in
E and ta+b = ta ◦ tb.

3.4.3 Dilatations of E and the Pseudounitary Group Sim U(p, q)

Let us consider now a dilatation k1 : x → λx of E = Hp,q . We assume that λ

is a strictly positive real number. Such a dilatation is a pseudounitary conformal
transformation of E. We associate with k1 the following operation hλ of U(F):

3.4.3.1 Definition Let k1 : x → λx of E = Hp,q , with λ a strictly positive real
number. Set hλ(µ

′
0) = (1/λ)µ′0, hλ(x) = x for all x ∈ E and hλ(δ

′
0) = λδ′0.

Since r(λx) = |λ|2r(x) and sinceλ is chosen to be a strictly positive real scalar, we
obtain r(λx) = λ2r(x). Thus p1(λx) = λhλ(p1(x)), i.e., p1 ◦ k1(x) = λhλ(p1(x)),
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or equivalently, hλ ◦ p1 = 1
λ
p1 ◦ k1. V0 is not transformed into itself by hλ, but the

image of p1(x) by hλ belongs to the generator line p1(k1(x)), and hλ determines a
conformal isometry of M1 that conserves V and W globally.

We know that the group of affine similarities S(E1), where E1 = RHp,q =
R2p+2q(2p, 2q), is classically the product of its three subgroups, T (E1), H(E1)

(dilatations ξ → λξ with λ > 0), and O(2p, 2q), and that any element s of S(E1)

can be written uniquely as s = hλ ◦ ta ◦ u, with λ > 0, u ∈ (2p, 2q), a ∈ E1 such
that for all y ∈ E1, s(y) = λ(a + u(y)). We introduce the following definition:

3.4.3.2 Definition We define an affine pseudounitary similarity of E = Hp,q to be
any transformation of E : s = kλ ◦ ta ◦u, where u ∈ U(p, q), ta ∈ T (E), kλ a dilata-
tion ofE withλ a strictly positive real. We define the affine pseudogroup of similarities
as the group denoted by Sim U(p, q) generated by such transformations of E.

Let us now consider s ∈ Sim U(p, q). We associate with s the following element
ts ∈ U(F) : ts = hλ ◦ ta ◦ u, with previous notation. Since p1 ◦ u = u ◦ p1 and
ta ◦ p1 = p1 ◦ ta ,

ts ◦ p1(x) = hλ ◦ ta ◦ u[p1(x)] = hλ ◦ ta ◦ p1[u(x)] = hλ ◦ ta ◦ p1[u(x)+ a]

= 1

λ
p1[λu(x)λa] = 1

λ
p1(s(x)), since hλ ◦ p1 = 1

λ
p1 ◦ k1.

On the hyperplane T∞ = E ⊕ Cδ′0, ts(x + βδ′0) = u(x) + λ[β + 2R(u(x), a)]δ′0
according to previous results. Thus, ts(T∞) ⊂ T∞. Conversely, we can remark that
the conditions for an element v ∈ U(F), v(T∞) ⊂ T∞ and vδ′0 ∈ Cδ′0 are equivalent.
Indeed, Cδ′0 = rad T∞ and T∞ = (δ′0)⊥. The subgroup of U(F) consisting of the
elements v such that v(T∞) ⊂ T∞ is the isotropy group of the generator line Cδ′0.
It contains U(1)I , with previous notation. Let v be an element of this subgroup.
If v(δ′0) = µδ′0, with µ < 0, then u = −v is also in the subgroup and we have
u(δ′0) = −λδ′0, with λ > 0.

The conservation of the pseudo-hermitian scalar product implies that λ= |λ|> 0,
u(µ′0) = −(1/λ)µ′0 + a + λr(a)δ′0 with a ∈ E, and if x ∈ E, u(x) = w(x) +
2λR(u(x), a)δ′0 with w ∈ U(E). Thus, u = ts with s = kλ ◦ ta ◦ w, with λ > 0.

One can easily verify that ts′◦s = ts′ ◦ ts . The map s → ts is therefore an isomor-
phism from Sim U(p, q) onto the subgroup consisting of the elements of U(F) that
conserves the generator line Cδ′0 of Q(F). If we consider P ◦ ts , then s → P ◦ ts is an
isomorphism from Sim U(p, q) onto the isotropy group Sδ̃′0

of the “point at infinity”

δ̃′0 in the group PU (F ).

3.4.4 Algebraic Characterization

Moreover, the classical Witt theorem can be applied to pseudounitary geometry.9

Consequently, PU (F ) is transitive on M1.

9 J. Dieudonné, (a) La Géométrie des Groupes Classiques, op. cit.; (b) On the structure of
unitary groups. I, Trans. Am. Math. Soc., 72, 1952, p. 367–385; II, Amer. J. Math., 75, 1953,
p. 665–678.
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3.4.4.1 Theorem The pseudounitary conformal compactification M1 of E = Hp,q

is identical to the homogeneous space PU (F )/Sim U(p, q), the quotient space of
the projective unitary group of F : PU (F ) by Sim U(p, q), the group of similarities
of Hp,q .

In order to describe the action of PU (F ) on M1, it is enough, for a particular point
m of M1, to determine a transformation of PU (F ) that sends m onto δ′0, the others
being obtained using the elements of the isotropy group Sδ̃′0

. Let us introduce v0, the

unitary symmetry of F relative to the unitary vector δ′0 + µ′0 (since r(δ′0 + µ′0) =
r(δ′0) + r(µ′0) + 2R(δ′0, µ′0) = 1), v0(δ

′
0) = −µ′0, v0(µ

′
0) = −δ′0, while v0(x) = x

for all x ∈ E. We determine the action of v0 on a point y = p1(x) = −µ′0 + x +
r(x)δ′0, v0(p1(x)) = δ′0 + x − r(x)µ′0.

• If r(x) �= 0, r(x) ∈ R, then

v0(p1(x)) = r(x)

[
−µ′0 +

x

r(x)
+ δ′0

r(x)

]
.

Set x′ = x/r(x) such that r(x′) = 1/r(x) and

p1(x
′) = −µ′0 + x′ + r(x′)δ′0 = −µ′0 +

x

r(x)
+ 1

r(x)
δ′0.

We obtain
v0(p1(x)) = r(x)p1(x

′).

• If r(x) = 0, p1(x) is sent by v0 into the hyperplane at infinity T∞. The action
of ṽ0 = P(v0) ∈ PU (F ) corresponds to the classical inversion with center at the
origin and with power +1 that sends “at infinity” all the points of the isotropic cone
of E = Hp,q .

We notice that the inversion is not a transformation from E onto itself, on account
of the existence of singular points, while its “realization” inM1 is a conformal isometry
of M1 without any singular point. We have just defined the inversion I (0,+1) with
center 0 and power that appears while considering x′ = +x/r(x) with r(x′) =
1/r(x).

In the same way, the inversion I (0,−1) with center 0 and power −1 is x →
x′ = −x/r(x). Classically, for the real pseudoorthogonal case, according to a
theorem of Haantjes10 that extends to pseudo-Euclidean spaces of signature (r, s)

with r + s ≥ 3 the theorem of Liouville, the only real pseudo-Euclidean orthog-
onal conformal transformations are the products of affine similarities and inver-
sions. Since Hp,q is identical to (Cp+q, f ) and to (R2(p+q), J ) provided with a
real bilinear symmetric form of type (2p, 2q), according to the study of the cor-
responding pseudoorthogonal conformal group C2(p+q)(2p, 2q),11 there cannot be

10 J. Haantjes, Conformal representations of an n-dimensional Euclidean space with a non
definite fundamental form on itself, Nederl. Akad. Wetensch. Proc. (1937), pp. 700–705.

11 P. Anglès, (a) Construction de revêtements du groupe conforme d’un espace vectorial muni
d’une métrique de type (p, q), Annales de l’Institut Henri Poincaré, Section A. vol. XXXIII
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other transformations than the previous ones in the pseudounitary conformal group
of Hp,q .

Thus, we have obtained the following statement:

3.4.4.2 Proposition The conformal pseudounitary group of Hp,q = E is the group
consisting of products of conformal pseudounitary similarities and inversions of E.

3.5 The Real Conformal Symplectic Group and the
Pseudounitary Conformal Group

3.5.1 Definition of the Real Conformal Symplectic Group

Let (R2r , F ) be a real symplectic standard space, where F is the standard sympletic
form on R2r defined as

F(x, y) =
r∑

j=1

(xj yj+r − xj+ryj ).

We will denote by J the standard complex structure, pseudo-adapted to F—cf. Ap-
pendix 3.13.2. We call real conformal symplectic group and we denote byCSp(2r,R),
the group of transformations constituted by the linear symplectic automorphisms of
R2r—(elements of Sp(2r,R))—the translations and the dilatations of (R2r , F ).

As in the orthogonal case, we give the following definition:

3.5.1.1 Definition A continuously differentiable function f from an open set U of
(R2r , F ) into U is conformal in U if and only if there exists a continuous function
γ1 from U into R∗ such that for any x ∈ U and for any a, b ∈ R2r we have

F((Dxf )a, (Dxf )b) = γ1(x)F (a, b),

where Dxf is the linear mapping tangent to f at x.

3.5.1.2 Definition Let Hp,q be the standard pseudounitary space. Let f be the cor-
responding pseudo-hermitian scalar product. A continuously differentiable function
ϕ from an open set U of Hp,q into Hp,q is pseudounitary in U if and only if there
exists a continuous function λ from U into C∗ such that for almost all z ∈ U and for
any a, b ∈ U we have

f ((Dzϕ)a, (Dzϕ)b) = |λ(z)|2f (a, b),

no 1, pp. 33–51, 1980; (b) Géométrie spinorielle conforme orthogonale triviale et groupes
de spinorialité conformes, Report HTKK Mat A 195, Helsinki University of Technology,
pp., 1982; (c) Real conformal spin structures, Scientiarum Mathematicarum Hungarica,
vol. 23, pp. 115–139, Budapest, Hungary, 1988.
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where Dzϕ denotes the linear mapping tangent to ϕ at z. The set of such transforma-
tions of Hp,q is denoted by CUn(p, q) and constitutes a group under the usual law
of composition.

3.5.1.3 Theorem CUn(p, q) is identical to the previous group U(p + 1, q + 1)/
U(1).I .

The proof will be given below in the exercises.

3.5.1.4 Theorem CUn(p, q) is the set of u ∈ C2n(2p, 2q), the real conformal
orthogonal group in dimension 2n and signature (2p, 2q) such that Du, the lin-
ear tangent mapping to u, satisfies Du ◦ J = J ◦ Du. CU n(p, q) is the set of u ∈
CSp(2n,R)—the real conformal symplectic group—such that Du, the linear tangent
mapping to u, satisfies Du ◦ J = J ◦Du. CUn(p, q) = CSp(2n,R)∩C2n(2p, 2q).

Proof. Let us put λ(z) = λ1(z) + iλ2(z), where i2 = −1. Thus, |λ(z)|2 = λ2
1(z) +

λ2
2(z). Thus u belongs to CUn(p, q) if and only if for almost all z ∈ Hp,q , for any

a, b ∈ Hp,q ,
f ((Dzu)a, (Dzu)b) = (λ2

1(z)+ λ2
2(z))f (a, b).

Now,

f (z, z′) = Re f (z, z′)+ i Im f (z, z′) = −F(Jz, z′)− iF (z, z′)
= B(z, z′)− iF (z, z′),

where B denotes the bilinear symmetric form associated with f, and F is the corre-
sponding symplectic form (cf. 3.1.2.1). First, we want to prove that if u belongs to
CUn(p, q), thenu belongs toCSp(2nR)∩C2n(2p, 2q) and thatDu◦J = J ◦Du.Let
B(x, y)=F(x, Jy), and f (x, y)=B(x, y)− iF(x, y) (see 3.1.2.1 and 3.13.6.2.6).
Then it is immediate that if u ∈ CUn(p, q) implies u∈CSp(2nR) ∩ C2n(2p, 2q).
We will now prove that Du commutes with J. Notice that by definition B((Dzu)a,

(Dzu)b)=F((Dzu), a, J (Dzu)b). On the other hand, since u ∈ CSp(2nR) with
the same factor λ, we have that B((Dzu)a, (Dzu)b) = |λ(z)|2B(a, b) = |λ(z)|2
F(a, Jb)=F((Dzu)a, (Dz)uJb). So, we find that F((Dzu)a, J (Dzu)b)=
F((Dzu)a, (Dzu)Jb) and since F is nondegenerate we get J ◦ Du = Du ◦ J.

The converse can be proven in much the same way.

3.6 Topology of the Projective Quadrics H̃p,q

3.6.1 Topological Properties

Let {e1, . . . , ep+q} be an orthogonal normalized basis that diagnonalizes the scalar
classical pseudo-hermitian product of Hp,q , n = p+q. We denote by H the isotropic
cone of E = Hp,q , with equation

p∑
j=1

{(ξ j )2 + (ξn+j )2} −
p+q∑

j=p+1

{(ξ j )+ (ξn+j )2} = 0,
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where x = ∑n
k=1 xkek belonging to Cn is identified with ξ = ∑n

k=1(ξ
k + iξn+k)

belonging to R2n, and y = ∑n
k=1 ykek is identified with η = ∑n

k=1(η
k + iηn+k).

Let us introduce RHp,q = E1, the real space subordinate to Hp,q, and the classical
quadric (hyperboloid) S the equation of which is

p∑
j=1

{(ξ j )2 + (ξn+j )2} −
p+q∑

j=p+1

{(ξ j )2 + (ξn+j )2} = 2.

Thus x ∈ S ∩H iff

p∑
j=1

{(ξ j )2 + (ξn+j )2} = 1 =
p+q∑

j=p+1

{(ξ j )2 + (ξn+j )2},

i.e., iff x belongs to the product of the unitary sphere
∑

p of the standard hermitian
space Hp by the unitary sphere

∑
q of the standard hermitian space Hq .

∑
p is classi-

cally isomorphic to S2p−1 and
∑

q to S2q−1. Let y be a point of H \ {0}. Necessarily
we have

p∑
j=1

{(ηj )2 + (ηn+j )2} =
p+q∑

j=p+1

{(ηj )2 + (ηn+j )2} = ρ > 0.

The generator line Cy is such that Cy ∩ (
∑

p ×
∑

q) = {(eiϕ/√ρ)y, ϕ ∈ R}. Con-
versely, any (a, b) ∈∑

p ×
∑

q belongs to a generator line of H that it determines.

We have a natural mapping from
∑

p ×
∑

q (or from S2p−1×S2q−1) onto the projec-

tive quadric H̃p,q = P(H\{0}), where P is the standard projection from Hp,q onto its
projective space, which enables us to identify H̃p,q with the quotient of the manifold
S2p−1 × S2q−1 by the equivalence relation (a, b) ∼ eiϕ(a, b) and thus realizes a
U(1) covering (

∑
p ×

∑
q) = S2p−1 × S2q−1 of H̃p,q .

Consequently, H̃p,q is homeomorphic to S2p−1 × S2q−1/S1. We recall that S2p−1

is a bundle over Pp−1(C) with typical fiber S1. It is one of the Hopf classical fibra-
tions.12 In fact, Pp−1(C) is diffeomorphic to U(p)/U(p − 1)× U(1) and home-
omorphic to S2p−1/S1. Thus H̃p,q is homeomorphic to Pp−1(C) × S2q−1 and
S2p−1×Pq−1(C). Since p > 1, q > 1, we find again, since Pp−1(C) is then simply
connected13 and since S2q−1 is simply connected, that H̃p,q is simply connected, for
p > 1, q > 1.14

12 N. Steenrod, The Topology of Fibre Bundles, Princeton University Press, New Jersey, pp.
106, 107, 1951;A. L. Besse, Manifolds All of Whose Geodesics Are Closed, Springer-Verlag,
New York, p. 75, 1978; D. Husemoller, Fibre Bundles, 3rd edition, McGraw Hill Book
Company, New York, 1993; I. R. Porteous, Topological Geometry, 2nd edition, Cambridge
University Press, 1981.

13 A. L. Besse, op. cit., p. 83.
14 Nordon J., Les éléments d’homologie des quadriques et des hyperquadriques, Bulletin de

la Société Mathématique de France, tome 74, p. 124, 1946.
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3.6.2 Generators of the Projective Quadrics H̃p,q

As for the pseudo-Euclidean case, the maximal totally isotropic subspaces of Hp,q

contained in the cone H have complex dimension equal to min(p, q). Their images
in the projective space are the projective subspaces included in the projective quadric
H̃p,q = P(H\{0}), which we agree to call generators of H̃p,q of complex dimen-
sion inf (p, q) − 1. Let us assume p ≥ q. Let E+ be the hermitian subspace of E

with basis {e1, . . . , ep} and let E− be the anti-hermitian subspace of E with basis
{ep+1, . . . , ep+q} E = E+ ⊕ E−. Any maximal totally isotropic subspace V of E

determines canonically an anti-isometry ϕv from E− into E+: for all t, t ′ ∈ E−,

f (ϕv(t), ϕv(t
′)) = −f (t, t ′).

Both V and E− are complementary subspaces in E of E+: E = E+ ⊕ E−,
E = E+⊕V . If p+ and p− denote the restrictions to V of the projections onto E+ and
E− of the first decomposition, p− is a linear isomorphism from V onto E−. We take
ϕv = p+p−1− . If t ∈ E−, then p−(t) = t + p+p−1− (t) = t + ϕv(t) belongs to V . For
all t, t ′ ∈ E−, f (t+ϕv(t), t

′ϕv(t
′)) = 0 and ϕv is an anti-isometry. We can associate

with V the orthogonal system U = �(V ) = {u1 = ϕv(ep+1), . . . , up = ϕv(ep+q)}
of q vectors of E+.

Conversely, with any orthogonal system U of q vectors {u1, u2, . . . , uq} of E+
we associate V = �(U) generated by the vectors v = u1 + ep+1, v2 = u2 +
ep+2, . . . , vq = uq+ep+q . The vectors v1, . . . , vq are linearly independent, isotropic,
mutually orthogonal. V is then a maximal totally isotropic subspace. � and � are
inverse mappings that determine a natural one-to-one mapping between the set of max-
imal totally isotropic subspaces of E, or equivalently, the set of “generators” of the
projective quadric H̃p,q , and the Stiefel manifold Vp,q of systems of q orthogonal vec-
tors of the hermitian space Hp. If p > q, such a manifold is identical to the quotient15

U(p)/U(p − q) = SU (p)/SU (p − q)

and is connected and simply connected. If p = q, � establishes a one-to-one map-
ping from the set of generators of H̃p,q onto the set Vp,q of orthogonal bases of Hp,q ,
which is identical to the unitary connected group U(p), not simply connected, with
fundamental group classically isomorphic to Z.

3.7 Clifford Algebras and Clifford Groups of Standard
Pseudo-Hermitian Spaces Hp,q

3.7.1 Fundamental Algebraic Properties

We recall that U(p, q) is the set of elements u ∈ SO(2p, 2q) such that u ◦ J = J ◦ u
(J : transfer operator of the complex structure). Let us introduce C2p,2q , the real Clif-
ford algebra of E(2p, 2q), the real pseudo-Euclidean standard space equipped with

15 Husemoller D., Fibre bundles, Third edition, McGraw Hill Book Company, New York,
1993, p. 89.
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a quadratic form of signature (2p, 2q). C2p,2q = C+2p,2q ⊕C−2p,2q (C+2p,2q even Clif-

ford algebra and C−2p,2q= subspace of odd elements). C−2p,2q can be seen as a C+2p,2q
module. We recall that Hp,q is identical to (E(2p, 2q), J ).

3.7.1.1 Theorem There exists a linear mapping J̃ from C2p,2q into C2p,2q such that

(a) C+2p,2q and C−2p,2q are conserved by the action of J̃ ,

(b) J̃ 2(c) = c, ∀c ∈ C+2p,2q and J̃ 2(c) = −c, ∀c ∈ C−2p,2q ,

(c) J̃ (c1c2) = J̃ (c1)J̃ (c2), for all c1, c2 ∈ C2p,2q .

We consider⊗E2p,2q , the tensor algebra of E2p,2q , and we define the linear map
J1 from ⊗E2p,2q into ⊗E2p,2q by

• J1(x1 ⊗ · · · ⊗ xk) = J (x1)⊗ · · · ⊗ J (xk),

• J1(λ) = λ for all λ ∈ R.

J1 is well defined. Let N(Q2p,2q) be the two-sided ideal generated by the elements
x⊗x−Q2p,2q(x).1, whereQ2p,2q is the quadratic standard form of signature (2p, 2q)
defined on E2pq =R Hp,q :

J1{x ⊗ x −Q2p,2q(x) · 1}
= J (x)⊗ J (x)−Q2p,2q(x) · 1
= J (x)⊗ J (x)−Q2p,2q(J (x)) · 1, since Q2p,2q(x) = Q2p,2q(J (x))

(We recall that J is orthogonal for Q2p,2q .) J1 conserves N(Q2p,2q), so J1 induces
J̃ , a linear map from C2p,2q into itself that has the required properties. We can remark
that C−2p,2q is a C-space by setting, for c ∈ C−2p,2q ,

λ = α + iβ;α, β ∈ R : c(α + iβ) = cα + J̃ (c)β

(C−2p,2q is equipped with a transfer operator J̃ such that J̃ 2 = −Id on C−2p,2q .)
We know that to any quadratic automorphism u of E2p,2q , there corresponds

canonically an automorphism �u of C2p,2q . If u ∈ SO(2p, 2q), then �u is an inner
automorphism of C2p,2q , and for all x ∈ E2p,2q, u(x) = �u(x) = buxb

−1
u , where bu

is the product of an even number of regular vectors of E2p,2q and bu ∈ G+2p,2q (the
even Clifford group of C2p,2q ). More precisely, u = ϕ(bu), where bu ∈ G+(E2p,2q)

and ϕ denotes the natural homomorphism from G(2p, 2q) onto O(2p, 2q) associated
with the exact sequence (we recall that the Clifford group G(2p, 2q) is the group of
all invertible elements of the Clifford algebra such that for any g in G(2p, 2q), for
any x in E2p,2q , ϕ(g)x = gxg−1 ∈ E2p,2q )

1→ R∗ → G(2p, 2q)
ϕ→ O(2p, 2q)→ 1.
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Moreover, we notice the following exact sequence:

1→ R∗ → G+(2p, q)
ϕ→ SO(2p, 2q)→ 1.

3.7.1.2 Theorem U belongs to SO(2p, 2q) and Ju = uJ if and only if u induces an
inner automorphism�u ofC2p,2q such that for all x ∈ E2p,2q there exists bu ∈ G+2p,2q

such that �u(x) = buxb
−1
u = u(x) and J̃ (bu) = bu.

• If u ∈ SO(2p, 2q) and Ju = uJ , then there exists bu ∈ G+2p,2q such that

�bu(x) = buxb
−1
u = u(x), bu = x1 · · · x2h, modulo a scalar in R∗, where the xi

belong to E2p,2q , and by definition of J , which is a similarity of (E2p,2q) of ratio
ρ = 1, and of J̃ , J̃ (bu) = bu, since ρ = 1.
• Conversely, if u induces an inner automorphism of C2p,2q such that �u(x) =

buxb
−1
u = u(x), with bu ∈ G+2p,2q , then necessarily u ∈ SO(2p, q). Since

J̃ (bu) = bu, we have J̃ (b−1
u ) = b−1

u . Then

u[J̃ (x)] = buJ̃ (x)b−1
u = J̃ (buxb

−1
u ) = J̃ (u(x)),

and so uJ = Ju. We notice that bu is determined up to a factor in R∗.

3.7.2 Definition of the Clifford Algebra Associated with Hp,q

3.7.2.1 Definition We agree to call the Clifford algebra associated with Hp,q the real
algebra denoted by

Clp,q =
{
g ∈ C+2p,2q : J̃ (g) = g

}
=
{
z+ J̃ (z), z ∈ C+2p,2q

}
.

If we choose the first definition, we notice that for all g ∈ C+2p,2q , we have that

z = g + J̃ (g) is in Clp,q , because J̃ (z) = z. Then we remark that if z ∈ C+2p,2q and

J̃ (z) = z, then z/2+ J̃ (z/2) = z and z/2 ∈ C+2p,2q , whence the result follows. Clp,q

is defined as a subalgebra of C+2p,2q . J̃ is an involutive automorphism of Clp,q .

We recall the following lemma:16

3.7.2.2 Lemma Let E be an n-dimensional vector space over a skew field K and let u
be an involution in GLn(K). If the characteristic of K is not 2, E is a direct sum of two
subspaces V and W (one of which may possibly be 0) such that u(x) = x on V and
u(x) = −x on W . V and W will be called the plus-subspace and the minus-subspace
of u. They determine u completely.

So Clp,q appears as the plus-subspace for the automorphism J̃ of C+2p,2q , J̃ 2 = Id

on C+2p,2q . Thus, now dimR Clp,q ≤ dimR C+2p,2q = 22p+2q−1.

16 Cf. J. Dieudonné, On the Automorphisms of the Classical Groups, Mem. Ann. Math. Soc.,
no. 2, pp. 1–95, 195, page 3, Lemma 2, or La Géométrie des Groupes, Springer, 1955, p. 5.
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3.7.2.3 Definition Let ϕJ be the map from Hp,q into Clp,q defined by ϕJ (x) =
xJ̃ (x) = xJ (x).

• ϕJ defines a map from Hp,q into Clp,q since xJ (x) ∈ C+2p,2q and since

J̃ (ϕJ (x)) = J̃ (x)J̃ 2(x) = J (x)(−x) = xJ̃ (x) = ϕJ (x) since J̃ 2(x) = −x,
and on the other hand, xJ̃ (x) + J̃ (x)x = 2R(x, J (x)) = 0, since R(x, J̃ (x) =
−I (J̃ (x), J̃ (x)) = 0, where R denotes the bilinear real symmetric form associated
with Qp,q and I the skew-symmetric form defining the symplectic product.
• ϕJ is R-quadratic, which means that ϕJ (λx) = λ2ϕJ (x) for all x ∈ Hp,q and

for all λ ∈ R, and 1
2 {ϕJ (x + y)− ϕJ (x)− ϕJ (y)} = 1

2 {xJ (y)+ yJ (x)} = ϕ(x, y),
where ϕ is an R-bilinear symmetric form from Hpq × Hp,q into Clp,q . (The verifi-
cation is easy.) We remark that for all x ∈ Hp,q, ϕ(x, x) = ϕJ (x), and that for all
x ∈ Hp,q, ϕJ (Jx) = ϕJ (x). We have the following statement:

3.7.2.4 Theorem The algebra Clp,q is the real associative algebra generated by the
ϕJ (x), x ∈ Hp,q , p ≥ 1, q ≥ 1.

Proof. Let us denote by F the real algebra generated by the ϕJ (x); for all x ∈ Hp,q

(Hp,q is identified with (E2p,2q, J ), F is included into Clp,q . We are going to show
that Clp,q is included in F .

• We notice that for all x, y ∈ E, ϕ(x, y) ∈ F . Then, since for all x ∈ Hp,q ,
ϕ(x, Jx) = 1

2 (−x2+x2) = 0, 0 ∈ F . Moreover, (ϕJ (x))
2 = (xJ (x))2 = −[Q2p,2q,

(x)]2. 1 ∈ R. Since p > 1 there exists x1 ∈ E2p,2q such that Q2p,2q(x1) = 1 and
for z ∈ R+, ϕJ (

4
√

zx1)ϕJ (
4
√

zx1) ∈ F , and on the other hand, (ϕJ (
4
√

zx1))
2 = −z.

Thus −z and z ∈ F . (We can also use lemma IV.4 of Deheuvels.17) If z is in R−,
−z = a ∈ F , and so z = −a ∈ F . Thus R ⊂ F .
•We introduce now C2p,2q(s), the space called the space of s-vectors and more

precisely C2p,2q(2s) and we want to show by a recurrent method that Clp,q ∩
C+2p,2q(2s) ⊂ F . C+2p,2q(2s) is the R-space generated by 1 and by the products
x1 · · · x2s , where xi ∈ E2p,2q , for all i, 1 ≤ i ≤ 2s.

• Case s = 1
Since R is included in F , it is enough to show that for all x, y ∈ E2p,2q ,

xJ̃ (y) + J̃ (xJ̃ (y)) ∈ F . Indeed, z ∈ Clp,q ∩ C+2p,2q(2s) iff z = x1x2 + J̃ (x1x2),

x1, x2 ∈ E2p,2q . Since J̃ 2 = −Id on E2p,2q , there exists y2 = J̃ (−x2) =
−J̃ (x2) such that J̃ (y2) = x2. So z is of the form xJ̃ (y) + J̃ (xJ̃ (y)). Moreover,
xJ̃ (y)+ J̃ (xJ̃ (y)) = xJ̃ (y)+ J̃ (x)J̃ 2(y) = xJ̃ (y)− J̃ (x)y. Since 2R(y, J̃ (x)) =
yJ̃ (x)+ J̃ (x)y and then −J̃ (x)y = −2R(y, J̃ (x)+ yJ̃ (x)), it follows that

xJ̃ (y)− J̃ (x)y = −2R(y, J̃ (x))+ xJ̃ (y)+ yJ̃ (x) = 2ϕ(x, y)− 2R(y, J̃ (x))

with 2ϕ(x, y) ∈ F and 2R(y, J̃ (x)) ∈ F .

17 R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit., lemma IV.4, p. 139.
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• Case s > 2
Let z be in C+2p,2q(2s). Let us write z = u · v, with u ∈ C+2p,2q(2k) and v ∈

C+2p,2q(2l) with k, l < s. By hypothesis, we can assume that C+2p,2q(2t)∩Clp,q ⊂ F

for all t < s. Let us write now

uv+ J̃ (uv) =
{u

2
+ J̃

(u

2

)}
{vJ̃ (v)} + {u− J̃ (u)}

{v

2
− J̃

(v

2

)}
= w1w2 + z1z2.

We verify easily that J̃ (w1) = w1, J̃ (w2) = w2 and that w1w2 ∈ Clp,q . We notice
that J̃ (z1) = −z1, J̃ (z2) = −z2 and then J̃ (z1z2) = z1z2. So z1z2 ∈ Clp,q . Accord-
ing to the recurrence hypothesis, w1w2 and z1z2 belong to F and uv + J̃ (uv) ∈ F .
We have found the formula

for all x, y ∈ Hp,q, xJ (y)− J (x)y = 2ϕ(x, y)− 2R(J (x), y).

3.7.2.5 Lemma An element ei1 · · · ei2p of the basis of C+2p,2q belongs to Clp,q if and
only if ei1 · · · ei2p is of the form ei1J (ei1)ei2J (ei2) · · · eipJ (eip ).

The proof is straightforward by recurrence and left to the reader.
We can easily verify that J̃ (1) = 1 and J̃ {e1J (e1) · · · enJ (en)} = e1J (e1) · · ·

enJ (en) and thus 1 and e1J (e1)e2J (e2) · · · enJ (en) belong to Clp,q . If n = 2, among
the eight elements

1, e1e2, e1J (e1), e1J (e2), J (e1)e1, J (e1)J (e2), e2J (e1), e1J (e1)e2J (e2)

of the basis of C+2p,2q , only the following ones belong to Cl1,1:

1, e1J (e1), e2J (e1), e1J (e1)e2J (e2).

More precisely, denoting by C
j
n the classical coefficients, there are 1 = C0

2 0-vector,
1 = C2

2 4-vectors, and 2 = C1
2 2-vectors so that the cardinality of the set of basis ele-

ments of Cl1,1 is now 1+C1
2+1 = 22. In the same way, more generally, in the case of

Clp,q among the elements of the basis of C+2p,2q , there remains in the set of the basis

elements of Clp,q only 1 = C0
n 0-vector, 1; 1 = Cn

n n-vectors; e1J (e1) · · · enJ (en);
n = C1

n 2-vectors; C2
n 4-vectors; and C

p
n 2p-vectors such that

dimR Clp,q = 1+ C1
n + · · · + C

p
n + · · · + Cn

n = 2n.

Thus, we have obtained the following theorem:

3.7.2.6 Theorem The real associative algebra Clp,q is of dimension 2n.

The study of the periodicity of such an algebra is given as an exercise. See below.
The proof of 3.7.2.4 naturally leads us to the following definition.
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3.7.3 Definition 2 of the Clifford Algebra Associated with Hp,q

Let A be an R-associative finite-dimensional algebra with a unit element, and let Hp,q

denote (E2p,2q,J ).

3.7.3.1 Definition of a Pseudounitary Clifford Mapping

We define a pseudounitary Clifford mapping from Hp,q into A to be any mapping �

from Hp,q into A such that

(a) �(λx) = λ2�(x), for all λ ∈ R,
(b) (1/2){�(x + y)−�(x)−�(y)} = ϕ(x, y), where ϕ is an R-bilinear mapping

from Hp,q ×Hp,q into A,
(c) (�(x))2 = −[Q2p,2q(x)]21A, for all x ∈ Hp,q .
(d) �(Jx) = �(x) for all x ∈ Hp,q .

We notice immediately that �(x) = ϕ(x, x). We also notice that if B is another
associative R algebra with a unit element and if � is a homomorphism of algebras
with unit elements from A into B, which means that � is R-linear, multiplicative—
(�(aa′) = �(a)�(a′)—and that �(1A) = 1B , then �1 = � ◦� from Hp,q into B

is a pseudounitary Clifford mapping from Hp,q into B. We can easily verify that for
all λ ∈ R,

�1(λx) = λ2�1(x)

and that

1

2
{�1(x + y)−�1(x)−�1(y)} = ϕ1(x, y),

where ϕ1 is an R-bilinear from Hp,q ×Hp,q into B, and that for all x ∈ Hp,q ,

(�1(x))
2 = (� ◦�(x))2 = �((�(x))2) = �(−(Q2p,2q(x))

21A)

= −Q2p,2q(x))
21B.

Moreover, �1(Jx) = � ◦� ◦ J (x) = � ◦�(x) = �1(x), for all x ∈ Hp,q .

3.7.3.2 Definition 2 of the Clifford Algebra Associated with Hp,q

We define a Clifford algebra associated with Hp,q to be any R associative algebra,
with unit element 1C , equipped with a pseudounitary Clifford mapping �c from Hp,q

into C, which satisfies the following conditions:

(1) �c(Hp,q) generates C,
(2) For any Clifford pseudounitary mapping � from Hp,q into A (R-associative

algebra with a unit element), there exists a homomorphism of algebras with
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unit elements � from C into A such that � = � ◦ �C , that is, (∀x) (x ∈
Hp,q),�(�C(x)) = �(x).

The second condition expresses that any pseudounitary Clifford mapping of
Hp,q can be obtained from the map �c, which is universal. Consequently, if a
pseudo-hermitian standard space Hp,q possesses a Clifford algebra C, it is unique
up to isomorphism. Indeed, let C′ be another Clifford algebra of Hp,q . The
diagram

implies that
�′ ◦� ◦�C = �′ ◦�C′ = �C

and
� ◦�′ ◦�C′ = � ◦�C = �C′ .

Since �C(Hp,q) generates C and �C′(Hp,q) generates C′, we can deduce that
�′ ◦ � = IdC and� ◦ �′ = IdC′ � and �′ are isomorphisms that are uniquely
determined, each of them the inverse of the other through interchanging �C in �C′
or �C′ in �C . We can speak of the Clifford algebra of the pseudounitary space Hp,q .

3.7.3.3 Equivalence of Definition 1 and Definition 2

The algebra Clp,q defined in 3.7.2.1 is such that (Clp,q, ϕJ ), where ϕJ (x) = xJ (x)

satisfies the conditions given in 3.7.2.2. ϕJ is a pseudounitary Clifford mapping ac-
cording to the results given in the proof of Theorem 3.7.2.4, and satisfies the conditions
a,b,c,d of a pseudounitary Clifford mapping.
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The converse will be studied below in the exercises. The converse can be studied
by using the Lemma given in 3.7.2.5.

Subsequently, to any regular standard pseudo-hermitian space we can associate a
Clifford algebra, namely (Clp,q, ϕJ ).

3.7.4 Clifford Groups and Covering Groups of U(p, q)

With notation of Deheuvels,18 we introduce the covering groups RO(2p, 2q) and
RO+(2p, q) respectively of O(2p, 2q) and SO(2p, 2q), associated with the exact
sequences

1→ Z2 → RO(2p, 2q)→ O(2p, 2q)→ 1

and

1→ Z2 → RO+(2p, 2q)→ SO(2p, 2q)→ 1.

We introduce Spin (2p, 2q) = RO++(2p, q), the connected component of the
identity in RO(2p, 2q), which is a twofold covering group of SO+(2p, q) =
O++(2p, 2q) associated with the exact sequence

1→ Z2 → Spin (2p, 2q)→ SO+(2p, q)→ 1.

For p > 1, q > 1 RO(2p, 2q) has four connected components by arcs that are
twofold coverings for the corresponding components in O(2p, q).

Let G̃2p,2q be the regular Clifford group consisting of invertible elements g of
the Clifford algebra C2p,2q such that for any x in E2p,2q , �(g)x = π(g)xg−1 = y ∈
E2p,2q (π is the principal automorphism of C2p,2q ). Such a group is also the group
consisting of products of nonisotropic elements in E2p,2q , in the Clifford algebra
C2p,2q . G̃+2p,2q denotes the even regular Clifford group G̃+2p,2q = G̃2p,2q ∩ C+2p,2q .

We remark that ϕ = � on C+2p,2q , where ϕ is defined, as usual, by ϕ(g) · x = gxg−1.

3.7.4.1 Theorem For any v ∈ U(p, q) there exists an invertible element bv ∈ Clp,q

determined up to a scalar in R∗ such that �v(x) = bvxb
−1
v = v(x), for all x ∈ Hp,q .

Conversely, for any invertible b belonging to Clp,q such that for all x ∈ Hp,q :
bxb−1 = y ∈ Hp,q , the mapping x → bxb−1 induces an element of U(p, q).

• The first part is a consequence of Theorem 3.7.1.2 and Definition 3.7.2.1
of Clp,q .

• Conversely, with any invertible element b of Clp,q such that for all x ∈ Hp,q ,
bxb−1 = y ∈ Hp,q , we can associate v ∈ SO(2p, q) such that �v(x) =
bvxb

−1
v = v(x), for all x ∈ Hp,q . We introduce J and J̃ defined as before. Then

for all x ∈ Hp,q and for all y ∈ Hp,q , Hp,q identified with (E2p,2q, J ) such that
Q2p,2q(y) = Q2p,2q(J (y)) �= 0 as bxb−1 ∈ E2p,2q , we can write

J̃ (bxb−1y) = J̃ (bxb−1)J̃ (y) = bJ̃ (x)b−1J̃ (y),

18 R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit.
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i.e.,

[J̃ (bxb−1)− bJ̃ (x)b−1]J (y) = 0,

and according to the hypothesis made for y, we can deduce that for all x ∈ E2p,2q :
J̃ (bxb−1) = bJ̃ (x)b−1, i.e., J ◦v = v ◦J and thus v ∈ U(p, q) by definition, � is a
natural homomorphism from G̃2p,2q onto O(2p, 2q). The restriction of � to G̃+2p,2q
onto SO(2p, 2q) leads us to a surjective homomorphism with kernel R∗ associated
with the following exact sequence:

1→ R∗ → G̃+2p,2q ∩ Clp,q → U(p, q)→ 1.

3.7.4.2 Definition of the Pseudounitary Clifford Group
and of the Covering Group RU(p, q) of U(p, q)

Definitions G̃+2p,2q ∩ Clp,q , determined up to an isomorphism, is called the pseu-

dounitary Clifford group. RU (p, q) = RO+(2p, q) ∩ Clp,q is called the covering
group for U(p, q) associated with the exact sequence

1→ Z2 → RU (p, q)→ U(p, q)→ 1.

3.7.4.3 Definition of the Spinor Group Spin Up,q

We recall the exact following sequence of groups:

1→ Z2 → Spin (2p, 2q)→ SO+(2p, 2q)→ 1.

3.7.4.4 Definition Spin(2p, 2q) ∩ Clp,q is called, by definition, the spinor group
associated with Hp,q and is denoted by Spin U(p, q). We define �(Spin Up,q) =
U0(p, q) as the reduced pseudounitary group. We have the following exact sequence:

1→ Z2 → Spin Up,q → U0(p, q)→ 1.

3.7.5 Fundamental Diagram Associated with RU(p, q)

3.7.5.1 General Definitions

Following a method initiated by Atiyah, Bott, and Shapiro,19 we introduce the fol-
lowing definition:

3.7.5.1.1 Definition Let A(Q) be one of the classical groups RO(Q) (covering group
of O(Q));G(Q) (Clifford group); Spin Q. Set Au(Q) = A(Q)×Z2 U(1), where Z2
acts on A(Q) and U(1) as {±1}.

19 M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology, vol. 3 Suppl. 1, pp. 3–38,
1964.
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We recall that U(1) is the classical group of complex numbers z with |z| = 1 (for
the multiplicative law). We recall the following definition and theorem:

3.7.5.1.2 Definition and Theorem

Let (EcQc) be the complexification of (E,Q), where (E,Q) is a standard regular
quadratic space such that (Cl(Q))c 	 Cl(Ec,Q

c). Let Gc(E,Q) be the subgroup of
invertible elements g of (Cl(Q))c that satisfy

∀y ∈ E, π(g)yg−1 ∈ E,

and let ROc(E,Q) be the kernel of the spinor norm. We have the following exact
sequence:20

1→ U(1)→ ROc(E,Q)→δ O(Q)→ 1.

3.7.5.1.3 Corollary We have a natural isomorphism

ROc(E,Q) 	 RO(E,Q)×Z2 U(1).

We recall the following exact sequences:

1→ Z2 → RO(2p, 2q)→ O(2p, 2q)→ 1,

1→ Z2 → RO+(2p, 2q)→ SO(2p, 2q)→ 1,

1→ Z2 → RU (p, q)
ϕ=�−−−→ U(p, q)→ 1,

3.7.5.1.4 Definitions

Let us introduce

α : z→ α(z) = z2 from U(1) into U(1)

with

α′ : [v, u] ∈ RU (p, q)×Z2 U(1)→ α′([v, u]) = u2 ∈ U(1),

where [v, u] denotes the class of (v, u) ∈ RU (p, q) ×Z2 U(1), δ : δ[g, z] = �(g),
and i : i(g) = [g, 1] for all g ∈ RU (p, q) and all z ∈ U(1).

We have the following statement:

3.7.5.1.5 Proposition We have the following commutative diagram of Lie groups
associated with RU (p, q):

20 In fact, in their paper, M. F. Atiyah, R. Bott, and A. Shapiro found the following exact
sequence:

1→ U(1)→ Pinc(k)→ O(k)→ 1,

where O(k) is the orthogonal group of Rk provided with a negative definite quadratic form
and where U(1) is the subgroup consisting of elements 1⊗ z ∈ Ck ⊗R C with |z| = 1, and
where Ck is the corresponding Clifford algebra of Rk . We identify here such a subgroup
with U(1), which is classical.
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3.7.6 Characterization of U(p, q)

3.7.6.1 Let Us Assume That p + q = n = 2r, p ≤ n − p

(cf. below 3.13 Appendix)

We consider the basis {e1, . . . , en, J e1, . . . , J en} of R(Cn) and we introduce, as pre-
viously,Q2p,2q (of signature (2p, 2q)), the quadratic form associated with the bilinear
real symmetric form R. Let E2n = R2n and let E′2n be the complexification of E2n,
a 2n-dimensional C-space (2n = r).

We know that there exists a special Witt decomposition of E′2n, E′2n = F + F ′,
where F , respectively F ′, is a maximal totally isotropic 2r-dimensional subspace.
We write F = {x1, . . . , xn}, F ′ = {y1, . . . , yx} with respective explicit bases

x1 = e1 + en

2
, . . . , xp = ep + en−p+1

2
, xp+1 = iep+1 + en−p

2
, . . . ,

xr = ier + en−r+1

2
, xr+1 = J (e1)+ iJ (en)

2
, . . . ,

xr+p = J (e1)+ J (en−p+1)

2
, xr+p+1 = iJ (ep+1)+ J (en−p)

2
, . . . ,

xn = iJ (er )+ J (en−r+1)

2
,

y1 = e1 − en

2
, . . . , yp = ep − en−p+1

2
, yp+1 = iep+1 − en−p

2
, . . . ,

yr = ier − en−r+1

2
, yr+1 = J (e1)− J (en)

2
, . . . ,
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yr+p = J (ep)− J (en−p+1)

2
, . . . , yr+p+1 = iJ (ep+1)− J (en−p)

2
, . . . ,

yn = iJ (en)− J (en−r+1)

2
,

with for 1 ≤ j ≤ p, x̄j = xj , ȳj = yj , for r + 1 ≤ j ≤ r + p, x̄j = xj ,
ȳj = yj , for p + 1 ≤ j ≤ r , ȳj = −xj , and for r + p + 1 ≤ j ≤ n,
ȳj = x̄j , and with B(xi, yj ) = δ1γ /2, B(xi, xj ) = B(yi, yj ) = 0 and thus
xiyj + yjxi = δij , 1 ≤ i, j ≤ n. We recall that J |F = i Id and that J |F ′ = −i Id.

3.7.6.2 Characterization of U(p, q) (p + q = n = 2r , p ≤ q, p ≤ r)

Let us consider C′2p,2q the complexification of C2p,2q . As usual, we define exp(λX),

λ ∈ C, for X ∈ Cl′(2p, 2q). We know that if XY = YX, then exp X exp Y =
exp(X + Y ), (exp X)−1 = exp(−X), where exp X = ∑

k≥0(X
k/k!), and that

τ(exp X) = exp(τ (X)), where τ denotes the principal antiautomorphism of the Clif-
ford algebra. We recall that U(p, q) is the set of elements u of SO(2p, q) such that u◦
J = J ◦u. We want to prove the following statement. Let i ∈ C : i2 = −1, and let t ∈
R. We denote by � the classical projection already considered: �(g)x = π(g)xg−1.

3.7.6.2.1 Proposition � exp[it
∑n

k=1(xkyk)] induces the mappings x → eit x on F

and x → e−it x on F ′.

Proof.

3.7.6.2.1.1 Lemma

(xkyk)(xlyl) = (xlyl)(xkyk)

and

exp(it xkyk) exp(it xlyl) = exp(it (xkykxlyl)).

The result is quite straightforward.

3.7.6.2.1.2 Lemma Let

z = exp

(
it

[
n∑

k=1

(xkyk)

])
=

n∏
k=1

exp[it xkyk].

Then N(z) = eint = (eit )n and |N(z)| = 1.

Let us consider now the plane generated by x1 and y1 such that x2
1 = 0, y2 = 0,

and 2R(x, y) = 1. It is easy to verify that τ(exp it x1y1) = τ(z1) = exp(it y1x1)

and that N(z) = eit . Thus |N(z)| = and z−1
1 = e−it exp(it y1x1). Then it is easy

to verify that e−it exp(it y1x1)x1 exp(it y1x1) = eit x1 and that e−it exp(it x1y1)y1·
exp(it y1x1) = e−it y1. The result is quite obvious by recurrence.
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3.7.6.2.1.3 Corollary

� ◦ exp

{
iπ

(
n∑

k=1

xkyk

)}
= −Id on (R2n)′,

� ◦ exp

{
2iπ

(
n∑

k=1

xkyk

)}
= Id on (R2n)′,

� ◦ exp

{
i
π

2

(
n∑

k=1

xkyk

)}
= J.

3.7.6.2.2 Proposition The group U(p, q) is identical to �(�Up,q), where�Up,q is
the set of products of elements zwith |N(z)| = 1 such that z = exp(iλ)· exp(iaklxkyl)

(with summation in k and l), akl ∈ C, with akl = ālk and λ = −(
∑

akk)/2.

Proof.
• First, it is easy to verify that U(p, q) is included in �(�Up,q). It is enough to

notice that xkyk commutes with
∑

l xlyl and to use the previous corollary to express
a condition of reality, using the fact that for z = exp(iλ) exp(iaklxkyl) = µ exp(u),
withµ = exp(iλ) andu = iaklxkyl ;N(z) = µ2 exp(u+τ(u)) = µ2 exp(iakl(xkyl+
ylxk)) = µ2 exp[iaklδkl] = exp(2iλ) exp(i

∑
k a

kk).
•Then we notice that U(p, q) is connected. Let us consider � ◦exp(it xkyk). The

result is obtained by considering the value of the norm and the fact that the exponential
map generates the connected component of the identify of a Lie group.

3.7.6.2.3 Remark Previously, we assumed that n = p + q = r . If n = 2r + 1, then
2n = 2r+2 is even and we can consider a special Witt decomposition of E′2n(2p, 2q)
that leads to the same conclusions. We notice the following exact sequence:

1→ U(1)→�U(p, q)→ U(p, q)→ 1.

So �U(p, q) is isomorphic to RU (p, q) ×Z2 U(1), which gives an algebraic char-
acterization of RU (p, q)×Z2 U(1).

3.7.7 Associated Spinors

First, we recall the following classical results.21

3.7.7.1 A Recall

Let (E, q) be a quadratic regular complex space. If dim E = 2k, the Clifford algebra
C(E,Q) is isomorphic to m(2k,C). If dim E = 2k+1, the Clifford algebra C(E,Q)

is isomorphic to m(2k,C)⊕m(2k,C).

21 R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit., p. 331.
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3.7.7.2 Another Recall

We have introduced E2n = R2n endowed with a quadratic form of signature (2p, 2q)
and the complexification E′2n, a 2n-dimensional complex space with its own Clifford
algebra isomorphic to the complexification of the Clifford algebra of E2n.

Inside this Clifford algebra [C(R2n,Q2p,2q)]′ we have considered the group
�U(p, q) 	 RU (p, q)×Z2 U(1), associated with the exact sequence

1→ U(1)→�U(p, q)→ U(p, q)→ 1.

According to the previous result, since dimC E′2n = 2n, the Clifford associated alge-
bra A is isomorphic to m(2n,C). A is identical to LC(S), where S is a complex 2n =
dimensional space, a minimal module22 of such an algebra A. A is a central simple
complex algebra.

3.7.7.3 Definition S is by definition the space of spinors associated with such an
algebra: dimC S = 2n.

3.7.7.4 Pseudo-Hermitian Structure on S

A. Weil has shown23 that for an antilinear involution α over A, a central simple com-
plex algebra, if we denote by l(a) the endomorphism x → ax of the underlying vector
space to A and if we consider the trace Tr l(a), the form (x, y) ∈ A → Tr l(xαy)

is a nondegenerate hermitian form associated with the antilinear involution α.
R. Deheuvels has shown24 that α determines on S a pseudo-hermitian scalar prod-
uct for which α is precisely the operator of adjunction. Moreover, Deheuvels proved
that the signature of the corresponding quadratic hermitian form (associated with
(x, y) → Tr l(xαy)) is (r2 + s2, 2rs). Let us choose now for α : τ the principal
antiautomorphism of the Clifford algebra A, a central simple complex algebra for
which τ is antilinear. Let us take again the proof given by Deheuvels.24 It is easy to
see that the pseudo-hermitian form is a neutral one, r2+ s2 = 2rs, i.e., r = s. So the
pseudo-hermitian scalar product on S is neutral of signature (2n−1, 2n−1).

The pseudounitary group of automorphisms of S that conserve such a scalar
product consists of elements u of LC(S) 	 A 	 m(2n,C) such that uτu = 1. After
embedding RU (p, q) into the complexified algebra A by the canonical injection, we
obtain that RU (p, q) is contained in U(2n−1, 2n−1). We want to show that for p ≥ 2,
Spin U(p, q) is in fact contained in SU (2n−1, 2n−1).

22 C. Chevalley, (a) The Algebraic Theory of Spinors, Columbia University Press, New York,
1954; (b) The construction and study of certain important algebras, Math. Soc. Japan, 1955.
R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit.

23 A. Weil,Algebras with involutions and the classical groups, Collected Papers, vol. II, (1951–
1964), p. 413–447, reprinted by permission of the editors of J. Ind. Math. Soc., Springer
Verlag, New York, 1980.

24 R. Deheuvels, Groupes Conformes et Algèbres de Clifford, op. cit.



www.manaraa.com

3.8 Natural Embeddings of the Projective Quadrics H̃p,q 233

Proof. Any element g ∈ Spin U(p, q) is the product of an even number of vectors
ui such that N(ui) = 1 and of an even number of vectors uj such that N(uj ) =
−1, g = u1u2 · · · u2k . Since u1u2 = u2(u

−1
2 u1u2) and since y1 = u−1

2 u1u2 ∈ E2n
with N(y1) = N(u1), we can assume that the ui with N(ui) = −1, if they exist, are
set before in the writing of g. Moreover, if two “ui” are linearly dependent, using pre-
vious permutations, we are led to a factor±1. So, we can assume that g = u1 · · · u2k
with ui linearly independent, two by two, with N(ui) = −1 before, if they exist.

If (ui) satisfy (u2
i ) = 1 = N(ui), ui is an involutive operator of S, and so

its determinant equals ±1. Let us consider two consecutive vectors u1, u2, linearly
independent, with N(u1) = N(u2) = −1, and let P be the plane that they gen-
erate. If p ≥ 1 (in fact 2p ≥ 2) there exists z ∈ E2n such that R(z, z) = 1,
R(z, u1) = R(z, u2) = 0, and (zu1)

2 = 1, (zu2)
2 = 1, zu1zu2 = −u1u2.

So zu1, like zu2, is an involutive operator of S, with determinant equal to ±1
(cf. Appendix 1.9). Thus, any g ∈ Spin U(p, q) is the product of elements that have
determinant equal to ±1. So, Spin U(p, q) is contained in the subgroup of the pseu-
dounitary group consisting of elements of determinant±1, but since Spin U(p, q) is
connected, all these elements have 1 as determinant.

We have obtained the following theorem.

3.7.7.5 Theorem The space S of spinors associated with A inherits a natural complex
structure and a pseudounitary neutral scalar product of signature (2n−1, 2n−1), up to
a scalar factor, which is conserved by the group Spin U(p, q). We have the following
embedding: Spin U(p, q) is contained in SU (2n−1, 2n−1).

3.8 Natural Embeddings of the Projective Quadrics H̃p,q

The embedding can be made as previously (cf. Chapter 1). Let S be the space of
spinors previously introduced. Let [ | ] be a scalar product on S associated with the
involution τ , i.e., for a ∈ Clp,q , a and aτ linear operators of S are adjuncts of each
other relative to the scalar product [ | ]. The injective mapping {isotropic line {λx} in
Hp,q} → {maximal totally isotropic subspace S(x) = Im(xy)S = ker(yx)S}, where
(xy)S and (yx)S are the projectors of S defined by the elements xy and yx of Clp,q ,
determines a natural embedding of the projective quadric H̃p,q into the Grassmannian
of half-dimensional subspaces G(S, 1

2 dim S).
According to general results of Porteous,25 we obtain that H̃p,q is homeomorphic

to U(2n−1). Then we have the following summary statement:

3.8.1 Theorem Spin U(p, q) is included in SU(2n−1, 2n−1); H̃p,q is homeomorphic
to U(2n−1).

25 I. R. Porteous, Topological Geometry, 2nd edition, Cambridge University Press, 1981. (Th.
12-19, p. 237; Prop. 17-46 p. 358)
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3.9 Covering Groups of the Conformal Pseudounitary Group

3.9.1 A Review of Previous Results

In 3.7.5.2 we found a fundamental diagram, where clearly there appear two exact
sequences:

1→ Z2 → RU (p, q)
ϕ=�−−−→ U(p, q)→ 1,

1→ U(1)→ RU (p, q)×Z2

δ→ U(p, q)→ 1.

We have previously given in 3.4 a “geometrical construction” of the conformal
pseudounitary group defined as PU (F ) = U(p + 1, q + 1)/U(1) · I , via the study
(cf. 3.3) of an injective mapping from En(2p + 2, 2q + 2) into the isotropic cone
Q(F), where F = Hp,q ⊕H1,1 is defined explicitly by

p1(X) = r(x)

2
√

2
(e0 + J (e0)+ en+1 + J (en+1))+X

− 1

2
√

2
(e0 + J (e0)− en+1 − J (en+1)),

or equivalently by

p1(X) = 1

2
√

2
(r(x)− 1)(e0 + J (e0))+ x + 1

2
√

2
(r(x)+ 1)(en+1 + J (en+1)).

Thus we put

p1 : x ∈ E→ p1(x) = r(x)δ′0 + x − µ′0,

where

δ′0 =
1

2
√

2
(e0 + J (e0)+ en+1 + J (en+1)), µ

′
0

= 1

2
√

2
(e0 + J (e0)− en+1 − J (en+1)),

which constitutes an isotropic base of H1,1 with 2f (δ′0, µ′0) = 1. Then, the geomet-
rical construction of PU (F ) was given.

3.9.2 Algebraic Construction of Covering Groups for PU(F )

3.9.2.1 Preliminary Remark

Let us take again p1 : E → Q(F). p1(x) can have any isotropic direction except
that of δ′0, unless we would assume that this direction is obtained as the limit of r(x)
tending to infinity.

Let y = λx + αδ′0 + βµ′0 be an isotropic vector with λ �= 0. According to 3.3.1
we have that αβ̄ + ᾱβ + 2|λ|2r(x) = 0. Therefore y has the same direction as p1(x)

if we take r(x)
α
= 1

λ
= −1

β
, that is α = λr(x), β = −λ.
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3.9.2.2 Proposition There exists a morphism of groups ϕ1 with discrete kernel A1
from RU (p + 1, q + 1) onto PU (F ) : g→ ϕ1(g) such that for almost all x ∈ Hp,q

and for all g ∈ RU (p, q),

π(g).p1(x)g
−1 = ψ(g).p1 = σg(x)p1[ϕ1(g)x],

where σg(x) is a scalar (A). ϕ1(Spin U(p, q)) is called the real conformal pseudouni-
tary restricted group.

The proof is the same as previously in 2.4.3 and will be studied in the exercises
below. The only difficulty is the search and the determination of the kernel.

3.9.2.3 Determination of the Kernel A1 of ϕ1

We will use the following classical lemma.26 (Cf. exercises, below.)

3.9.2.3.1 Lemma If a quadratic n-dimensional regular space (E, q) with n ≥ 3 has
isotropic elements and if σ ∈ O(q) fixes every isotropic line, then σ = ±IdE .

3.9.2.3.2 Proposition The kernel of ϕ1 : RU (p + 1, q + 1)→ PU (F ) is

{1,−1, EN,−EN } = A1,

where EN = e0J (e0)e1J (e1) · · · enJ (en)en+1J (en+1).

If g belongs to Ker ϕ1, then π(g).p1(x)g
−1 = σg(x)p1(x), for almost all x in

U(p, q). Thus, ϕ1(g) fixes every isotropic line, taking account of the preliminary
remark 3.9.2.1. Thus, π(g)zg−1 = ±z, for any z in Hp,q . Therefore g ∈ Kerϕ1 if and
only if ψ(g) = IdF or ψ(g) = −IdF .

Since classically Ker ψ is isomorphic to Z2, if g ∈ RU (p + 1, q + 1) satisfies
ψ(g) = −IdF , we know that ψ(EN) = −IdF , whence ψ(gEN) = ψ(g)ψ(EN) =
IdF , and then gEN = ±1, that is, g = εEN with ε = ±1. Thus we have obtained
the following exact sequence:

1→ A1 → RU (p, q)→ CUn(p, q)→ 1.

One can verify that if (EN)2 = 1, A1 is isomorphic to Z2 × Z2, and if (EN)2 = −1,
A1 is isomorphic to Z4. An easy computation gives E2

N = (−1)n. Thus if n is even,
A1 	 Z2 × Z2, and if n is odd A1 	 Z4.

3.9.2.4 Another Covering Group of PU(F ) = CUn(p, q)

3.9.2.4.1 Another Fundamental Exact Sequence

As in 3.7.5.1 and 3.7.5.1.4, we can deduce from the above exact sequence the follow-
ing one:

1→ A1 ×Z2 U(1)→ RU (p + 1, q + 1)×Z2 U(1)→ CUn(p, q)→ 1,

26 E. Artin, Algèbre Géométrique, Gauthier-Villars, Paris, 1972, p. 126, Theorème 3.18.
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i.e.,

1→ A1 ×Z2 U(1)→�U(p + 1, q + 1)→ CUn(p, q)→ 1.

3.9.2.4.2 Proposition We have the following commutative fundamental diagram of
Lie groups with the same notation as in 3.7.5.1.4 and 3.7.5.1.5:

1 U(1)

1 A 1 × Z 2 U(1)

1 A 1

1 1 1

1 1

U(1) 1

RU (p + 1, q + 1 ) × Z 2 U(1) CUn (p, q)

RU (p + 1, q + 1 ) CUn (p, q)

α� α�

1

1

3.9.3 Conformal Flat Geometry (n = p + q = 2r)

Let us consider again En(p, q), the standard pseudo-Euclidean space, with
p ≤ q, p ≤ r . We can introduce the following Witt decompositions of E′n and
E′2(1, 1),27 respectively (where the ′ indicates that we consider the complexification
of the space):

x1 = e1+en
2 , . . . , xp = ep+en−p+1

2 , xp+1 = iep+1+en−p

2 , . . . ,

xr = ier+en−r+1
2 , x0 = e0+en+1

2

y1 = e1−en
2 , . . . , yp = ep−en−p+1

2 , yp+1 = iep+1−en−p

2 , . . . ,

yr = ier−en−r+1
2 , y0 = e0−en+1

2 ,

such that for any i and j we have

B(xi, yj ) = δij

2
and xiyj + yjxi = 2B(xi, yj ) = δij , 0 ≤ i ≤ r, 0 ≤ j ≤ r.

27 C. Chevalley, The Algebraic Theory of Spinors, Columbia University Press, New York,
1954, pp. 13–15, for example, and p. 91, also cf. A. Crumeyrolle, Bilinéarité et géométrie
affine attachées aux espaces de spineurs complexes Minkowskiens ou autres, Annales de
l’I.H.P., Section A, vol. XXXIV, no 3, 1981, p. 351–372.
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3.9.3.1 Lemma Let {xi, yj }1≤i≤r1≤j≤r be a special Witt basis of E′n. Let x′2k−1 = xk−yk

and x′2k = xk + yk , k = 1, 2, . . . , r . The {x′α} constitute an orthogonal basis of E′n
such that if z = x′1 · · · x′n, z2 = 1.28

The proof will be recalled below in the exercises.

3.9.3.2 Lemma Let fr = y1 · · · yr . Then zfr = (−1)rfr and frz = fr .29

The proof is easy and will be given below in the exercises.

3.9.3.3 Lemma Let fr+1 = y1 · · · yry0 be an isotropic (r+1)-vector of En+2. Then
eNfr+1 = (−i)r−pfr+1, where eN = e0en+1e1 · · · en and fr+1eN = (−1)r+1·
(−i)r−pfr+1.30

The proof will be given below in the exercises.

3.9.3.4 Corollary Let us consider C+2p,2q . We recall that Clp,q is the real algebra
defined as

{g ∈ C+2p,2q : J̃ (g) = g} = {z+ J̃ (z), z ∈ C+2p,2q} (cf. 3.7.2.1 above).

Let us consider an isotropic (2r + 1)-vector f2r+1 = y1 · · · y2ry0. Then we have
ENf2r+1 = (−1)r−pf2r+1 and f2r+1EN = (−1)r+1−pf2r+1.

The proof will be given below in the exercises.

3.9.3.5 Explicit Construction of an Isomorphism from PU (p + 1 , q + 1)

onto CUn(p, q)

The construction is made in the same pattern as that given in Chapter 2.31 We are go-
ing to construct explicitly a surjective morphism ϕ1 of the Lie group U(p+1, q+1)
onto CUn(p, q) with kernel A1, where A1 = {1,−1, EN,−EN } with EN =
e0Je0e1Je1 · · · enJ enen+1Jen+1 such that we have the following diagrams (see Fig-
ures 3.1 and 3.2), where i1 is the identical mapping from U(p, q) into CUn(p, q),
j1 is the identical mapping from U(p, q) into U(p + 1, q + 1), X1 is an isomor-
phism from PU (p + 1, q + 1) onto CUn(p, q), constructed below, θ1 = (X1)

−1

is an isomorphism from CUn(p, q) onto PU (p + 1, q + 1), and η1 is defined as
θ1 ◦ ϕ1.

28 C. Chevalley, The Algebraic Theory of Spinors, op. cit., p. 91.
29 C. Chevalley, The Algebraic Theory of Spinors, op. cit., p. 91.
30 P. Anglès, (a) Les structures spinorielles conformes réelles, Thesis, Université Paul Sabatier,

Toulouse, 1983, pp. 40–42; (b) Real conformal spin structures, Scientiarum Mathemati-
carum Hungarica, 1988, pp. 115–139, p. 118.

31 P. Anglès, (a) Les Structures Spinorielles Conformes Réelles, op. cit., pp. 45–50; (b) Real
Conformal Spin Structures, op. cit., pp. 116–118.
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Fig. 3.1.

The first diagram associated with the pseudounitary conformal group CUn(p, q)

(Figure 3.1) corresponds to the choice of RU (p, q) as a covering group for U(p, q).

The second diagram associated with the pseudounitary conformal group CUn(p, q)

(Figure 3.2) corresponds to the choice of�U(p, q) as a covering group for U(p, q).

3.9.3.5.1 Lemma (A) p1(x) = r(x)δ′0 + x − µ′0 is equivalent to x = p1(x) −
2R(p1, µ

′
0)δ
′
0 + µ′0, if r(p1(x)) = 0 (A1).
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Fig. 3.2.

All the calculations are made in the Clifford algebra Clp+1,q+1. R is the real part of the
form f that defines the pseudo-hermitian scalar product. If p1(x) = r(x)δ′0+x−µ′0,
thenp1(x)µ

′
0 = r(x)δ′0µ′0+xµ′0 andµ′0p1(x) = r(x)µ′0δ′0+µ′0x,whencep1(x)µ

′
0+

µ′0p1(x) = 2R(p1(x), µ
′
0) = r(x) and then x = p1(x)− 2R(p1, µ

′
0)δ
′
0 + µ′0.

We can also remark that 2R(p1, δ
′
0) = −1, sincep1(x)δ

′
0+δ′0p1(x) = 2R(p1(x),

δ′0) = −2R(µ′0, δ′0) = −1.
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3.9.3.5.2 Construction of the Diagram

Sinceϕ1 is a morphism of groups from RU (p+1, q+1)×Z2U(1) 	 �U(p+1, q+1)
onto CUn(p, q) and according to the classcal writing of g ∈ RU (p+1, q+1), σg(x)

is a nonzero coefficient when f1(x) is defined for f1 = ϕ1(g), it follows that (A) is
equivalent to (A2):

p1(f1(x)) = λg(x)ψ(g).p1(x), for f1 = ϕ1(g).

Let w be in U(p + 1, q + 1). We can associate f1 = ϕ1(g) ∈ CUn(p, q) with w

such that according to (A1),

f1(x) = λg(x)(w · p1(x)− 2R(w · p1(x), µ
′
0)δ
′
0)+ µ′0

with 2λg(x)R(w · p1(x), δ
′
0) = −1.

Thus, we define a surjective mapping l1 from U(p + 1, q + 1) into CUn(p, q).
Moreover, w → l1(w) = f1 = ϕ1(g) is a morphism of groups. The verification of
these two facts will be made in the exercises, below.

The determination of ker l1 is immediate. f1 = IdHp,q , with f1 = l1(w) and
w = �(g) if and only if g ∈ A1 = {1,−1, EN,−EN }, i.e., if only if �(g) = w ∈
{IdHp+1,q+1 ,−IdHp+1,q+1} 	 Z2. Therefore, we have constructed an explicit algebraic
isomorphism of groups X1 from PU (p+1, q+1) = U(p + 1, q + 1)/U(1) · I onto
CUn(p, q). Since the kernel of l1 is discrete, we have also obtained an isomorphism
of Lie groups. One can easily verify in the previous diagram that l1 ◦ j1 = i1. The
verification will be made below in the exercises.

3.9.4 Pseudounitary Flat Spin Structures and Pseudounitary Conformal
Flat Spin Structures

3.9.4.1 Pseudounitary Flat Spin Structures

3.9.4.1.1 A Review of Some Classical Results32

Let (E,Q)be a standard quadratic regular space over R.We want to recall briefly some
classical results. With our previous notation, an RO(Q)-spin flat structure33 is defined

32 Cf., for example, (I) A. Lichnerowicz, (a) Champs spinoriels et propagateurs en relativité
générale, Bull. Soc. Math. de France, 92, pp. 11–100, 1964; (b) Champ de Dirac, champ
du neutrino et transformation C.P.T. sur un espace courbe, Ann. l’I.H.P., Section A (N.S.), 1,
pp. 233–290, 1964. (II) Y. Choquet-Bruhat, Géométrie Différentielle et 9 Systèmes Ex-
térieurs, chap. III, pp. 126–135, Dunod, Paris, 1968. (III) A. Crumeyrolle, (a) Structures
spinorielles, Ann. l’I.H.P., Section A (N.S.), vol. 11, no 1, pp. 19–55, 1969; (b) Groupes de
spinorialité, Ann. l’I.H.P., Section A (N.S.), vol. 14, no 4, pp. 309–323, 1971; (c) Fibrations
spinorielles et twisteurs généralisés, Periodica Math. Hungarica, vol. 6.2, pp. 143–171,
1975.

33 Cf. A. Crumeyrolle, (a) Structures spinorielles, Ann. l’I.H.P., Section A (N.S.), vol. 11, no
1, pp. 19–55, 1969; (b) Groupes de spinorialité, Ann. l’I.H.P., Section A (N.S.), vol. 14, no
4, pp. 309–323, 1971; (c) Fibrations spinorielles et twisteurs généralisés, Periodica Math.
Hungarica, vol. 6.2, pp. 143–171, 1975.
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by an equivalence class of (R, g), where R is an orthonormal real basis called abu-
sively a “frame” and g an element of RO(Q), with the following meaning: (R, g) ∼
(R′, g′) if and only if R′ = σR, ψ(γ ) = σ with g′ = γg, g, g′, γ ∈ RO(Q).

The choice of (R, g) in an equivalence class corresponds to fixing what will be
called an RO(Q) spinorial “frame” as origin, and isomorphic spaces of spinors can be
associated with the possible choices. If we agree to use Witt basis � associated by the
classical Witt process34 with the real orthonormal basis, according to Crumeyrolle,35

we can also define such an RO(Q)-spin trivial structure by an equivalence class of
(�, g) such that (�, g) ∼ (�′, g′) means that �′ = σ�,ψ(γ ) = σ, g′ = γg,
γ ∈ RO(Q) and g, g′ ∈ RO′(Q) 	 RO(Q′), where the sign ′ indicates complexifica-
tion. In such a class there are always “real” Witt bases, since O(Q′) acts transitively
on the set of real or complex Witt bases of the standard space. A trivial spin structure
can thus be defined from a “nonreal” Witt basis chosen as the “origin.”

3.9.4.1.2 RU (p, q) Standard Spin Structures

Let us recall the fundamental exact sequence

1→ Z2 → RU (p, q)→ U(p, q)→ 1,

“using” the Clifford algebra Clp,q , and the other one,

1→ U(1)→ RU (p, q)×Z2 U(1)→ U(p, q)→ 1,

using the Clifford algebra C′2n(2p, 2q) = (C(R2n,Q2p,2q))
′. If we agree to choose

the first covering space, spin flat pseudounitary geometry appears naturally as a partic-
ular case of structures recalled in 3.9.4.1.1 and in the second case spin flat pseudouni-
tary geometry appears naturally as a special case of RO′(2p, 2q)-spin structures.

3.9.4.2 Pseudounitary Conformal Flat Spin Structures

The results of 2.5.2 can be immediately applied with the following changes:

n→ 2n, p→ 2p, q → 2q, r → 2r, eN → EN.

Thus, we can give the following definitions.

3.9.4.2.1 Definition A conformal pseudounitary spinor of Hp,q , associated with a
complex representationρ of RU (p+1, q+1) in a space of spinors for the Clifford alge-
bra (Clp+1,q+1)′ is by definition an equivalence class ((R̃2n+2)1, g,X2n+2), where
(R̃2n+2) is a projective “pseudounitary frame” of P(Hp+1,q+1), g ∈ RU (p + 1,

q + 1), X2n+2∈C22r+1
and where ((R̃′2n+2)1,g

′,X′2n+2) is equivalent to ((R̃2n+2)1,

g,X2n+2) if and only if we have R̃′2n+2 = σ(R̃2n+2), σ = η1(γ ) ∈ PU (p+1, q+1)
with γ = g′g−1 and X′2n+2 =t (ρ(γ ))−1X2n+2, where (ρ(γ ))−1 is identified with

an endomorphism of C22r+1
.

34 Cf., for example, C. Chevalley, The Algebraic Theory of Spinors, op. cit., chapter 1, pp. 8–19.
35 A. Crumeyrolle, Structures Spinorielles, op. cit., p. 35.
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3.9.4.2.2 Definition We define an equivalence class ((R̃2n+2)1, g), where g is in
RU (p+1, q+1) and ((R̃2n+2)1) is a projective orthogonal frame of PU (p+1, q+1),
to be a “conformal pseudounitary frame” of Hp,q associated with the “real”
orthonormal base (B1)n of Hp,q . ((R̃2n+2)1, g) is equivalent to ((Rn+2)1, g

′) if and
only if (R̃2n+2)1 = (R̃2n+2)1σ and σ = η1(γ ), where g, g′ ∈ RU (p+1, q+1) and
γ = g′g−1.

We remark that

((R̃2n+2)1, g) ∼ ((R2n+2)1,−g) ∼ ((R2n+2)1, ENg) ∼ ((R2n+2)1,−ENg).

If we suppose g, g′ in RO′(2n + 2) and γ = g′g−1 ∈ RU (p + 1, q + 1), we can
consider the action of RU (p + 1, q + 1) on every pseudounitary spinor frame of
C′2n+2f2r+1.

3.9.4.2.3 Definition With obvious notation, (�̃2n+2)1 and (�̃′2n+2)1 being projective

orthogonal Witt frames of PU (p + 1, q + 1), ((�̃2n+2)1, g) and ((�̃′2n+2)1, g) de-

fine the same flat conformal pseudounitary spin structure if and only if (�̃2n+2)1 =
σ(�̃2n+2)1, η′1(γ ) = σ , γ = g′g−1, g, g′ ∈ (RU (p + 1, q + 1))′, γ ∈ RU (p +
1, q + 1).

Thus,

((�̃2n+2)1, g) ∼ ((�̃2n+2)1,−g) ∼ ((�̃2n+2)1, ENg) ∼ ((�̃2n+2)1,−ENg).

3.9.5 Study of the Case n = p + q = 2 r + 1

If n = 2r + 1, then 2n = 2r + 2, and we can consider a special Witt decomposition
of E′2n that leads to analogous conclusions.

3.10 Pseudounitary Spinoriality Groups and Pseudounitary
Conformal Spinoriality Groups

3.10.1 Classical Spinoriality Groups (cf. 3.13 Appendix below)

This notion is due to Albert Crumeyrolle.36 Let (E,Q) be a standard 2r-dimensional
quadratic regular space over R. A. Crumeyrolle introduces the Clifford regular group
G̃ and the groups Pin Q and Spin Q defined respectively as the multiplicative group
of elements g in G̃ such that |N(g)| = 1, where N is the graduate norm of g and
Spin Q = Pin Q ∩ C+(Q). Let {xi, yj }1≤i≤r1≤j≤r be a “real” Witt base of Cn associated
with an orthonormal base of Rn. Let f = y1 · · · yr be an r-isotropic vector associated
with a maximal totally isotropic subspace.

36 Cf., for example, A. Crumeyrolle, Spin fibrations over manifolds and generalized twistors,
Proceedings of Symposia in Pure Mathematics, vol. 27, pp. 53–67, 1975.
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3.10.1.1 Definition H is the subgroup consisting of elements γ ∈ Spin Q such that
γf = ±f . ψ(H) = G is the spinoriality group associated with f .

3.10.1.2 Proposition In elliptic signature, G can be identified with SU (r,C); G is
the set of elements with determinant 1 in the stabilizer of a maximal totally isotropic
subspace, dim G = r2 − 1. G is connected and simply connected.

3.10.1.3 Proposition In signature (k, n− k), k < n− k, k positive terms and r ≥ 2,
G is isomorphic to the subgroup of determinant 1 with matrix

α −µ̄ λ µ

0 β ν 0
0 0 ρ 0
0 0 −ν̄ β̄


with α ∈ Mk(R), det α = ±1, β ∈ Mr−k(C), βt β̄ = Id, det β = ± det α, αtρ = Id,
λ ∈ Mk(R), µ ∈ Ck(r−k), ν ∈ C(r−k)k , ν = −βtµρ, t ρλ + t λρ = t νν̄ +t ν̄ν.
G has four connected components and can be identified with the set of elements
with determinant 1 in the stabilizer of a maximal totally isotropic subspace dim G =
r2 − 2+ k(k − 1)/2.

3.10.1.4 Proposition If Q is a neutral form (k = r), G is isomorphic to the subgroup
of elements in SL(n,R) with the matrix

( 0 λ
0 ρ

)
such that α ∈ Mr(R), det α = 1,

αtρ = Id, t ρλ +t λρ = 0. G is connected and can be identified with the set of
elements with determinant 1 in the stabilizer of a maximal totally isotropic subspace;
dim G = (r − 1)(3r + 2)/2.

3.10.1.5 Definition Let He = {γ ∈ Spin Q : γf = Xeiθf,X ∈ R∗}. We call
ψ(He) = Ge the enlarged spinoriality group associated with f . Ge is the stabilizer
of a maximal totally isotropic subspace for the action of SO(Q). In elliptic signa-
ture X = 1 and ψ(He) = Ge 	 U(r,C). In general, X �= 1. Such subgroups of
SO(Q) : Ge satisfy dim Ge = r2 + k(k − 1)/2 for any k : 0 ≤ k ≤ r . If k �= 0, such
a group Ge is not a generalized unitary group. Ge is connected if k = 0 and has 2
connected components if k �= 0. G is an invariant subgroup of Ge. Both G and Ge are
associated with the same isotropic r-vector (cf. exercises below).

3.10.2 Pseudounitary Spinoriality Groups

3.10.2.1 Definition Let H , respectively He, be the subgroup of elements γ ∈
Spin Q(2p, 2q) such that γf2r = ±f2r , respectively γf2r = Xeiθf2r , with X ∈ R∗.
We call ψ(H) = G, respectively ψ(He) = Ge, the pseudounitary group, respectively
the enlarged spinoriality group, associated with f2r .

3.10.2.2 Characterization

Characterizations of these groups are immediate following 3.10.1. For example, Ge

appears as the stabilizer of the maximal totally isotropic subspace associated with
f2r = y1 · · · y2r , the considered 2r-isotropic vector (cf. exercises below).
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3.10.3 Pseudounitary Conformal Spinoriality Groups

3.10.3.1 Review

Let us recall that we consider SO(2p, 2q) and the exact sequence

1→ Z2 → RU (p, q)→ U(p, q)→ 1,

and that (δ′0, µ′0) constitutes an isotropic basis of H(1, 1). As previously, we can
consider an isotropic (2r + 1) vector in (R2n(2p, 2q)′ ⊕ H1,1 of the form f2r+1 =
y1 · · · y2rµ

′
0. The mapping p1 from Hp,q into F = Hp,q ⊕ H1,1 such that p1(x) =

r(x)δ′0 + x − µ′0 has previously been introduced (cf. 3.3.1).

3.10.3.2 Definition LetA1 = {1,−1, EN,−EN }. Let (HUC)e = {γ, γ ∈ RU (p+1,
q + 1) : γf2r+1 = µf2r+1, where µ ∈ C∗}. By definition, we call any subgroup
(SUC)e = ϕ1(HUC)e an enlarged pseudounitary conformal spinoriality group associ-
ated with f2r+1 . Let (HUC) = {γ, γ ∈ RU (p+1, q+1) : γf2r+1 = ε1f2r+1, where
ε1 ∈ A1}. By definition, we call any subgroup SUC = ϕ1(HUC) of CUn(p, q) a pseu-
dounitary conformal spinoriality group in a strict sense. According to 3.9.3.4 such a
definition is equivalent to the following:HC is the set of element γ ∈ RU (p+1, q+1)
such that γf2r+1 = ±f2r+1.

3.10.3.3 Characterizations of Enlarged Pseudounitary Conformal
Spinoriality Groups

Since p1(x) = r1(x)δ
′
0 + x − µ′0, for any i, 1 ≤ i ≤ 2r, we remark that

p1(yi) = yi − µ′0 and p1(0) = −µ′0.
Up to this light change of notations, the demonstration given in 2.5.1.4 can be

applied.
If f1 = l1(w) with w ∈ U(p + 1, q + 1), as, in 2.5.1.4, we can verify that

f1(y1) . . . f1(y2r ) = µy1 . . . y2r , where µ ∈ C∗.
Thus we have obtained the following proposition.

3.10.3.4 Proposition The enlarged pseudounitary conformal spinoriality group is the
stabilizer of the maximal totally isotropic subspaceF ′ associated with the 2r-isotropic
vector y1 · · · y2r .

3.10.3.5 Characterization of Pseudounitary Conformal Spinoriality
Groups in a Strict Sense

Normalization conditions appear: µ is equal to±1.Amore precise study will be given
below in the exercises.
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3.11 Pseudounitary Spin Structures on a Complex Vector Bundle

3.11.1 Review of Complex Pseudo-Hermitian Vector Bundles

A general theory of real or complex vector bundles is given for example in the fol-
lowing bibliography.37

3.11.1.1 Definition A pseudo-hermitian complex vector bundle, denoted by (ξ, η) or
simply ξ, is a differentiable complex vector bundle over a differentiable manifold
M (that can be paracompact, real or complex, or almost complex or almost pseudo-
hermitian), with typical fiber the standard pseudo-hermitian space Hp,q equipped
with the pseudo-hermitian sesquilinear nondegenerate form η on its fibers, that varies
differentiably from fiber to fiber.

3.11.1.2 Definition Let us assume that the manifold M is an almost complex man-
ifold. If Rξ denotes the principal bundle of “linear frames of ξ ,” the structure group
GL(n,C) can be reduced to U(p, q), p+q = n. We agree to denote by Uξ the princi-
pal bundle of orthogonal normalized bases suitable for the almost pseudo-hermitian
structure. The associated bundle Uξ ×U(p,q) Hp,q is isomorphic to ξ . We agree to de-
note the isomorphic class of Uξ or of (ξ, η̃) by [Uξ ]. For an almost pseudo-hermitian
manifold (M, η̃) one can define the tangent bundle ξ = T (M) and the cotangent
bundle ξ1 = T ∗(M). RM is then the “bundle of linear frames” and UM the bundle
of normalized orthogonal bases suitable for the pseudo-hermitian structure, which is
called the almost pseudo-hermitian bundle.

3.11.2 Pseudounitary Spin Structures on a Complex Vector Bundle

3.11.2.1 General Definition of a Spin Classical Structure

The notion of spin structure on a manifold V has been introduced by A. Haefliger,
who made specific an idea from Ehresmann.38 Many authors such as J. Milnor,
A. Lichnerowicz, R. Deheuvels, I. Popovici, W. Greub, B. Kostant, M. L. Michelson,
R. Coquereaux, A. Jadczyk, have taken an interest in the study of those structures.

3.11.2.1.1 Definition (General Definitions) Let ξ be a pseudo-Euclidean real vector
bundle (ξ,Q) or respectively a complex vector bundle (ξ1,Q1). By definition a spin
structure defined on such a bundle is any lifting of the corresponding principal bundle

37 Cf., for example, D. Husemoller, Fibre Bundles, op. cit.; N. Steenrod, The Topology of Fibre
Bundles, op. cit.; S. Kobayashi, Differential Geometry of Complex Vector Bundles, op. cit.;
A. L. Besse, Manifolds All of Whose Geodesics Are Closed, op. cit.

38 A. Haefliger, Sur l’extension du groupe structural d’un espace fibré, C.R. Acad. Sci., Paris,
243, pp. 558–560, 1956.
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Oξ , respectively Oξ1 , for the corresponding covering morphisms associated with the
group O(Q), respectively O(Q1).

3.11.2.1.2 Example A spin structure on a pseudo-Euclidean real vector bundle
(E,Q), i.e., by definition an RO(Q)-structure, is a principal bundle morphism from
ROξ into Oξ , where ROξ denotes the lifting of the bundle Oξ associated with the mor-
phism ϕ of groups RO(Q)→ O(Q). The complex case can be defined in the same
pattern. Such a definition can be naturally extended to the case of pseudo-riemannian
manifolds and leads to the notion of spin structures on the tangent bundle or cotangent
bundle of M .

3.11.3 Obstructions to the Existence of Spin Structures39

We use the notation of Greub and Petry.40 The obstructions to the existence of spin
structures can be viewed in the general theory of lifting structure groups.

3.11.3.1 Proposition Thus the condition that w2[ξ, ϕ] = K[Oξ , ϕ] vanishes, with
the notation of Greub and Petry40 is equivalent to the existence of an RO(Q)-spin
structure on the pseudo-Euclidean real vector bundle (ξ,Q), where ϕ is the cover-
ing morphism of groups ϕ : RO(Q) → O(Q) and w2[ξ, ϕ] is the second Stiefel–
Whitney class of (ξ,Q).

3.11.4 Definition of the Fundamental Pseudounitary Bundle

3.11.4.1 Definition of a Pseudounitary Spin Structure

By definition, a pseudounitary spin structure on a vector bundle (ξ, η)-pseudo-
hermitian complex vector bundle is a lifting of the principal bundle Uξ relative to the

associated morphism δ of groups RU (p, q)×Z2 U(1)
δ→ U(p, q).

Such a definition can be extended to the case of manifolds with almost pseudo-
hermitian structure via the introduction of the tangent bundle and the cotangent bundle.

3.11.4.2 Notation We denote by RU ξ the principal bundle associated with the prin-
cipal bundle Uξ for the corresponding morphism δ : RU (p, q)×Z2 U(1)→ U(p, q).

3.11.4.3 Remark We can also introduce the principal bundle R1Uξ , the lift of the
principal bundle Uξ relative to the morphism ψ : RU (p, q)→ U(p, q) introduced
in the fundamental diagram.

39 Cf., for example, W. H. Greub, S. Halperin, R. Vanstone, Connections, Curvature and
Cohomology, op. cit.; W. Greub and R. Petry, On the Lifting of Structure Groups, op. cit.;
A. Haefliger, op. cit.; F. Hirzebruch, Topological Methods in Algebraic Geometry, op. cit.;
M. Karoubi, Algèbres de Clifford et K-Théorie, op. cit.; B. Kostant, Quantization and Unitary
Representations, op. cit.; M. L. Michelson, Clifford and spinor cohomology, Amer. J. Math.,
vol. 106, no 6, 1980, pp. 1083–1146; J. Milnor, Spin Structure on Manifolds, op. cit.

40 W. Greub and R. Petry, On the Lifting of Structure Groups, op. cit., pp. 219–241, see p. 242.
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3.11.4.4 Definition of the Fundamental Pseudounitary Bundle

According to 3.7.5.2, if we consider a pseudounitary spin structure δ : RU ξ → Uξ ,
we agree ro call, by definition, the bundle α′(RU ξ ) extension of the bundle RU ξ

for the morphism α′ of the diagram the fundamental pseudounitary bundle. Such a
principal bundle α′(RU ξ ) has for structure group U(1). Its associated complex vector
bundle is RU ξ ×α′ C, denoted by α′RU ξ

.

3.11.4.5 Existence of Pseudounitary Spin Structures

3.11.4.5.1 Preliminaries

We have found two exact sequences:

1→ Z2 → RU (p, q)
�−→ U(p, q)→ 1

and

1→ U(1)→ RU (p, q)×Z2 U(1)
δ−→ U(p, q)→ 1.

For the principal bundle Uξ we introduce naturally two liftings of structures R1Uξ

for ψ and RU ξ relative to δ. We will use the fundamental general results of Greub
and Petry.41

3.11.4.5.2 Definition (Theorem) LetP = (P, π, B,G) be a principal bundle, where
P and B are topological spaces and G is a topological group. Let ρ : � → G be a
continuous homomorphism from a topological group � onto G with kernel K . ρ will
be called central if

(i) K is discrete,
(ii) K is contained in the center of � (thus, in particular, K is abelian).

A �-structure on P is a �-principal bundle P̃ = (P̃ , π̃ , B, �) together with a
strong bundle map η : P̃→P that is equivariant under the right actions of the struc-
ture groups; that is η(z̃ · γ ) = η̃(z̃) · ρ(γ ) for any z̃ ∈ P̃ , γ ∈ �. We will choose an
open covering U = {Ui} of B such that P is trivial over every Ui.We assume also that
B is an L-space, that is, by definition, that every open covering has a simple refine-
ment, i.e., such that all the non-empty intersections Ui1 ∩ . . . ∩ Uip are contractible.
(cf. below exercises).

There exists an element K(P, ρ), called the �-obstruction class, of Ȟ 2(B,K),
the second Čech cohomology group of B with coefficients in K , with the following
fundamental property: P admits a �-structure if and only if K(P, ρ) = e.

The demonstration will be given below in the exercises.
We recall the following statements already used, and which will be applied later.

41 W. Greub and N.R. Petry, On the Lifting of Structure Groups, op. cit., pp. 217–246.
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3.11.4.5.3 λ-Extensions

Let P = (P, π, B,G) be a principal G-bundle and let λ : G→ G′ be a homomor-
phism. Then λ determines a principal bundle Pλ = (Pλ, πλ, B,G′) over the same
base in the following way: Choose a covering Ui of B with a system of local sections
σi and transition functions gij . Define maps

g′ij = λ ◦ gij .

Then the g′ij satisfy the relation

g′ij (x)g′jk(x)g′ki(x) = e,

and consequently, there is a principal bundle Pλ with a system of local sections such
that the g′ij are the corresponding transition functions. Pλ is called the λ-extension
of P .

3.11.4.5.4 Definition Next assume thatρ :�→G andρ′ :�′ →G′ are central homo-
morphisms with kernels K and K ′ respectively. Let λ :G→G′ be a homomorphism.
We say that ρ and ρ′ are related if there is a continuous map λ̃ (not necessarily a
homomorphism) such that

(1) the following diagram commutes and

� �

�

���

~
�

�
G G

(2) λ̃(k • g) = λ̃(k)λ̃(g) for all k ∈ K, g ∈ �.42

λ̃ restricts to a homomorphism of K into K ′. In fact, if k ∈ K then ρ′λ̃(k) =
λ • ρ(k) = λ(e) = e′, whence λ̃(k) ∈ K ′. Next let Pλ be a λ-extension of P and
assume that the homomorphisms ρ : � → G and ρ′ : �′ → G′ are related. Choose
a simple covering {Ui} of B and let γij be a lifting of gij . Set

γ ′ij = λ̃ • γij .
Then

ρ′γ ′ij = g′λ̃γij = λργij = λgij = g′ij ,

and so the γ ′ij are liftings of the g′ij .

42 W. Greub and N. R. Petry, op. cit., p. 222.



www.manaraa.com

3.11 Pseudounitary Spin Structures on a Complex Vector Bundle 249

Now set

θijk(x) = λ̃(γij (x))λ̃(γjk(x))λ̃(γij (x)γjk(x))
−1, x ∈ Uijk.

Then we have

ρ′θijk(x) = λρ(γij (x))λρ(γjk(x)) • λρ(γij (x))γjk(x)−1

= λ(gij (x))λ(gik(x))λ(gij (x)gik(x))
−1

= λ
[
gij gik(gij gik)

−1
]
= λ(e) = e′.

It follows that
θijk(x) ∈ K ′, x ∈ Uijk,

and so these functions are constant. Hence they define a 2-cochain θ in the nerve
N(U) with values in K ′. (See below appendix for the definition of the nerve.)

3.11.4.5.5 Proposition Let p and p′ denote the 2-cocycles for P and Pλ obtained
via the liftings γij and γ ′ij . Then

p′(i, j, k) = θ(i, j, k)λ̃p(i, j, k).

Proof. Applying λ̃ to the equation

γik = p−1
ijkγij γjk

and using (2), we obtain

γ ′ik = λ̃(p−1
ijk)λ̃(γij γjk) = λ̃(pijk)

−1λ̃(γij γjk).

On the other hand,

γ ′ik = p
′−1
ijk γ ′ij γ ′jk = p

′−1
ijk λ̃(γij )λ̃(γjk).

These equations yield

p
′−1
ijk λ̃(γij )λ̃(γjk) = λ̃(pijk)

−1λ̃(γij γjk),

whence

p
′−1
ijk = λ̃(pijk)

−1λ̃(γij γjk)λ̃(γjk)
−1λ̃(γij )

−1.

It follows that

p′ijk = λ̃(γij )λ̃(γjk)λ̃(γij γjk)
−1λ̃(pijk) = θ(i, j, k)λ̃(pijk).

Since p and p′ are cocycles and since the restriction of λ̃ to K is a homomor-
phism, it follows from the lemma that θ is a cocycle. Thus it represents an element
θ ∈ Ȟ 2(B,K ′). Now we have as an immediate consequence of the proposition the
following.
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3.11.4.5.6 Corollary The obstruction classes of P and Pλ are connected by the
relation

κ(Pλ) = θ • λ̃∗κ(P ),

where

λ̃∗ = Ȟ (B,K)→ Ȟ (B,K ′)

denotes the homomorphism induced by the homomorphism λ̃ : K → K ′.
In particular, if λ̃ is a homomorphism of �, then

κ(Pλ) = λ̃∗κ(P ).

3.11.4.5.7 Bundles with Structure Group O(p, q). Proposition

Let P = (P, π, B,O(p, q)) be an O(p, q) bundle. There exist two fundamental
classes K1(P ) ∈ Ȟ 1(B,Z2) and K(P ) such that P admits an RO(p, q)-spin struc-
ture if and only if K(P ) = 0. K1(P ) and K(P ) coincide respectively with the first
and the second Stiefel–Whitney classes w1 and w2 of P .

This important characterization is due to Greub and Petry, On the lifting of struc-
ture groups, op. cit., pp. 240–242. See also Max Karoubi, Algèbres de Clifford et
K-théorie, op. cit., Proposition 1.1.26, p. 174, and Proposition 1.1.27, pp. 175–176.

3.11.4.6 Necessary and Sufficient Condition for the Existence of a
Pseudounitary Spin Structure

Let us consider now a U(p, q) bundle P . The application of Theorem 3.11.4.5.2 leads
us to the following statement:

3.11.4.6.1 Theorem A U(p, q) bundle P admits a pseudounitary spin structure if
and only if the class of obstruction K(P,ψ) vanishes, or equivalently, the class of
obstruction K(P, δ) vanishes (with previous notation).

3.12 Pseudounitary Spin Structures and Pseudounitary
Conformal Spin Structures on an Almost Complex
2n-Dimensional Manifold V

3.12.1 Pseudounitary Spin Structures

Let V be a 2n-dimensional almost complex manifold. The definitions given in Sec-
tion 3.11 lead to the following one. Let ξ(E, V,U(p, q), π) be the bundle of the
normalized orthogonal basis suitable for the pseudo-hermitian structure.
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3.12.1.1 Definition V admits a pseudounitary spin structure in a strict sense if there
exists a principal fiber bundle S = (P, V,RU (p, q), q ′) and a principal morphism ψ̃

from S onto ξ such that the following diagram is commutative, where the horizontal
mappings represent right translations:

Such a definition translates to the lifting of the bundle ξ corresponding to the
morphism ψ̃ from S onto ξ and to the morphism of the group ψ from RU (p, q)

onto U(p, q). We give also the following equivalent definition associated with the
morphism of the covering group δ : RU (p, q)×Z2 U(1)→ U(p, q).

3.12.1.2 Definition V admits a pseudounitary spin structure in a strict sense if there
exists a principal fiber bundle S̃ = (P̃ , V ,RU (p, q) ×Z2 U(1), q̃) and a principal
morphism δ̃ from S̃ onto ξ such that the following diagram is commutative, where
the horizontal mappings represent right translations:

3.12.1.3 Definition In each case S, respectively S̃, is called the principal bundle
of “spin frames” of V . And we associate σ , respectively σ̃ , with S, respectively S̃,
where σ = (P ×RU (p,q) C22r

, V ,RU (p, q),C22r
), the complex vector bundle of

dimension 22r , with the typical fiber C22r
is called the bundle of pseudounitary

spinors, respectively σ̃ = (P ×RU (p,q)×Z2U(1) C22r
, V ,RU (p, q) ×Z2 U(1),C22r

)

is called the bundle of pseudounitary spinors. According to 3.7.7.4 we know that the
dimension of a space of spinors is 2n = 22r .)

We chose the definition given in 3.12.1.1. All the calculations are made in the
real Clifford Clp,q , which is included in C+2p,2q . We can now introduce the following

propositions,43 the proofs of which will be given in the exercises below.

43 The pattern is the same as that introduced by A. Crumeyrolle in Fibrations spinorielles et
twisteurs généralisés, Periodica Math. Hungarica, vol. 6.2, pp. 143–171, 1975.
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3.12.2 Necessary Conditions for the Existence of a Pseudounitary Spin
Structure in a Strict Sense on V

The accent ′ indicates complexification.

3.12.2.1 Proposition (i) If there exists on V a pseudounitary spin structure in a
strict sense, there exists on V , modulo a factor equal to ±1, an isotropic 2r-vector
field, pseudo–cross section of the bundle Cli(V ,Q′2p,2q) and then a subfibering of

Cli(V ,Q′).44

(ii) The complexified bundle ξC admits local cross sections over the trivial-
izing open sets (Uα) with transition functions ψ(gαβ), gαβ(x) ∈ RU (p, q) such
that if x ∈ Uα ∩ Uβ → fαβ defines locally the isotropic 2r-vector field defined
above, then fβ(x) = N(gαβ(x))fα(x), where fβ(x) = ĝαβ(x)fα(x)ĝ

−1
αβ (x), where

ĝαβ(x) = µx
α(xi, yj ), µ being the linear isomorphism that leads to the identifica-

tion of C(Q′2p,2q) with C22n
and µx

α the isomorphism from C(Q′2p,2q) onto C(Q′)x ,

where C(Q′)x is the Clifford algebra induced by C(Q′) at x.45

(iii) The structure group of the bundle ξ can be reduced in O(Q′) to a pseudouni-
tary group in a strict sense.

3.12.3 Sufficient Conditions for the Existence of a Pseudounitary Spin
Structure in a Strict Sense on V

3.12.3.1 Proposition Let (Uα, ϕα)α∈A be a trivializing atlas for the bundle ξC on
V , with transition functions ψ(gαβ(x)) ∈ O(Q2p,2q). If there exists over V an
isotropic 2r-vector pseudo-field pseudo-cross section in Cli(V ,Q′2p,2q) locally de-
fined by x ∈ Uα → fα(x) such that for x ∈ Uα ∩ Uβ �= ∅, we have

fβ(x) = ĝαβfα(x)ĝ
−1
αβ (x), µx

α(gαβ(x)) = ĝαβfα(x),

then the manifold V admits a pseudounitary spin structure in a strict sense.

3.12.3.2 Proposition Let us assume that the structure group of the bundle ξ reduces
in O(Q′2p,2q) to a pseudounitary spinoriality group. Then the manifold V admits a
pseudounitary spin structure in a strict sense.

44 If (V ,Q) is a real n-dimensional pseudo-riemannian manifold, the Clifford bundle
Cli(V ,Q) is defined as follows: The action of the group O(Q) on Rn can be extended
to C(Rn,Q) by an easy verification of the fact that O(Q) conserves the two-sided ideal
generated by {x ⊗ x −Q(x) · 1}. By definition we associate a vector bundle with typical
fiber C(Q) and structure group the extension of O(Q) introduced above with the principal
bundle of orthonormal basis of V . This bundle, denoted by Cli(V ,Q), is of rank 2n on R
and its fibers are real Clifford algebras.

45 Classically the Clifford algebra CV (Q) of V is the quotient of the tensor algebra ⊗D1(V )

of differentiable vector fields on V by the two-sided ideal J generated by the elements
X⊗V −Q(X)1, X ∈ D1(V ). The algebra CV (Q) induces naturally at any x ∈ V a Clifford
algebraC(Q)x orCx(Q)—2n-dimensional algebra quotient of⊗Tx , whereTx is the tangent
space to V at x—by the two-sided ideal generated by the elements Xx ⊗Xx −Q(Xx) · 1.
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3.12.4 Manifolds V With a Pseudounitary Spin Structure in a Broad Sense

Let f2r be an isotropic 2r-vector of Hp,q . In 3.10.3.2 and 3.10.3.4 we defined the
enlarged pseudounitary spinoriality group (Su)e as the stabilizer of the maximal to-
tally isotropic subspace F ′ associated with f2r .

3.12.4.1 Definition V admits a pseudounitary spin structure in a broad sense if and
only if the structure group U(p, q) is reducible to a subgroup of O(Q′2p,2q) iso-
morphic to (Su)e, the enlarged pseudounitary spinoriality group associated with the
2r-isotropic vector y1 · · · y2r .

Such a definition is a generalization of the definitions given in 3.12.1, according
to the proposition given in 3.12.3.2.

3.12.4.2 Proposition V admits a pseudounitary spin structure in a broad sense if and
only if there exists over V a 2r-maximal totally isotropic subspace field such that
with previous notation,

f̃β ′(x) = g̃α′β ′(x)f̃α′(x)g̃
−1
α′β ′(x), f̃β ′(x) = µα′β ′(x)f̃α′(x), µα′β ′(x) ∈ C∗.

The demonstration is immediate (cf. exercises below).

3.12.5 Pseudounitary Conformal Spin Structures

3.12.5.1 Notation, Review, and Definitions

Let V be an almost pseudo-hermitian 2r-dimensional manifold. ξ(E, V,U(p, q), π)

denotes the principal bundle of normalized orthogonal basis suitable for the pseudo-
hermitian structure.46

We introduce naturally according to the already used Greub-extension of struc-
tures the following principal bundles: ξi1 = ξ1(A1, V ,CUn(p, q), π1), Pξ1 =
ξθ1◦i1(E′1, V ,PU (p+ 1, q + 1), π̃1). Then, we introduce a bundle A(V ) with typical
fiber C2 provided with a quadratic hermitian form of signature (1, 1), the Whitney sum
of two complex orthogonal line bundles, for this quadratic hermitian form A(V ) =
l0⊕ l′0, and an “amplified” bundle of the tangent bundle T1(V ) = T (V )⊕A(V ), i.e.,
T1(V ) = ⊔

x∈V (T1)x(V ), where T1(x) = T1(x)⊕ (l0)x ⊕ (l′0)x . The union of Clif-
ford algebras (Clp+1,q+1)x is naturally a vector bundle with typical fiber Clp+1,q+1,
a bundle “locally trivial in algebra.”

U(p + 1, q + 1) acts as usual according to classical results47 in the following
way: for any g ∈ RU (p+ 1, q+ 1), w ∈ Clp+1,q+1, Kψ(g)(w) = π(g)wg−1, where
π(g)wg−1 is dependent only on ψ(g) ∈ U(p + 1, q + 1). CUn(p, q) acts naturally
on such a bundle.

46 Or more generally we can take for V an almost complex 2r-dimensional manifold, which
inherits an almost pseudo-hermitian structure according to previous remarks (3.1.1).

47 Cf. for example, C. Chevalley, The Algebraic Theory of Spinors, op. cit.
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It is known that C2p,2q can be obtained by linear combinations of RO(2p, 2q).
Then according to the definition of Clp,q , the same is true for Clp,q relative to
RU (p, q). The mapping K1 that sends ϕ1(g) ∈ CUn(p, q)—with g ∈ RU (p+1, q+
1)—onto the morphism of Clp+1,q+1 : w → π(g)wg−1 is well defined and consti-
tutes a representation of CUn(p, q) into Clp+1,q+1 : K1ϕ(g)w = π(g)wg−1. Thus we
obtain a bundle denoted by Clif 1(V ) and CUn(p, q) isomorphic to PU (p+1, q+1)
acts on such a bundle. This bundle is the analogous to the standard Clifford bundle.

3.12.5.2 Definition V admits a pseudounitary conformal spin structure in a strict
sense if there exists a principal bundle S1 = (E1, V ,RU (p + 1, q + 1), q ′1) and a
morphism of principal bundles η̃1 such that S1 is a “4-fold covering,” or rather a
double two-fold covering since E2

N = 1, of Pξ1 (or a 4-fold lifting of Pξ1) with the
following commutative diagram,

where the horizontal mappings correspond to right translations. S1 is called the bundle
of conformal spinor frames on V . The bundle of conformal spinors is the complex-
vector-associated bundle of dimension 22r+1 with typical fiber C22r+1

:

σ = (E1 ×RU (p+1,q+1) C22r+1
, V ,RU (p + 1, q + 1),C22r+1

).
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We can now take again the previous proofs given in Section 2.6.2. We need to take
care of the following changes: r becomes 2r , eN becomes EN , ε2 is now (−1)2r+1,
i.e., ε2 = −1 (r even or odd), ε = 1 if r − p is even, and ε = −1 if r − p is odd.
The fr—r isotropic vector becomes f2r .

We can now give the following results:

3.12.5.2.1 Proposition: Necessary and Sufficient Conditions for the Existence
of a Pseudounitary Conformal Spin Structure in a Strict Sense

There exists on V a pseudounitary conformal spin structure in a strict sense if and
only if:

(i) There exists on V modulo the factor ε2 = −1 an isotropic (2r + 1)-vector
pseudo-field pseudo–cross section in the bundle Clif ′1(V ).

(ii) The structure group of the principal bundle Pξ1 is reducible, in the complexifi-
cation, to a subgroup isomorphic to (Suc) the pseudounitary conformal group in
a strict sense associated with the 2r-isotropic vector y1 · · · y2r .

(iii) The complexified bundle (P ξ1)C admits local cross section and trivializing open
sets with transition functions η1(gα′β ′) ∈ RU (p+1, q+1) such that if x ∈ Uα′ ∩
Uβ ′ → f̃α′(x) defines locally the previous (2r + 1)-isotropic pseudofield, then

f̃β ′ = g̃α′β ′(x)f̃α′(x)g̃
−1
α′β ′ , modulo ε2 = −1,

fβ ′ = (EN)2N(g̃α′β ′(x))f̃α′(x), modulo ε2 = −1,

and where (EN)2 = 1 and therefore A1 	 Z2 × Z2.

The obstruction class of the existence of a pseudounitary conformal spin struc-
ture on V : K(V, λ), where λ = l1 ◦ j1 = i1, according to the commutative diagram
shown in Figure 3.3 (with notation of 3.9.3.5 and of 3.11.4.5.3 and 3.11.4.5.5) is

Fig. 3.3.
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such that K(V, λ) = λ̃∗K(P ), where λ̃∗ : Ȟ (V ,Z2)→ Ȟ (V ,Z2 × Z2) denotes the
homomorphism induced by the homomorphism λ̃ : K → K ′, and λ is the natural
inclusion of RU(p, q) into RU(p + 1, q + 1).

It is sufficient to consider the result of 3.11.4.5.6.

3.12.5.2.2 Definition V admits a pseudounitary conformal spin structure in a broad
sense if and only if the structure group PU (p+ 1, q+ 1) of the principal bundle Pξ1
is reducible, in the complexification, to a subgroup isomorphic to (Suc)e, the enlarged
pseudounitary conformal spinoriality group associated with the isotropic 2r-vector
y1 · · · y2r .

Such a definition is a generalization of Definition 3.12.5.2.

3.12.5.2.3 Proposition V admits a pseudounitary conformal spin structure in a broad
sense if and only if there exists over V a (2r + 1) isotropic maximal totally isotropic
field such that with the same notation as above,

f̃β ′ = g̃α′β ′(x)f̃α′(x)g̃
−1
α′β ′ , modulo ε2 = −1,

g̃α′β ′(x) ∈ RU (p + 1, q + 1), f̃β ′ = µα′β ′(x)f̃α′ , µα′β ′(x) ∈ C∗.

The proof is immediate.

3.12.6 Links between Pseudounitary Spin Structures and Pseudounitary
Conformal Spin Structures

We choose the definition of the pseudounitary spin structure given in 3.12.1.1.
A parallel study not given here can be done with Definition 3.12.1.2.

As in Section 2.7, using the previous necessary and sufficient conditions, we
obtain the following results.

3.12.6.1 Proposition If there exists an RU (p, q)-spin structure on V (i.e., a pseudo-
unitary spin structure in a strict sense), then there exists an RU (p + 1, q + 1)-spin
structure on V , the bundle of frames of the amplified tangent bundle.

If there exists an RU (p + 1, q + 1)-spin structure on the bundle of frames of the
amplified tangent bundle, then there exists a pseudounitary conformal spin structure
in a strict sense over V .

If there exists a pseudounitary conformal spin structure in a strict sense over V

(briefly speaking, a CUn(p, q)-spin structure), since n is even if r − p is odd, then
there exists a pseudounitary spin structure over V .

The proof is immediate.
For the last point, since ε2 = −1 (r even or r odd) and, taking into account that if

r−p is odd, then ε = −1, and noticing that E2
n = 1, we can deduce the existence of a

(2r)-isotropic pseudo-vector field that satisfies the required conditions using previous
necessary and sufficient conditions.
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3.12.7 Concluding Remarks

The previous study show that pseudounitary spin structures and pseudounitary
conformal spin structures appear as particular cases of standard pseudoorthogonal
spin structures and conformal pseudoorthogonal ones.

What about symplectic spin structures and conformal symplectic spin structures?
There exists a natural injection from the standard real symplectic group into the spe-
cial pseudounitary group of type (n, n), i.e., ρ1 : Sp(2n,R) → SU (n, n) given in
Satake.48 Thus, one can develop canonically with algebraic and geometrical materials
coming from Chapter 3 the construction and the study of symplectic spin structures
and furthermore, of real conformal symplectic ones via the previous study.

3.13 Appendix

3.13.1 A Review of Algebraic Topology

The following books of reference contain all the necessary material: Séminaire Henri
Cartan, 1967, W. A. Benjamin, New York, Topologie Algebrique, Espaces fibrés et
homotopie, Cohomologie des groupes, suite spectrale, faisceaux, Roger Godement,
Theorie des faisceaux, Actualités scientifiques et industrielles, 1252, Hermann, Paris
1964, Chapiter 1, Part 2, Generalites sur les complexes.

We want to give only some complements necessary for the understanding of the
results of Greub and Petry recalled in 3.11.3. These classical results can be found, for
example in James Dugundji, Topology, Allyn and Bacon, Boston, 1968, pp. 171–173,
or in M. Zisman, Topologie Algébrique élémentaire, Librarie Armand Colin, Paris,
1972, pp. 223–227. We follow the method of Dugundji.

3.13.1.1 Classical definitions

Let E be any nonempty set. An n-simplex �n in E is any set of n + 1 distinct ele-
ments of E, namely �n = {a0, . . . , an}. a0, . . . , an are called the vertices of �n; any
�p ⊂ �n is said to be a p-face of �n.

An abstract simplicial complex K over E is a set of simplexes in E such that any
face of a � ∈ K is in K. We can associate a topological space with any simplicial
complex. Let A0, . . . , An be (n+ 1) independent points in an affine space. The open
geometric n-simplex �n spanned by A0, . . . , An is the set: {∑n

i=0 λiAi |∑n
i=0 λi =

1, 0 < λi, i = 0, . . . , n} and will be denoted by (A0, . . . , An).

�n is the interior of the convex hull of {A0, . . . , An} in the n-dimensional
Euclidean space that these vertices span. A classical example is (A0, A1, A2) that
is a triangle without its boundary. The coefficients λi are called the barycentric coor-
dinates of M =∑n

0 λiAi.

48 I. Satake, Algebraic Structures of Symmetric Domains, Iwanami Shoten Publishers and
Princeton University Press, 1980, p. 77.
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3.13.1.2 Nerve of a covering

The mathematical process that associates with any open covering of a topological
space a complex called its nerve is powerful since it permits to relate topological
properties of a space to its algebraic ones.

3.13.1.2.1 Definition Let {Ua, a ∈ E} be any open covering of a space. Let N be the
complex over E defined by the following condition: (a0, . . . , an) is a simplex of N

if and only if Ua0 ∩ . . .∩Uan �= ∅. N is a complex called the nerve of {Ua, a ∈ E}.

3.13.2 Complex Operators and Complex Structures Pseudo-Adapted
to a Symplectic Form

We want to develop the contents of section 3.1.2 and to review the classical results
found by C. Ehresmann in the references given there. We follow the remarkable book
of P. Liebermann and C. M. Marle.

3.13.2.1 Recalls on complex operators

Let W be a complex space of finite dimension n, and let F = RW be the 2n-
dimensional real vector space obtained from W by restriction of scalars to R. When
considered as acting on F the multiplication by i, square root of −1, is a real linear
operator J such that J 2 = −IdF . Conversely, let V be a real space of finite dimension
endowed with a real linear operatorJ such thatJ 2 = −IdV .Then, necessarily,J is bi-
jective and its inverse is−J. Since we have that (det J )2 = det(−IdV ) = (−1)dim V ,

so V is of even dimension 2n.
J is called a complex operator (or transfer operator) since it determines on V a

structure of complex space. For any λ = a + ib, a, b ∈ R and x ∈ V we define
λx = ax + bJx.

Briefly, we denote by (V , J ) the space V endowed with a complex structure by
means of the complex operator J. The complex dimension of V is n.

A classical example is the following:
Let {ei}, i = 1, . . . , 2n be the canonical basis of R2n, and let J0 be the operator

defined by J0(ek) = en+k, J0(en+k) = −ek for 1 ≤ k ≤ n. Then J0 is a com-
plex operator that allows us to identify R2n with Cn in the following way: to any
x = (x1, . . . , x2n), we associate z = (x1 + ixn+1, . . . , xn + ix2n). In the same way,
for any real 2n-dimensional vector space V endowed with a basis (ε1, . . . , ε2n) we
can associate the complex operator defined by J (εk) = εn+k, J (εn+k) = −εk for
1 ≤ k ≤ n.

Let (V , J ) be a complex structure on V with the complex operator J. A subspace
F of V is said to be complex if F is conserved by J, that is if JF = F. Then it is a
complex subspace of (V , J ). A subspace F of V is said to be real with respect to the
complex structure (V , J ) if F ∩ JF = {0}.

In particular, if dim F = n, the real subspace F is said to be the real form of
(V , J ), since V = F ⊕ JF. V can be then identified with the complexification of F.
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3.13.2.2 Complements for pseudo-hermitian forms

We use the same notation and definitions as in 3.1.2.

3.13.2.2.1 Fundamental formulas

Let η be a pseudo-hermitian form on the complex finite-dimensional space W. We
put G(x, y) = Re(η(x, y)), �(x, y) = −Im(η(x, y)), where G is a real bilinear
symmetric form and � a real skew–symmetric form.

For any real vector space U and for any element of its dual α ∈ U∗, we will
denote by <α, x> the value of α on x ∈ U. Let � be the classical isomorphism
from RW onto its real dual RW ∗ defined by

�(x, y) = −<� (x), y>.

�! will denote the inverse of � . Let G be the isomorphism from RW onto RW ∗
defined by < G (x), y >= G(x, y). We can verify the following relations, where
J denotes the complex operator of V. For any x, y ∈ W, we have:

G(Jx, Jy) = G(x, y)

�(Jx, Jy) = �(x, y)

G(x, Jy) = −�(x, y)

�(x, Jy) = G(x, y)

and J = �! ◦G . (A)

As an example, the standard hermitian form η0 on Cn is defined by η0(z, z
′) =∑n

k=1 zkz̄′k, for z, z′ in Cn. If we put z = (x1+ ixn+1, . . . , xn+ ix2n), then we have

η0(z, z
′) = G0(z, z

′)− i�0(z, z
′)

with G0(z, z
′) =∑2n

j=1 xjx′j and �0(z, z
′) =∑n

k=1

(
xkx′n+k − x′kxn+k

)
.

3.13.2.2.2 Pseudo-adapted complex structures

Conversely we will study the following problem. Given a symplectic real space
(V ,�), does there exist a complex structure on V and a pseudo-hermitian form η such
that � = −Imη? We know that we can choose a symplectic basis on V that allows
us to identify (V ,�) with (R2n,�0) and that J0 is adapted to �0. Whence, we can
deduce that any symplectic real space (V ,�) admits a complex operator adapted to�.

3.13.2.2.3 Proposition (C. Ehresmann) Let (V ,�) be a real symplectic space and let
J be a complex operator on V . J is pseudo-adapted to � if and only if J is a symplec-
tic automorphism, that is the following condition holds: �(Jx, Jy) = �(x, y), for
any x, y in V. If such a condition is satisfied, then the form η defined for any x, y in
V by η(x, y) = G(x, y)− i�(x, y) with G(x, y) = �(x, Jy) is a pseudo-hermitian
form on (V , J ), the unique pseudo-hermitian form such that � = −Imη.
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Proof. If J is pseudo-adapted, the properties stated in the proposition follow from
the properties (A) given in 3.13.2.2.1. Conversely if �(Jx, Jy) = �(x, y), then
the real bilinear form G defined by G(x, y) = �(x, Jy) is symmetric since
G(y, x) = �(y, Jx) = −�(Jx, y) = �(x, Jy) = G(x, y) and also nondegen-
erate. Then, the form η defined by η(x, y) = G(x, y)− i�(x, y) is a nondegenerate
pseudo-hermitian form on (V , J ). The uniqueness of η is immediate.

3.13.2.2.4 Proposition Let V be a real vector space of dimension 2n endowed with
a symplectic form � and with a nondegenerate bilinear symmetric form G. Let K

denote the automorphism �! ◦ G of V, that is the automorphism K such that for
any x, y in V we have: G(x, y) = �(x,Ky). Then the three following conditions
are equivalent to each other:

(i) K is a complex operator, i.e., K2 = −IdV .
(ii) �(Kx,Ky) = −�(x, y), ∀ x, y ∈ V.

(iii) G(Kx,Ky) = G(x, y), ∀ x, y ∈ V.

Proof. We have �(x,K2y) = G(x,Ky) = G(Ky, x) = −�(Kx,Ky). Since the
form � is nondegenerate, this relation proves the equivalence between (i) and (ii).
Moreover, we notice that

G(Kx,Ky) = �(Kx,K2y) = −�(K2y,Kx) = −G(x,K2y)

which explains the equivalence of (i) and (iii).

3.13.2.2.5 Corollary—Definition. (C. Ehresmann) If the operator K defined in
3.13.2.2.4 satisfies one of the equivalent conditions (i)–(iii), then it is pseudo-adapted
to � The forms � and G are called interchanging forms by C. Ehresmann.

3.13.2.2.6 Theorem With the notations of 3.13.2.2.3 let J be a complex structure
pseudo-adapted to �. An automorphism of V commutes with J and conserves the
form η if and only if it conserves both of the forms � and G. The unitary group
U(V, η) coincides with the intersection of Sp(V,�) and O(V,G):

U(V, η) = Sp(V,�) ∩O(V,G).

Moreover, if u is an automorphism of V commuting with J and preserves one of the
forms � or G, then it preserves η and the other form.

Proof. First we want to prove that if u belongs to U(V, η), then u belongs to
Sp(V,�) ∩O(V,G) and that u ◦ J = J ◦ u. By definition we have

η(u(x), u(y)) = G(u(x), u(y))− i�(u(x), u(y))

= η(u(x), u(y)) = G(x, y)− i�(x, y).

Comparing real and imaginary parts we find that u ∈ Sp(V,�) ∩ O(V,G). Con-
versely, let us now suppose that u is an automorphism of V that conserves both G and
�.We will show that u commutes with J. For any x, y ∈ V we have G(u(x), u(y)) =
G(x, y). But G(u(x), u(y)) = �(u(x), J (u(y))) by definition. On the other hand
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we have that G(x, y) = �(x, J (y)) = �(u(x), J (u(y))) since u ∈ Sp(V,�). So
we find that �(u(x), J (u(y))) = �(u(x), u(J (y))) for all x, y ∈ V. Since � is
nondegenerate it follows that J ◦ u = u ◦ J. It is then evident that u ∈ U(η, V ).

To prove the last statement of the theorem, let us assume that u is an automor-
phism of V commuting with J, and that u preserves, say, � (that is u ∈ Sp(V,�)).
Then for all x, y ∈ V we have G(x, y) = �(x, Jy) = �(u(x), u(J (y))) = �(u(x),

J (u(y))) = G(u(x), u(y)). Thus u ∈ O(V, η) and therefore u preserves η.

3.13.3 Some Comments about Spinoriality Groups

We want to give some comments about A. Crumeyrolle’s classical spinoriality groups
(see for example Crumeyrolle A., Groupes de spinorialité, Ann. Inst. Henri Poincaré,
Sect. A, vol. XIV, n° 4, pp. 309–323, 1971, and also 3.10 above). The reader will find
all the required information concerning bilinear forms in Chapter I of Chevalley’s
book: The algebraic theory of spinors, op. cit., and in N. Bourbaki, XXIV, Formes
sesquilineares et formes quadratiques, op. cit.

3.13.3.1 Some Recalls

First, we recall the following result (see C. Chevalley, op. cit., 2.7 pp. 60–61). Let M
be a finite-dimensional vector space over a field K and let Q be a quadratic form on
M, where the associated bilinear form is nondegenerate. Let K ′ be an overfield of K,

let M ′ be the space over K ′ obtained from M by extending to K ′ the basic field and
let Q′ be the quadratic form on M ′ that extends Q. Then the Clifford algebra C′ of
Q′ may be identified with the algebra deduced from the algebra C of Q by extending
the basic field to K.

From now on we will assume that E is a vector space over R or C, and that B is
a nondegenerate symmetric bilinear form on E.

Two vectors x, y ∈ E are called orthogonal to each other if B(x, y) = 0. Let
P is a subspace of E. Then P⊥ is the subspace consisting of all vectors orthogonal
P. Two subspace P1 and P2 are called orthogonal if P1 ⊂ P⊥2 or, equivalently, if
P2 ⊂ P⊥1 . P is called isotropic if P ∩ P⊥ �= {0}. A nonzero subspace P is called
totally isotropic if it is orthogonal to itself or, equivalently, if the restriction of B to P

is identically zero. A totally isotropic subspace P is called maximal if for any other
totally isotropic subspace P1, P ⊂ P1 implies P = P1.

3.13.3.2 Proposition (C. Chevalley, op. cit. I.4.3) All maximal totally isotropic of
E have the same dimension r. This common dimension r is called the Witt index
of B and satisfies the relation 2r ≤ dim(E). The orthogonal group of (E,B) acts
transitively on the set of maximal isotropic subspaces.

3.13.3.3 Witt Decomposition

With the assumptions and notation as above, a Witt decomposition of E is a de-
composition in a direct sum (not an orthogonal sum) of E into three subspaces



www.manaraa.com

262 3 Pseudounitary Conformal Spin Structures

E = F ⊕ F ′ ⊕ G, where F and F ′ are totally isotropic, while G is nonisotropic
and orthogonal to both F and F ′.

Over the field C, if the dimension of the spaceE is n = 2r, all maximally isotropic
subspaces have dimension r. In this case there exists Witt decomposition E = N+P

into a sum of two totally isotropic subspaces. Moreover one can form a special basis of
E consisting of vectors xi ∈ N, yi ∈ P , i = 1, 2, . . . r, such that 2B(xi, yj ) = δi,j .

Such a basis is called Witt basis. Notice that automaticallyB(xi, xj ) = B(yi, yj ) = 0.

3.13.3.4 Special Witt Bases

Starting from the study of pure spinors introduced first by Elie Cartan and then stud-
ied algebraically by Claude Chevalley in Chapter III of his remarkable book. The
algebraic theory of spinors (op. cit) A. Crumeyrolle introduced special Witt bases
he called “real Witt bases.” In many papers such as “Groupes de spinoriality,” Ann.
Inst. H. Poincaré, vol. XIV, 4, 1971, pp. 309–323, “Derivations, formes et operateurs
usuels sur les champs spinoriels des varietes differentiables de dimension paire,”
Ann. Inst. H. Poincaré, vol A 16 no 3, 1972, pp. 171–201, “Spin fibrations over man-
ifold and generalized twistors,” Proc. Symp. Pure Math., vol 27, 1975, pp. 53–67,
A. Crumeyrolle defined and studied classical spinoriality groups.

Let (E,B) be a real n = 2l-dimensional vector space E equipped with a nonde-
generate symmetric bilinear form B of signature (p, q), p �= q and let (E′, B ′) be its
complexification. We will denote by the complex conjugation in E′ = E + iE. It
is known that the Witt index of (E,B) is r = min(p, q). Then E′ = F +Z, where F

and Z are two maximal totally isotropic subspaces F and Z, (both of complex dimen-
sion l, and there exists a special Witt basis {xλ, yλ, xi, yi, 1 ≤ λ ≤ r, 1 ≤ i ≤ l− r}
of E′ with the following properties:

(i) xλ, xi ∈ F,

(ii) yλ, yi ∈ Z,

(iii) xλ = xλ, yλ = yλ, yi = δyi, where δ = 1 if p > q, and δ = −1 if p < q.

If we write Q(x) = (x1)2+· · ·+ (xp)2− (xp+1)2−· · ·− (xp+q)2, n = p+q = 2r,
p < q, then we can take:

F = V ect{e1 + en√
2

,
e2 + en−1√

2
, . . . ,

ep + eq+1√
2

,
iep+1 + eq√

2
, . . . ,

ier + en−r+1√
2

},

Z = V ect{e1 − en√
2

,
e2 − en−1√

2
, . . . ,

ep − eq+1√
2

,
iep+1 − eq√

2
, . . . ,

ier − en−r+1√
2

}.

3.13.3.5 Example

The use of these “real” special Witt bases is indispensable for determination of the
results found by A. Crumeyrolle, such as matrix expressions.

As an example we give here the hints of the proof of Proposition 3.10.2.
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We set f = y1 . . . yr with yj = iej−en−j+1√
2

, where the {ej } constitute an or-

thonormal basis of E. We set xj = iej+en−j+1√
2

. Classically, by using τ, the main

antiautomorphism of the Clifford algebra and Witt theorem (cf. below) the condition
γf = ±f is equivalent to γf γ−1 = f. We set yj ′ = γyjγ

−1 and then yi′ = A
j

i′yj
and therefore xi′ = Ā

j

i′xj where xj ′ = γ xjγ
−1, with γ ∈ RO(Q). Since the Witt

basis {xi, yj } is applied onto the Witt basis {xi′ , yj ′ } we get:
∑

j A
j

i′Ā
j

k′ = δi′k′ . If
we consider y1y2 . . . yr as an element of

∧r
F ′, with previous notations, we find

immediately the results given in Proposition 3.10.2.
Finally, we recall the classical Witt theorem (see for example C. Chevalley, op.cit.,

p. 16, I.4.1). Let (E,Q) be a quadratic regular finite-dimensional space over K. Ev-
ery Q-isomorphism of a subspace N of E with a subspace M may be extended to an
operation of the group O(Q).

3.14 Exercises

(I) Proof Theorem 3.5.2.3

(1) First show that the group PU (F ) of Definition 3.4.1 is included in CUn(p, q),
following the results of the Proposition 3.4.4.2.

(2) Prove the converse by using the construction of covering groups for CUn(p, q)

made in Section 3.9.2. Use results of Section 2.4.2.

(II)

(1) Determine the real associative algebras Cl0,1,Cl1,0,Cl1,1,Cl2,2,Cl3,3.
(2) Using the classical periodicity of the real algebras C+2p,2q study the periodicity

of the algebras Clp,q .

(III)

Let Rn, n = 2r be endowed with a negative definite quadratic form ϕ. Let
{e1, . . . , en} be an orthonormal base of Rn. We assume that Rn is provided with
a linear orthogonal transformation such that J 2 = −Id. Cl(n) denotes the Clifford
algebra of (Rn, ϕ).

(1) One defines an endomorphism of Rn by Jθ = cos θ · I + sin θJ , where I

denotes the identity mapping of Rn and θ ∈ R.
(a) Show that for any x ∈ Rn, x and J (x) are orthogonal.
(b) Show that from Jθ one can deduce an automorphism of the algebra Cl(n).
(c) We set

D0(v1v2 · · · vq) =
∑
j=1

(v1 · · · Jvj · · · vq),

where v1, . . . , vq ∈ Cl(n). Show that D0 is a derivation of the algebra Cl(n).
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(d) Show that there exists an orthonormal basis of Rn of the type (e1, J e1, e2,
Je2, . . . , er , J er ).

(2) We set Cl′(n) = Cl(n)⊗R C. We will assume that Cl′(n) is the Clifford algebra
constructed from Cn endowed with the quadratic form Q′ that extends Q naturally
by complexification. We set εk = 1

2 (ek − iJ ek), ε̄k = 1
2 (ek + iJ ek), k = 1, 2, . . . , r .

We will admit that we obtain, then, a basis of Cn.
(a) Write the multiplicative table of this basis in the Clifford algebra Cl′(n).
(b) We set

L(ϕ) = −
r∑

k=1

εkϕε̄k, L̄(ϕ) = −
r∑

k=1

ε̄kϕεk, for any ϕ ∈ Cl′(n).

Show that L and L̄ are well defined independently of any orthonormal basis such that
{e1, J e1, . . . , er , J er}.

(c) We set H = [L, L̄]. Write the multiplicative table for the bracket [, ] of the
elements L, L̄,H.

(3) Show that H(ϕ) = wϕ+ ϕw− rϕ = w̄ϕ− ϕw̄+ rϕ if w = −∑
εkε̄k, w̄ =

−∑
εk and that H(ϕ) = σϕ + ϕσ if σ = 1

2i

∑
k ek · Jek , for any ϕ ∈ Cl′(n).

(IV) Prove Proposition 3.9.2.2 and Lemma 3.9.2.3.1. Hints: For Proposition 3.9.2.2
follow the same method as in Section 2.4.2.2. For Lemma 3.9.2.3.1 use the fact that
the space contains a hyperbolic plane (cf. E. Artin, Algèbre géometrique, op.cit.,
p. 126).

(V) Prove Lemmas (1), (2), (3) given in 3.9.3 and Corollary 3.9.3.4 (cf. also
2.5.1.2.1).

(VI) Prove 3.9.3.5.2 explicitly. Hints: Use the same method as in Section 2.5.1.2.

(VII)

(1) Prove the propositions given in 3.10.1.2, 3.10.1.3, 3.10.1.4, and 3.10.1.5 (see
Appendix 3.13.3).

(2) Study the special case of the Minkowski space with Q of signature (1, 3).
(3) Prove the results given in 3.10.2.2 concerning the enlarged spinoriality group

associated with f2r by using the same method that was used in Section 2.5.1.4.
(4) Show the characterization given in 3.10.3.5 using the same method that was

used in Section 2.5.1.4 (see also Appendix 3.13).

(VIII) Prove the necessary and sufficient conditions given in 3.11.4.2.

(IX) Prove in detail Proposition 3.12.2.1, 3.12.3.1, 3.12.3.2, 3.12.4.2.
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(X) Construction of Dirac operators 49

Let Cl(E) denote the Clifford algebra of (E, q), a quadratic regular standard
n-dimensional Euclidean space, and let M denotes an n-dimensional riemannian
manifold. Cl(M) denotes the corresponding bundle, the fiber of which at m ∈ M is
the Clifford algebra Cl(T (M)m) of the tangent space where the quadratic form is qm,
or technically the opposite form (−qm).

Let ϕ be the natural linear isomorphism from the exterior algebra ∧E onto Cl(E)

such thatϕ(∧pE) = Clp(E) is the subspace ofp skew-symmetric elements of Cl(E).
The

(
n
p

)
products eJ defined as {eJ = ei1ei2 · · · eip , i1 < i2 · · · < ip} constitute a

basis of Cl(E). Since we can identify, using the quadratic form q, E with its dual
space E∗, we are led to identify T (M) with T ∗(M), ∧T (M) with ∧T ∗(M), and to
consider the natural linear isomorphism �, determined by ϕ from∧T (M) or∧T ∗(M)

onto Cl(M).
The corresponding C∞ cross sections of Cl(M) are Cliffordian fields defined on

M and constitute an algebra �Cl(M) = C(M). The vector fields X ∈ �T (M), and
the exterior differential forms w ∈ A(M) = � ∧ T ∗(M) can be considered, via �,
as Cliffordian fields on M .

Let Pin E be in Cl(E) the classical twofold covering of O(E) and let Spin E be
its connected component, included in Cl+(E), the universal covering of the group of
rotations SO(E) of E. Cl2(E) with the usual bracket of Cl(E) is the Lie algebra of
O(E) and Pin E.

The bundle Cl(M) contains bundles Pin M and Spin M with respective groups
Pin E and Spin E.

(a) Show that if we set q(u) = 2−nT r(l(uτu)) with notation of Chapter 1, q is a
quadratic form defined on Cl(E):

(b) Show that the {eI } constitute an orthonormal Euclidean basis for (Cl(E), q)

and that q(u) is the component relative to the unity of uτu in the basis {eI }.
(c) For any g in Pin(E), q(g(u)) = q(u) and q(ug) = q(u).
The Clifford algebra Cl(E) is a semisimple algebra and inherits a minimal faith-

ful module, unique up to isomorphism, called the space of spinors S(E), where the
groups Pin E and Spin E are represented naturally. S(E) is isomorphic to any minimal
faithful left ideal of Cl(E) as a Cl(E)-left module.

(2) (a) Show that the interior automorphisms u → gug−1, with g ∈ Spin(E),
leave E and any Clp(E) invariant globally. Thus, Spin E acts on E and by left trans-
lation on Cl(E) or S(E).

(b) Letµ be multiplication fromE⊗Cl(E) into Cl(E) or fromE⊗S(E)→ S(E).
Show that µ is a surjective morphism of Spin E modules.

Let P̃ (M) be the principal bundle, with group Pin E, a twofold covering of the
principal bundle P(M) of orthonormal basis of T (M), and let S(M) be the corre-
sponding spinor bundle that determines on M the chosen spin structure.

49 The method is due to R. Deheuvels, Quelques applications des algèbres de Clifford à la
géométrie, Riv. Mat. Univ. Parma, 4, 14, 1988, pp. 55–67.
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Let ∇ be the riemannian covariant differential

∇ : �(⊗T (M))→ �T ∗(M)⊗ �(⊗T (M)).

Since the metric tensor is parallel (∇g = 0), by passing to the quotient we determine
∇, the covariant derivation of Cliffordian fields:

∇ : �Cl(M)→ �T ∗(M)⊗ �Cl(M) = �T (M)⊗ �Cl(M).

(3) (a) Show that the quadratic form q on Cl(E) determines a scalar product
(u | v) between Cliffordian fields u, v ∈ �Cl(M) with values in the set of functions
C∞ on M and that ∇(u | v) = (∇u | v)+ (u | ∇v).

(b) Show that the curvature form R ∈ Cl2(M) ⊗ ∧2T ∗(M) is obtained via the
lifting in the bundles of the mapping from � ∧2 T (M) into the set of derivations of
the algebra �Cl(M):

R(X, Y ) = ∇X∇Y − ∇Y∇X − ∇[X,Y ] = ∇X∇Y − ∇Y∇X − [∇∇XY − ∇∇YX].

(c) Show that the riemannian connection determines a connection on the bundle
P̃ (M) and then a covariant derivation∇ on the bundle S(M), which acts on the spinor
fields, i.e.,

∇ : �S(M)→ �T (M)⊗ �S(M).

The Dirac operator D is defined on �Cl(M) and on �S(M) as the composite of the
covariant derivative and the multiplication µ, �(T (M)) considered as included in
�Cl(M):

�Cl(M)→∇ �T (M)⊗ �Cl(M)→µ �Cl(M),

�S(M)→∇ �T (M)⊗ �S(M)→µ �S(M).

(4) Locally a vector field X can be written X =∑
eiX

i . Show that in an orthonor-
mal basis, the Dirac operator D̃ is equal to

∑
ei∇ei , in �Cl(M) and in �S(M).

(5) Let E = Er,s be the standard pseudo-Euclidean space provided with an
orthonormal basis {e1, . . . , en}. We agree to identify ej , 1 ≤ j ≤ n, with its im-
age in the Clifford associated algebra C = C(Er,s). We recall that q(x) · 1C =
(e1x

1 + e2x
2 + · · · + enx

n)2 and that the Dirac operator can be expressed as
D̃ = e1(∂/∂x

1)+ e2(∂/∂x
2)+ · · · + en(∂/∂x

n).
(a) Show that D̃ is independent of the choice of the orthonormal basis of E. D̃ acts

on the spinor differentiable fields, differentiable functions of E with values in a space
of spinors S of E, by derivation and “multiplication” by elements of C, and D̃ acts
also on the differentiable functions of Er,s , with values in its Clifford algebra C. The
square D̃2 is a scalar operator, or “diagonal”: D̃2 = �, which is the Laplacian of Er,s .

(6) (a) Show that on the standard Euclidean space En, if �ej = ∂
∂xj , then

�ej ek = 0, ∀ j, k and D̃2 = ∑
j ej (∂/∂x

j ) ·∑k(∂/∂x
k) = ∑

(∂2/(∂xj )2) = �.

A spinor field s on Er,s such that D̃ = 0 is called harmonic.
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(7) We put n = 2.
(a) Verify that C(E2) =M(2,R), S(E2) = R2.
(b) Show that E2 can be embedded into C(E2) by

e1 →
(−1 0

0 1

)
, e2 →

(
0 1
1 0

)
, and e1e2 = J =

(
0 −1
1 0

)
with J 2 = −I .

(c) Verify that J can be identified with i if R2 is identified with the complex line
C. A spinor field is then a function s on E2 with values in R2. Verify that

D̃s =
(
e1

∂

∂x
+ e2

∂

∂y

)
s =

(− ∂
∂x

∂
∂y

∂
∂y

∂
∂x

)(
u

v

)
=
(− ∂u

∂x
+ ∂v

∂y
∂u
∂y
+ ∂v

∂x

)
.

D̃ is then the classical Cauchy–Riemann operator and the harmonic spinors (which
satisfy D̃s = 0) are analytic functions u+ iv of the complex variable x + iy.

(d) Show that D̃ acts on a vector field of E2 : X = ae1 + be2 by

D̃X =
(− ∂

∂x
∂
∂y

∂
∂y

∂
∂x

)(−a b

b a

)
=
(

∂a
∂x
+ ∂b

∂y
−( ∂b

∂x
− ∂a

∂y
)

∂b
∂x
− ∂a

∂y
∂a
∂x
+ ∂b

∂y

)
= (div X)I + (rot X)J.

(8) We put n = 3.
(a) Verify that C(E3) =M(2,C), S(E3) = C2.
(b) Show that E3 can be embedded into C(E3) via the Pauli matrices

e1 → σ1 =
(

0 1
1 0

)
, e2 → σ2 =

(
0 −i

i 0

)
, e3 → σ3 =

(
1 0
0 −1

)
with J = e1e2e3 = iI .

D̃ acts on a spinor field s, with complex components u(x, y, z), v(x, y, z) (s is a
function on E3 with values in C2) by

D̃s =
(

∂
∂z

∂
∂x
− i ∂

∂y
∂
∂x
+ i ∂

∂y
− ∂

∂z

)(
u

v

)
=
(

∂u
∂z
+ ∂v

∂x
− i ∂v

∂y
∂u
∂x
+ i ∂u

∂y
− ∂v

∂z

)
.

The harmonic spinors of E3—which satisfy D̃s = 0—are generalizations of analytic
functions.

(9) We put n = 4 and we consider E1,3.
(a) Show that C(E1,3) =M(2,H) and that C(E1,3)⊗ C =M(4,C). We con-

sider the complex Dirac operator that acts on the complex space S = C4.
A set of Dirac matrices is a set of four complex square matrices of order four,

γ0, γ1, γ2, γ3, which satisfy the following relations:
(i) (γ0)

2 = 1, (γ1)
2 = (γ2)

2 = (γ3)
2 = −1;

(ii) γiγj + γjγi = 0, ∀ i �= j .
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(b) Show that we can then define a Clifford mapping from E1,3 into M(4,C) by
the following choice:

γ0 =
(

1 0
0 −1

)
or

(
0 1
1 0

)
and γj =

(
0 σj

−σj 0

)
,

where the σj are the classical Pauli matrices introduced in 8(b) above.
(c) Verify that

D̃ = γ0
∂

∂x0
+ γ1

∂

∂x1
+ γ2

∂

∂x2
+ γ3

∂

∂x3

and that

D̃2 = � = ∂2

(∂x0)2
− ∂2

(∂x1)2
− ∂2

(∂x2)2
− ∂2

(∂x3)2
.

(XI) Prove the results given in Section 3.11.4.5

(1) Proof of 3.11.4.5.2. Prove the following lemmas:

Lemma I AG-principal bundle admits a� structure if and only if there are continuous
maps γij : Uij → � such that

(a) γij (x)γjk(x) = γik(x), x ∈ Uijk (with obvious notation),
(b) ρ ·γij = gij , where gij : Uij → G are the transition functions assoicated with

a simple covering (Uij ) of B by open sets and with a system of local cross sections.

Lemma II A space is called an L-space if every open covering has a simple refine-
ment. (We recall that an open covering {Ui} of a topological space is called simple
if all the nonempty intersections Ui1 ∩ · · · ∩ Uip are contractible.)

Let U = {Ui} be an open covering of B such that P is trivial over Ui . Since B is
an L-space, we may assume that the covering is simple. Then the transition mappings
gij : Uij → G lift to continuous mappings γij : Uij → �. Now consider a nonempty
triple intersection Uijk and set for x ∈ Uijk : pijk(x) = γjk(x)γik(x)

−1γij (x). Then
ρpijk(x) = gjk(x)gik(x)

−1gij (x) = e, and so pijk(x) ∈ K, x ∈ Uijk . Since Uijk is
connected and K discrete, the pijk must be constant, and then define a 2-cochain in
the nerve N(U) with values in the abelian group K . This cochain will be denoted by
p, p(i, j, k) = pijk(x), x ∈ Uijk . Show that p is a cocycle.

Lemma III Show that the cohomology class represented by the cocycle p is indepen-
dent of the choice of the local section σi and the liftings γij .

(2) p determines an element of Ȟ 2(N(U),K). Passing to the direct limit (over
all simple coverings), we obtain an element K(P, ρ) ∈ Ȟ 2(B,K), which is called
the �-obstruction. Show that a principal bundle admits a �-structure if and only if
the class K(P, ρ) vanishes.
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(3) Prove Proposition 3.11.4.5.7 (Greub and Petry, op. cit. pp. 240–242) for the
case of O(n) bundles.
Hints: Study the special case of O(1) bundles. Then proceed by induction.
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anti-isometry, 219
antiautomorphism

principal, 15, 17, 26, 38, 42, 58, 79
principal (of the Clifford algebra), 38, 110,

114, 115
anticenter, 16, 32
anticenter (of a Clifford algebra), 51, 54
antisymmetric

bilinear form, 8
atlas, 109, 112, 127, 130–133, 149, 172, 173,

190, 252
automorphism

principal, 15–17, 26, 32, 92, 226
principal (of the Clifford algebra), 79

basis
orthogonal, 9, 14, 15, 26, 29, 32, 34, 40,

42, 49, 54, 56, 59, 61, 206, 219, 237,
250, 253

orthonormal, 35, 39, 48, 58, 59, 63–66,
79, 92, 103, 104, 167–169, 171, 211,
241, 264–266

standard, 33, 40, 167
Bianchi’s identity, 122, 189
bilinear

antisymmetric form, 8
nondegenerate form, 36, 40
skew-symmetric form, 222
skew-symmetric mapping, 128
symmetric complex form, 8, 35, 54
symmetric form, 13, 40, 48, 52, 55, 172,

211
bilinear form, 40, 49, 92
Brauer group, 12
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Brauer–Wall group, 12, 27
bundle

Clifford amplified, 107
cotangent, 245, 246
tangent, 106, 196, 245, 246, 253

canonical
basis, 34, 134, 135, 137, 141, 150, 154,

190, 191, 195
bijective mapping, 191
coordinates, 139
form, 155, 191
form on P 2(M), 140, 142, 150, 191
injection, 232
injective homomorphism, 105
injective mapping, 15, 173
projection, 74, 123, 133, 140–143, 153,

159, 161, 191
section, 151, 164, 165

Cartan
conformal connection, 132, 151, 152, 170,

195
connection, 126, 145, 151, 164, 195

Cartan–Dieudonné theorem, 76, 83
center, 2–4, 7–9, 11, 16, 18, 19, 24–26, 32,

50, 52, 66, 76, 77, 84, 87, 104, 117,
188, 193, 208, 212, 215

center or centrum (of a Clifford algebra), 105
chart, 133, 138, 139, 174
Christoffel symbols (�i

jk
), 197, 198

Clifford
algebra, 1, 11, 13, 14, 16, 17, 19, 21, 26,

27, 29, 32, 38, 41, 43, 44, 49, 50, 52,
56, 61, 63–65, 79, 92, 103, 105, 106,
108, 110, 114, 115, 181–183, 198,
219–221, 224–226, 230–232, 239,
241, 252, 253, 264–266

amplified bundle, 107
even algebra, 15, 21, 29, 52, 220
even group, 19, 22, 220
group, 18, 22, 26, 79, 182, 219, 226, 227
mapping, 14, 15, 63–65, 268
pseudounitary group, 227
pseudounitary mapping, 224, 225
reduced group, 18, 19, 22
regular group, 18, 242
subalgebra, 26

Cnops J. counterexample, 186, 198

combination
linear, 148, 254

complex
matrix, 3, 6, 7
number, 2, 3, 37, 61, 228

component
horizontal, 122
vertical, 120

conformal
Cartan connection, 132, 151, 152, 170,

195
circle, 160, 163, 166–168, 170, 171
development, 163, 165, 166
Ehresmann connection, 132, 133, 137,

151, 172, 174–176
infinitesimal transformation, 134, 135,

180, 190
isometry, 209, 214, 215
line, 169
moving frames, 155, 158, 159, 161, 194
normal frame, 159
pseudounitary group, 216, 234
pseudounitary transformation, 213
special transformations, 95, 99, 101, 180,

182
spinor frame, 103, 104, 108, 254
spinoriality group, 71, 92, 105, 111, 112,

115
structure, 142, 144, 145, 150, 155, 192
transformations, 72, 78, 79, 135, 172, 188,

215
translation, 135

conjugate, 10, 13, 33, 38, 89
complex, 62
quaternion, 61

connection
Cartan, 126, 145, 151, 164, 195
Ehresmann, 126, 129–133, 137, 163, 179,

189, 190
Levi-Civita, 196

coordinate, 4, 73, 75, 98, 127, 128, 133, 134,
136, 139, 141, 158, 190, 191, 193, 197,
210

homogeneous, 74, 75
local, 139, 140, 179, 180, 190, 197

cotangent
bundle, 245, 246
space, 147, 153, 192
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covering
double twofold, 86, 183
eightfold, 94
fourfold, 86, 107, 118, 186, 254
twofold, 4, 19, 20, 30, 65, 92, 118, 183,

184, 186, 226, 265
covering group, 22, 71, 72, 79, 86, 88, 182,

205, 226, 227, 234, 235, 238, 251, 263
cross section, 106, 108, 109, 112, 114, 117,

118, 125, 126, 128, 134, 142, 143, 144,
149, 152, 191, 252, 265

curvature, 128, 131, 180, 189, 195, 196
form, 122, 128, 146, 148, 150, 181, 191,

195, 266
scalar, 196
tensor, 147, 149, 158, 159, 192

curve
horizontal, 121, 136, 154

decomposable, 63
derivative, 165

covariant, 128, 151, 266
Lie, 135
partial, 138

development
conformal, 163, 165, 166

differentiable
manifold, 123, 125, 245
submanifold, 29

dilation, 84, 87, 99, 101, 135, 185, 188, 194
Dirac

matrices, 72, 267
operator, 265–267

divergence, 135

Ehresmann
affine connection, 132, 190
conformal connection, 132, 133, 137, 151,

172, 174, 175, 176
connection, 126, 129–133, 137, 163, 179,

189, 190
projective connection, 133

element
homogeneous, 110

embedding of projective quadrics, 59, 60
equation

Dirac, 72
homogeneous, 75
Lagrange, 198

Euler–Lagrange identity, 61
exponential mapping, 89, 170, 171

fiber bundle, 150, 151, 164, 170, 177, 189
principal, 170, 173, 175, 195, 251
pseudo-riemannian, 178–180
reduced, 123, 125
tangent, 122
vectorial, 190

field
horizontal, 121, 160
maximal totally isotropic, 256
noncommutative (or quaternion skew

field), 1, 7, 27, 33, 39, 62
frame

affine, 146
change of, 194
conformal normal, 159
conformal orthonormal, 162, 163
conformal spinor, 103, 104, 108, 254
equivalent, 109
linear, 139, 245
moving, 152, 154–157, 159, 161, 178–181,

190, 194–196
normal, 159–162, 194
orthonormal, 73, 105, 107, 116, 118, 163,

179, 196
projective, 106
projective orthogonal, 103, 108, 109, 113,

242
pseudounitary, 242
r-, 138
real projective, 109
spinor, 104, 107
Witt, 103–105, 109, 113, 114, 117, 242

function
transition, 106, 108, 110, 112–115, 117,

121, 130, 142, 172, 248, 252, 255

generalized conformal connection, 71, 163,
172, 174–180, 197

group
Lie, 2–5, 10, 22, 71, 86, 89, 92, 93, 98,

117, 120, 125, 130–132, 164, 173, 205,
228, 231, 236, 237, 240

hermitian
form, 5–10, 37, 58, 208–210, 232
inner product, 8
linear space, 8
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hermitian (continued)
matrices, 6, 8, 64, 65
quadratic form, 58, 209, 212, 232, 253
scalar product, 33, 37, 38, 58, 65, 66
semiquadratic form, 209
sesquilinear form, 206
space, 60, 210, 218, 219
structures, 206

homogeneous
coordinate, 74, 75
element, 110
equation, 75
space, 29, 78, 125, 145, 193, 215

homography, 187
Hopf fibration, 66, 218
horizontal, 120, 121, 127, 131, 188, 190

component, 122
curve, 121, 136, 154
field, 121, 160
lift, 121, 124, 129, 154, 164–166, 170,

171, 176, 179, 189
mapping, 107, 251, 254
morphism, 126, 127, 180
path, 124, 154, 175–177
space, 123, 154
subbundle, 127–129, 172, 174, 175, 180
subspace, 120, 121, 190
vector, 121
vector field, 122, 189

hyperplane
tangent, 187, 209, 211, 212

hypersphere, 74, 75

ideal
left, 22, 54, 265
two-sided, 12, 15, 53, 64, 220

identity component
of a group, 18, 20, 117, 182, 183, 185, 186

invariant scalar products, 36
inversion, 66, 76–79, 84, 87, 99, 182, 187,

188, 215, 216
involution, 7, 8, 11–13, 18, 23–26, 32, 33,

36, 38–42, 46–48, 52, 54, 56, 58, 221,
233

antilinear, 232
linear, 8
positive, 47

involution of algebras, 23, 37, 48

irreducible
representation, 22, 23, 108

isometry, 213
conformal, 209, 214, 215

isotropic
element, 76, 235
maximal totally field, 256
maximal totally space, 208
maximal totally subspace, 9, 22, 45–47,

59, 96, 116, 219, 229, 233, 242, 243,
253

totally, 45, 51, 169
totally plane, 166

J-symmetric quantities, 24

Laplacian, 266
left

translation, 265
Levi-Civita

connection, 196
Lie

algebra, 1, 4–6, 9, 20–23, 72, 120,
123, 125, 128, 131, 132, 134–136, 139,
140, 142, 144, 145, 147, 150–152, 154,
156, 166, 170, 171, 190, 191, 195, 265

derivative, 135
group, 2–5, 10, 22, 71, 86, 89, 92, 93, 98,

117, 120, 125, 130–132, 164, 173, 205,
228, 231, 236, 237, 240

subalgebra, 20, 136, 150
lift

horizontal, 121, 124, 129, 154, 164–166,
170, 171, 176, 179, 189

line
tangent, 154

linear
combination, 148, 254
frame, 139, 245
transformation, 7, 8, 18, 23, 25, 146

locally
isomorphic, 3

Lorentz
group, 18, 20, 72, 89

Maks J. G.
counterexample, 185, 198
theorem, 185
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manifold, 30, 73, 105, 107, 109, 112,
115, 116, 119, 121, 124, 127, 130,
138, 139, 151, 159, 164, 170, 197,
205, 206, 218, 219, 245, 246,
252, 253

almost complex, 206, 208, 245, 250
almost pseudo-hermitian, 213
differentiable, 123, 125, 245
orientable, 116, 197
paracompact, 142, 143, 152, 205, 206
pseudo-hermitian, 206, 209, 213, 245, 253
pseudo-riemannian, 71, 73, 105, 107, 181,

196, 246
riemannian, 77, 105, 107, 158, 265
Stiefel, 219

mapping
horizontal, 107, 251, 254
reflection, 18
tangent, 120, 216, 217

matrix, 2, 4–6, 13, 22, 38–41, 48, 49, 55–58,
62, 65, 66, 156, 179, 181, 183–185,
192, 193, 199, 243

complex, 3, 6, 7
Dirac, 72, 267
hermitian, 6, 8, 64, 65
inverse, 141, 155
Pauli, 64, 267, 268
real, 5
scalar, 7
skew-hermitian, 5, 7
skew-symmetric, 5
square, 7, 8, 21, 27, 38, 62, 63, 267
symmetric, 6
Vahlen, 71, 181, 183–186, 198

Maurer–Cartan
equations, 146
form, 191

maximal
submanifold, 129

minimal line, 166, 170, 171
Minkowski space, 72, 264
Minkowski space-time, 198
morphism

horizontal, 126, 127, 180
moving coframe

tangent, 194
moving frame, 152, 154–157, 159, 161,

178–181, 190, 194–196

Möbius
geometry, 71, 73, 74, 77
group, 76, 92, 144, 145, 172, 182–186,

192
space, 75, 78, 79, 132, 133, 136, 144, 151,

156, 161, 164, 172, 174, 192, 193
transformation, 181–186, 193, 199

negative, 27, 42, 43, 59, 63, 263
strictly, 47

nonisotropic
element, 76, 166, 226

normal
frame, 159–162, 194

number
negative, 63
positive, 47

obstructions, 246, 247, 250, 255, 268
opposite

algebra, 12
orientation, 20, 77, 188
orthogonal

basis, 9, 14, 15, 26, 29, 32, 34, 40, 42, 49,
54, 56, 59, 61, 206, 219, 237, 250, 253

group, 3, 9, 10, 18, 92
special group, 4
transformation, 9, 63, 77, 263

orthogonal group
complex, 93
real conformal, 217
reduced, 18

orthonormal
frame, 73, 105, 107, 116, 118, 163, 179,

196

p-vector, 63, 182
Painlevé hypothesis, 181, 197
parallel displacement, 121, 122, 124, 129,

131, 154, 155, 163, 164, 176, 189
parallelism, 121, 166
path

horizontal, 124, 154, 175–177
Pauli

matrices, 64, 267, 268
Pin(Q), 117, 242
plane

totally isotropic, 45, 166
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polar bilinear symmetric form, 79
positive, 19, 27, 42, 43, 46, 47, 59, 77, 101,

136, 209, 243
strictly, 46, 51, 52, 60, 209, 213, 214

principal bundle, 105–108, 112, 118,
123, 128–133, 137–139, 144, 145, 147,
151, 152, 164, 165, 173, 175, 189, 190,
195, 206, 245–248, 251, 253–255,
265, 268

product
Euclidean scalar, 54
hermitian scalar, 33, 37, 38, 58, 65
invariant scalar, 36
of manifolds, 139
pseudo-Euclidean scalar, 48, 55, 78
pseudo-hermitian scalar, 58, 59, 206, 213,

216, 232, 239
pseudo-quaternionian scalar, 34
pseudo-quaternionic scalar, 34, 38, 39, 41,

43, 46, 57
pseudounitary scalar, 233
quaternionian scalar, 33, 34
quaternionic scalar, 39, 56, 62
scalar, 26, 29, 36, 40, 44, 45, 47, 48, 50,

58, 63, 145, 181, 209, 232, 233, 266
semi-direct, 89, 132
skew-hermitian scalar, 37
symplectic scalar, 33, 48, 50, 54,

projection
twisted, 90, 117

projective
Ehresmann connection, 133
frame, 106
orthogonal frame, 103, 108, 109, 113
quadrics, 1, 30, 46, 54, 75, 78, 205,

209–212, 217–219, 241
real frame, 109
transformation, 2, 79

projective group, 73, 77, 87
pseudo–cross section, 117, 118
pseudo-Euclidean

neutral structure, 51
real vector, 246
scalar product, 48, 78
space, 19, 26, 46, 51, 61, 73, 76, 78, 132,

215, 236, 266
spin structure, 71
structure, 48, 49, 52

pseudo-Euclidean vector space, 29

pseudo-hermitian
(almost) structure, 245
(almost) structure, 206, 209, 246
almost bundle, 245
complex vector bundle, 245
field, 245
form, 58, 59, 206, 210, 232
isometry, 212
manifold, 206, 209, 212, 213, 245, 253
neutral scalar product, 59, 205
scalar product, 58, 206, 209, 213, 216,

232, 239
sesquilinear form, 206, 209
space, 205, 209, 210, 212, 219, 225, 245,

269
structure, 48, 58, 206, 232, 245, 250, 253
vector bundle, 245, 246

pseudoorthogonal
group, 172

pseudoquaternionian
structure, 32

pseudoquaternionic
structure, 32

pseudo-riemannian
conformal structure, 29, 210
fiber bundle, 178–180
manifold, 71, 73, 105, 107

pseudounitary, 216
bundle, 246, 247
Clifford group, 227
Clifford mapping, 224
conformal frame, 242
conformal spin structure, 255
conformal spinoriality group, 244, 256
conformal compactified, 215
conformal flat spin structure, 241
conformal group, 205, 212, 216, 234, 255
conformal isometry, 212
conformal similarity, 216
conformal spin-structure, 205, 253, 256
conformal spinoriality group, 205, 242,

244
conformal structure, 205, 210, 212
conformal transformation, 213
flat, 240
frame, 241
geometry, 205, 214, 241
group, 59, 209, 212, 213, 227, 232, 233,

238, 243, 252
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pseudounitary (continued)
neutral group, 60
real conformal group, 235
scalar product, 233
similarity, 214
space, 216, 225
special group, 257
spin geometry, 205
spin structure, 245–247, 251, 252
spinor, 241, 251
spinor frame, 242
spinoriality group, 242, 243, 252, 253
structure, 43, 209
symplectic group, 43

quadratic
form, 5, 10, 13, 14, 16, 27, 29, 40, 43, 46,

49, 50, 55, 57, 58, 60, 64, 74, 76, 78,
79, 92, 102, 106, 135, 156–158, 167,
168, 183, 184, 187, 211, 220, 229, 232,
264–266

neutral, 55, 57
quadrics

projective, 1, 30, 46, 54, 75, 78, 205,
209–212, 217–219

real projective, 29, 32, 48
quaternion, 41, 62

conjugate, 61
group, 35
pure, 63
scalar product, 33, 39
unit, 10, 35, 65

quaternionic structures on right vector
spaces, 32

quotient space, 123, 143, 153, 209, 212, 215

real
matrix, 5
part, 239
structure, 48

reflection, 182
mapping, 18

representation
faithful, 54, 55
irreducible, 22, 23, 108

reversion, 182
Ricci tensor, 161, 163, 192, 196
riemannian

manifold, 77, 105, 107, 158, 265

right
translation, 107, 123, 153, 191, 251, 254

rotation, 75, 182, 185, 265
proper, 20, 87

scalar
curvature, 196

semispinor, 53
sesquilinear form, 7, 32, 33, 38, 57, 59
singular

submanifold, 209
skew-hermitian, 6

form, 6, 8–10, 35–38, 47, 58, 59
matrices, 5, 7
scalar product, 37
sesquilinear form, 58

skew-symmetric, 191, 265
bilinear mapping, 128
bilinear form, 206
coefficient, 149
form, 4, 222
matrices, 5
tensor, 197

space
amplified tangent, 109
anti-Euclidean, 183
cotangent, 147, 153, 192
Euclidean, 63, 65, 74–76, 143, 144, 167,

169, 184, 188, 265, 266
homogeneous, 29, 78, 125, 145, 193,

215
horizontal, 123, 154
linear, 1, 2, 4, 7, 8, 15, 16, 21, 125, 183
maximal totally isotropic, 208
Minkowski, 72, 198, 264
of half-spinors, 22
of spinors, 1, 22, 23, 43, 53, 56, 58, 103,

232, 233, 241, 265, 266
pseudo-Euclidean, 19, 26, 46, 49, 51,

52, 61, 73, 76, 78, 132, 215,
236, 266

pseudounitary, 216, 225
quadratic, 184
quotient, 123, 143, 153, 209, 212, 215
regular quadratic, 13, 15, 21, 228
tangent, 120, 140, 149, 152, 156, 206, 208,

265
Spin(Q), 227, 242, 243
spin group, 1, 19, 43, 48, 50, 60, 65
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spinor, 1, 21, 32, 36, 41, 42, 44, 45, 48–50,
59, 65, 103, 110, 205, 231, 267

bundle, 265
frame, 103, 104, 107
group, 1, 19, 22, 205, 227
norm, 228
pseudounitary, 241, 251
unitary, 66

spinoriality group, 73, 101, 243
classical, 242
conformal, 71, 92, 105, 111, 112, 115
pseudounitary, 242, 243, 252, 253
pseudounitary conformal, 205, 242, 244,

256
real conformal, 92, 95, 96, 118

Stiefel
manifold, 219

structure, 1, 8, 10
almost complex, 206
almost pseudo-hermitian, 206, 209, 245,

246
complex, 33, 59, 187, 211, 219, 233
conformal, 142, 144, 145, 150, 155, 192
conformal pseudo-riemannian, 29, 210
conformal pseudounitary, 205, 206, 210,

212
group, 73, 106, 108, 115–117, 119, 125,

128, 130, 132, 133, 137–139, 142, 144,
146, 151, 153, 155, 170, 189, 191, 195,
206, 245–247, 252, 253, 256

pseudo-Euclidean, 48, 49, 52
pseudo-Euclidean neutral, 51
pseudo-hermitian, 48, 58, 206, 232, 245,

250, 253
pseudoquaternionian, 32
pseudoquaternionic, 43
pseudounitary, 209
quaternionian, 35
quaternionic, 32, 41
real, 48
real conformal, 114
symplectic, 49–51
Wedderburn theorem of, 21

subalgebra, 12, 16, 24, 27, 53, 56, 58, 62, 63,
221

Clifford, 26
Lie, 20, 136, 150

subbundle
horizontal, 127–129, 172, 174, 175, 180

submanifold
differentiable, 29
maximal, 129
singular, 209

subspace
horizontal, 120, 121, 190
maximal totally isotropic, 9, 22, 45–47, 59,

96, 116, 219, 229, 233, 242, 243, 253
tangent, 212

symmetric
bilinear complex form, 35
bilinear form, 8, 13, 40, 48, 52, 55, 54, 74,

172, 211
coefficient, 158
H-, 33
matrix, 6
space, 46, 52

symplectic
automorphism, 51, 216
fibration, 73
form, 205
group, 1, 4, 9, 34, 205, 216, 217, 257
operator, 48
product, 222
pseudounitary group, 43
real product, 205
scalar product, 33, 48, 50, 54
space, 4, 205
spin structure, 257
standard product, 4
structure, 49–51
transformation, 9
unitary group, 34
vector space, 48

tangent, 120, 142, 149, 212
amplified bundle, 107, 118, 256
bundle, 106, 196, 245, 246, 253
fiber bundle, 124
hyperplane, 187, 209, 211, 212
line, 154
mapping, 120, 216, 217
moving coframe, 194
space, 120, 140, 149, 152, 156, 206, 208,

265
subspace, 212
vector, 121, 140, 141, 152, 153, 163, 210
vector bundle, 125
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tensor
algebra, 14, 63, 220
curvature, 147, 149, 158, 159, 192
Ricci, 161, 163, 192, 196

tensorial or tensor product, 11, 27, 64
torsion, 157, 159

form, 146
tensor field, 146

torus, 3
transformation, 5, 76, 163, 182, 193,

214–217
affine, 132
conformal, 72, 78, 79, 135, 172, 188, 215
formula, 179
infinitesimal conformal, 134, 135, 180,

190,
linear, 7, 8, 18, 23, 25, 146
Möbius, 181–186, 193, 199
orthogonal, 9, 63, 77, 263
projective, 2, 79
pseudounitary conformal, 213
puntual, 76
special conformal, 95, 99, 180, 182
symplectic, 9
unitary, 9

transition
functions, 106, 108, 110, 112–115,

117, 121, 130, 142, 172, 248,
252, 255

translation, 42, 59, 72, 83, 87, 89, 95, 97, 99,
101, 132, 135, 145, 161, 182, 185, 188,
209, 213, 216

conformal, 135

left, 265
right, 107, 123, 153, 191, 251, 254

transversion, 87, 99, 135, 180, 182, 185
twisted projection, 90, 117

unitary
transformation, 9

Vahlen matrices, 71, 181, 183–186, 198
vector

horizontal, 121
horizontal field, 122, 189
pseudo-Euclidean space, 29
representation, 18
space, 4, 10, 13, 16, 21, 27, 32–38, 40,

46–48, 50, 51, 56–58, 65, 128, 132,
190, 207, 209, 221

tangent, 121, 140, 141, 152, 153, 163, 210
tangent bundle, 125
vertical, 124, 147–149, 195

vertical
component, 120
vector, 124, 147–149, 195

Wedderburn theorem of structure, 21
Witt

basis, 80, 92, 102–104, 108, 109, 116,
168, 170, 237, 241–242

decomposition, 22, 102, 104, 236, 242
frames, 103–105, 109, 113, 114, 117, 242
special decomposition, 102, 229, 231
theorem, 9, 61, 113

Witt Theorem, 214

Yano theory, 158


