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William K. Clifford (1845-1879), Mathematician and Philosopher. Portrait by John Collier
(by kind permission of the Royal Society).



“The Angel of Geometry and the Devil of Algebra fight for the soul of any
mathematical being.”

Attributed to Hermann Weyl
(Communicated by René Deheuvels himself
according to a private conversation with H. Weyl)




“C’est I’étude du groupe des rotations (a trois dimensions) qui conduisit Hamilton a
la découverte des quaternions; cette découverte est généralisée par W. Clifford qui,
en 1876, introduit les algebres qui portent son nom, et prouve que ce sont des produits
tensoriels d’algebres de quaternions ou d’algebres de quaternions et d’une extension
quadratique.

Retrouvées quatre ans plus tard par Lipschitz qui les utilisa pour donner une
représentation paramétrique des transformations a n variables ... ces algebres et
la notion de ‘spineur’ qui en dérive, devaient aussi connaitre une grande vogue a
I’époque moderne en vertu de leur utilisation dans les théories quantiques.”

Nicolas Bourbaki
Eléments d’histoire des Mathématiques
Hermann, 1969, p. 173.




Foreword

It is not very often the case that a treatise and textbook is called to become a standard
reference and text on a subject. Generally a comprehensive treatment on a subject
is devoted to the specialist and a didactical textbook is a newer version of a series
of guiding monographs. This book by Pierre Angles is all these things in one: a
good reference on the subject of Clifford algebras and conformal groups and the
subjacent spin structures, a textbook where students and even specialists of any one
of the subjects can learn the full matter, and a bridge between the basic approach of
Grassmann and Clifford of finding a linear form that corresponds to a given quadratic
form and all the structures which can be built from those algebras and in particular
the pseudounitary conformal spin structures.

The numerous references, starting in the foreword itself and within each chapter
supply the necessary connection to the state of the art of the subject as viewed by
numerous other authors and the creative contributions of Professor Angles himself. A
fresh approach to the subject is found anyway and this characteristic is the basis for
this book to become, as we said, a standard text and reference.

Besides the rigorous algebraic approach a consistent geometrical point of view, in
the genealogy of Wessel, Argand, Grassmann, Hamilton, Clifford, etc. and of Cartan
and Chevalley is found throughout the book. In fact it would be desirable that this
transparency of presentation would be continued one day, by Professor Angles, in the
field of mathematical physics and perhaps even in theoretical physics where a clear
connection between algebra, geometry and spin structures with physical theoretical
structures are always welcome. The same applies to the possibility of extending, in
the future, the numerous present exercises, which are a guidance for the study of the
subject, to applications in other branches of mathematics and theoretical physics.

We finally want to stress that the effort of the author to clearly present the devel-
opment from Clifford algebras through conformal real pseudo-euclidean geometry,
pseudounitary conformal spin structures and more advanced applications has resulted
in fact in abundant new concepts and material.

Jaime Keller
University of Mexico




Foreword

During the second part of the 19th century a large number of important algebraic
structures were discovered. Among them, quaternions by Hamilton and the exterior
calculus or multilinear algebra by Sylvester, are by now part of standard textbooks
in algebra or geometry. Since its discovery by W.K. Clifford, the Clifford algebras, a
sort of mixture of the above-mentioned structures, very quickly emerged as a funda-
mental idea. In the same way as quaternions extend the dream of complex numbers
to dimensions three and four, the Clifford idea of adding a formal square root of a
quadratic quantity works marvellously in any dimension. Very soon it was the Clifford
construction is correlated to classical geometry. This relationship is now clearly ex-
plained mostly in terms of the spin group, which is the group counterpart of the
Clifford algebra.

Physicists also quickly recognized the importance of the spin group and its spin
representation, both in Euclidean and Minkowski signatures. The word “spin” is
almost a genetic term of the quantum theory, and of the physics of elementary particles.
More recently, the development of the idea of supersymmetry shows that vitality and
modernity are in perfect accord with the structures introduced by Clifford. Clifford,
spinors, and Poincaré algebras are at the heart of this fascinating idea.

The book of P. Angles intertwines both the algebraic and geometric viewpoints.
The first half of this book is algebraic in nature, and the second half emphasizes the
differential-geometric side. Many books are devoted totally or in part to the Clifford
algebras with an algebraic viewpoint. Then the results are often corollaries of the
structure theorems of semisimple algebras, the Wedderburn theory. The point of view
of the present book is more pragmatic. The whole theory is explained in a concise
but very explicit manner, referring to standard textbooks for the general tools. A
whole battery of exercises helps the reader to master the intricacies of the numerous
structural results offered to the reader.

In the geometric chapters, dealing with vector bundles over manifolds with extra
structures, spinorial, conformal, and many others, the same pedagogic treatment is
proposed. I am convinced that this is a good point of view. It makes the presentation
of these rather subtle structures particularly clear and sometimes exciting. Numerous



xii Foreword

exercises complete the text in many directions, adding supplementary material. All
this makes the book essentially self-contained.

The book of P. Angleés is neither a textbook of algebra, nor a treatise on differential
geometry, but a book of old and new developments concerning the puzzle around
Clifford’s ideas. I recommend this book to any student or researcher in mathematics
or physics who wants to master this exciting subject.

José Bertin
Institut Fourier
Grenoble, France




Preface

Since 1910, has been well known not only that Maxwell’s equations are invariant
for the 10-dimensional Poincaré group (or inhomogeneous Lorentz group), but that
the maximal group of invariance is the 15-dimensional conformal group C(1, 3) of
the classical Minkowski standard space E 3, which is the smallest semisimple group
containing the Poincaré group. We recall that the Poincaré group is the semidirect
product of the (homogeneous) Lorentz group by the group of the translations: 7 (E1 3).
Many attempts have been made to build up a new theory of relativity, to find a
cosmology, or to reveal classifications of elementary particles from the study of the
conformal groups. The twistor theory of Roger Penrose is such an example, and its
success is ever increasing.!

The structure of the classical pseudoorthogonal group SO™ (2, 4) had been already
studied by Elie Cartan, who had shown? the identity of the Lie algebras of C(1, 3)
and SU (2, 2). Physicists who need conformal pseudoorthogonal groups use only
their Lie algebras. The fundamental idea of the theory of Penrose is that SU (2, 2) is
a fourfold covering of the connected component of C(1, 3). A twistor is nothing but a
vector of the complex space C* provided with the standard pseudo-hermitian form of
signature (2, 2), and the submanifold of the Grassmannian of complex spaces of C*
constituted by totally isotropic planes is identical to the conformal compactified space
of the Minkowski space E| 3. We can associate canonically with each n-dimensional
quadratic space (E, q) an associative unitary algebra: its Clifford algebra C (E, q).

Historically, the notion of Clifford algebras naturally appeared in many different
ways. Its destiny is closely joined to the development of generalized complex numbers
and the success of the theory of quadratic forms.

I'R. Penrose, Twistor algebra, J. of Math. Physics, vol. 8, no. 2, 1967; Ward and Wells,
Twistor Geometry and Field Theory, Cambridge University Press; H. Blaine Lawson and
M. L. Michelson, Spin Geometry, P. U. Press, 1989; N. Woodhouse, Geometry Quantization,
Clarendon Press, 1980, etc.

). 263-365.
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The story of complex imaginary numbers starts in the sixteenth century when
[talian mathematicians Girolamo Cardano (1501-1576), Raphaele Bombelli (born
in 1530, whose algebra was published in 1572), and Niccolo Fontana, called
“Tartaglia”—which means stammerer—realizing that a negative real number can-
not have a square root, began to use a symbol for its representation. Thus came into
the world the symbol i, such that i’=—-1,a very mathematical oxymoron, the success
of which is well known.>

The introduction of generalized complex numbers of order more than 2 is not
quite linked to the solution of equations of order two with real coefficients. Their
destiny is closely joined to the attempts is made by Gaspar Wessel in 1797 and by
J. R. Argand, J. F. Frangais, F. G. Servois from 1814 to 1815 in order to extend the
geometrical theory of imaginary numbers of the plane to the usual space.

We recall that, starting from the classical field R of real numbers, we can define
the three following generalized numbers of order two:*

Classical complex numbers (or elliptic numbers ): a +ib, a, b € R, i2=—1:
Dual numbers (or parabolic numbers): a + Eb, a, b € R, > = 0;
Double numbers (or hyperbolic numbers): a + eb, a, b € R, 2 =1.

W. R. Hamilton,> professor of astronomy in the University of Dublin, was the first
to introduce in 1842 a system of numbers of order 22 = 4, with a noncommutative
multiplicative law: the sfield H. The study of the group of rotations in the classical
3-dimensional space led W. R. Hamilton to his discovery.

Dual and double numbers were studied by two mathematicians: Eugéne Study
(1862-1930) and William Kingdom Clifford (1845-1879). The applications of these
new objects belong to the increasing success of non-Euclidean geometries. Moreover,
W. K. Clifford introduced in 1876 the algebras that are called Clifford algebras in a
lecture published in 1882, after his death. The work of W. K. Clifford was completed
by that of R. O. Lipschitz in 1886. As for the term “spinor,” its destiny probably
begins with Leonhard Euler (1770) and Olinde Rodrigues (1840).°

3 The word was first used by the French mathematician and philosopher René Descartes
(Géométrie, Leyde, 1637, livre 3), and R. Bombelli (Algebra, Bologna, Italy, 1572, p. 172)
used the expression “piu di meno” for /=1 and “meno di meno” for —+/—1. We recall that
an oxymoron is a rhetorical figure that joins two opposite words such as: a dark clearness,
a deafening silence.

4 W. K. Clifford, Applications of Grassmann’s extensive algebra, American Journal of Mathe-
matics, 1 (1878), pp. 350-358; and W. K. Clifford, Mathematical Papers, London, Macmil-
lan, 1882.

5 W. R. Hamilton considered the set of numbers z,z=a+ib+ jc+ kd, where a, b, c,d
belong to R, with the usual addition and the following multiplicative table for the “units”
i jkiit=jr=k =—1,ij =k, jk=iki=j, kj =—i, ji = —k, ik=—].

6 Cf. E. Cartan, Nombres Complexes, Exposé d’apres I’article allemand de E. Study, Bonn,
(Euvres Completes. Partie Il Volume 1, pp. 107—408, Gauthier Villars, Paris 1953; and Paolo
Budinich and Andrzej Trautman, An introduction to the spinorial chessboard, J.G.P,, no. 3,
sboard, Springer-Verlag, 1968.
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According to B. L. Van der Waerden,’ the name “spinor” is due to Paul Ehrenfest.
The discovery of quaternions by William Rowan Hamilton® led to a simple “spinorial”
representation of rotations. If ¢ = ia 4 jb 4 kc is a “pure” quaternion and u is a unit
quaternion, then ¢ — uqu~" is a rotation and every rotation can be so obtained. The
way to spinors initiated by L. Euler, completed by W. K. Clifford and R. O. Lipschitz,’
is based on the fundamental idea of taking the square root of a quadratic form.

Among the various ways that lead to Clifford algebras, the most spectacular route
incontestably appears to be the solution given by P. A. M. Dirac!? to the problem of the
relativistic equation of the electron, when he sought and linearized the Klein—Gordon
operator, which is the restricted relativistic form of the equation of Schrodinger:

92 92 92 92
O-miw=——— _ = = _p2\y= I
(B =m5y (aﬂ ox2  ayr a2 )d’ ’ O

where ¥ is a wave function and m a nonnegative real. Physical interpretation of
needs to avoid the presence of 32/d¢2 in (I), and thus led P. A. M. Dirac to writing

0 9 9 0
x(a——i—ﬂ——l—V——I—S——i—m) 1)
x y z

as a product of first-order linear operators.
By identifying both members of relation (II), one obtains

a2=—‘82=—y2=—82= 1’

af+Ba=ay +ya=---=0.

Moreover, a solution can be expected only if the coefficients «, 8, y, § need to be
added, multiplied by real numbers, and multiplied between themselves, and, according
to (II), belong to a noncommutative algebra. Up to isomorphism, there exists a unique
solution obtained by taking for «, 8, y, 6 complex square matrices of order 4: the Dirac
matrices. Mathematically speaking, the problem is a special case of the following

7 B. L. Van der Waerden, Exclusion principle and spin, in Theoretical Physics in the Twentieth
Century: A Memorial Volume to Wolfgang Pauli, ed. M. Fierz and V. F. Weisskopf, New
York: Interscience, 1960.

8 W. R. Hamilton, Lectures on Quaternions, London Edinburgh Dublin Philos. Mag. 25, 1884,
p- 36, p. 489, cf. also, W. R. Hamilton, Elements of Quaternions, London, 1866, edited by
his son W. E. Hamilton, 2nd edition published by Ch. J. Joly 1, London 1899, 2 London,
1901, translated into German by P. Glan, Leipzig, 1882.

9 The algebras considered by Clifford and Lipschitz were generated by n anticommuting
“units” ey with squares equal to —1.

10 p A. M. Dirac, Proceedings of the Royal Society, vol. 117, 1917, p. 610 and vol. 118, 1928,



Xvi Preface

one: Let E be a space over a field K, endowed with a quadratic form q: how can one
express q as the square of a linear form ¢, i.e., for all m € E, how can one express
q(m) as g(m) = (¢(m))? with ¢ belonging to the dual E* of E ? And the special case
solved by the physicist Dirac is that of R* endowed with the quadratic Lorentz form
defined forallm = (1, x, y, z) € R*by g(m) = t* — x* — y? — 72 and the search of a
linear form ¢ defined on R*, ¢(m) = at + Bx + yy + 8z such that q(m) = (p(m))>.

The notion of spinor had been formulated by Elie Cartan!! while he was seeking
to determine linear irreducible representations of the proper orthogonal group or of
the corresponding Lie algebra. The algebraic presentation of the theory of spinors
was first developed in the neutral case by Claude Chevalley.!> Many other authors
such as Albert Crumeyrolle,13 René Deheuvels,14 and Pertti Lounesto!® have taken in
interest in such a theory. Besides, the algebraic theory of quadratic forms and Clifford
algebras for projective modules of finite type was formulated by Artibano Micali and
Orlando Villamayor.'® The links between Clifford algebras and K-theory have been
developed by M. Karoubi.!” We add that Ichiro Satake'® used these algebraic tools
in an important book. The work of J. P. Bourgignon in the application of Clifford
algebras to differential geometry and that of Rod Gover, as well as of the late Thomas
Branson must be recalled.

In Clifford analysis, the work initiated by Richard Delanghe and the Belgian
school, with F. Brackx and F. Sommen!? must be emphasized. Guy Laville, Wolfgang
Sprossig and John Ryan need also to be recalled together with the late J. Bures.

In addition, the Clifford community knows the work done by Paolo Budinich,
Roy Chisholm and William Baylis in mathematical and theoretical physics. David
Hestenes cannot be forgotten for his geometric calculus, his fundamental geometric
algebra and his part played in many other offshoots of Clifford algebras, together
with Jaime Keller and his elegant theory “START,” and Waldyr A. Rodrigues Jr. and

1 glie Cartan, Legons sur la Théorie des Spineurs I et 11, edition Hermann, Paris, 1937; or
The Theory of Spinors, Hermann, Paris 1966.

12 Claude Chevalley, The Algebraic Theory of Spinors, Columbia University Press, New York,
1954.

13 A list of publications of the late A. Crumeyrolle is given at the end of the first chapter.

14 R, Deheuvels published two books: Formes Quadratiques et Groupes Classiques, P.U.F.,
Paris 1991, and Tenseurs et Spineurs, P.U.F., Paris 1993.

15 My friend the late Pertti Lounesto, who was called the Clifford policeman, published a book:
Clifford Algebras and Spinors, Cambridge University Press, 2nd edition, 2001.

16 A. Micali and O. Villamayor, Sur les alggbres de Clifford, Annales Scientifiques de I’Ecole
Normale Supérieure, 4° serie, tome 1, 1968, pp. 271-304.

17 M. Karoubi, Algébres de Clifford et K-theorie, Annales de I'E.N.S., 4° serie, tome 1, 1968,
pp. 161-270.

18 1. Satake, Algebraic Structures of Symmetric Domains, Iwanani Shoten, Publishers and
Princeton University Press, 1980.

19 E Brackx, R. Delanghe, F. Sommen, Clifford Analysis, Pitman Publ., Boston-London-



Preface Xvii

Y. Friedmann for their important work in fundamental physics. Rafal Abtamowicz has
studied many applications of Clifford algebras such as in computing science and took
also an interest with Z. Oziewicz and J. Rzewuski in the study of twistors. Arkadiusz
Jadczyk came to the study of Clifford algebras after that of many other subjects. He
is an innovator for the links between Clifford algebra and quantum jumps.

The following self-contained book can be used either by undergraduates or by re-
searchers in mathematics or physics. Before each chapter a brief introduction presents
the aims and the material to be developed. Chapter 1 is also a chapter of reference.
Each chapter presents its own exercises with its own bibliography.

Pierre Anglés
Institut de Mathématiques de Toulouse




Overview

The first chapter is devoted to the presentation of the necessary algebraic tools for the
study of Clifford algebras and to a systematic study of different structures given to the
spaces of spinors for even Clifford algebras C ,+ , of quadratic regular standard spaces
E, s and of the corresponding embeddings of associated spin groups and projective
quadrics. Many exercises are proposed.

The second chapter deals with conformal real pseudo-Euclidean geometry. First,
we study the classical conformal group of the standard Euclidean plane. Then, we
construct covering groups for the general conformal group C,(p, g) of a standard
real space E,(p, g). We define a natural injective map that sends all the elements of
the standard regular space E,(p, q) into the isotropic cone of E,12(p + 1,q + 1),
in order to obtain an algebraic isomorphism of Lie groups between C,(p, ¢) and
PO(p+1, g+1). The classical conformal orthogonal flat geometry is then revealed.
Explicit matrix characterizations of the elements of C,(p, g) are given. Then, we
define new groups called conformal spinoriality groups. The study of conformal spin
structures on Riemannian or pseudo-Riemannian manifolds can now be made. The
conformal spinoriality groups previously introduced play an essential part. The links
between classical spin structures and conformal spin ones are emphasized. Then we
can study Cartan and Ehresmann connections and conformal connections. The study
of conformal geodesics is then presented. Generalized conformal connections are
then discussed. Vahlen matrices are presented. Many exercises are given.

The third chapter is devoted essentially to the study of pseudounitary confor-
mal spin structures. First, we present pseudounitary conformal structures over a
2n-dimensional almost complex paracompact manifold V' and the corresponding pro-
jective quadrics H, , associated with the standard pseudo-hermitian spaces H, ,.
Then, we develop a geometrical presentation of a compactification for pseudo-
hermitian standard spaces, in order to construct the pseudounitary conformal group
of H, 4, denoted by CU,(p, q). We study the topology of the projective quadrics

H), 4 and the “generators” of such projective quadrics.
We define the conformal symplectic group associated with a standard real sym-

2r,R), where F is the corresponding
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symplectic form such that CU,(p,q) = CSp(2n,R) () C2(2p,2q), with the
notation of Chapter 2. The Clifford algebra CI74 associated with H), ; is defined.
The corresponding spin group Spin U(p, q) and covering groups RU (p, q) and
AU(p, q) are given associated with a fundamental diagram. The space S of cor-
responding spinors is defined and provided with a pseudo-hermitian neutral scalar
product. The embeddings of spin groups and corresponding quadrics are revealed.
Then, conformal flat pseudounitary geometry is studied. Two fundamental diagrams
are given. We introduce and give geometrical characterizations of groups called pseu-
dounitary conformal spinoriality groups. The study of pseudounitary spin structures
and conformal pseudounitary spin structures over an almost complex 2n-dimensional
manifold V' is now presented. The part played by groups called conformal pseu-
dounitary spinoriality groups is emphasized. The links between pseudounitary spin
structures and pseudounitary conformal spin ones are given. Exercises are given.

Instructions to the reader

For convenience, we adopt the following rule: 1.2.2.3.2 Theorem means a theorem
of Chapter 1, Part 2 Section 2.3.2. At the end of each chapter, we present some
references. If we need some reference on a particular page, it will be mentioned by
a footnote such as, for example, S. Helgason, Differential geometry and symmetric
spaces, op. cit., p. 120. The Lie algebra of a Lie group G will be denoted by g or G
or Lie(G) or L(G). The derivative at x of a map f will be denoted either by (df)y
or by d, f. Sometimes the notation D for d will also be used. By a curve, or path, we
shall always mean a curve, or path of at least class C'. In Chapter 3 (Sym, (resp.
(Sym);) is sometimes denoted also as (Sym); (resp. (Sym,).
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1

Classic Groups: Clifford Algebras, Projective
Quadrics, and Spin Groups

The first chapter is a presentation of the necessary algebraic tools. We recall the
general classical results concerning general linear groups, unitary groups, symplectic
groups and their corresponding Lie algebras, and the same for classical groups over
noncommutative fields.

A review of elementary properties of quaternion algebras leads to the study of
Clifford algebras, the presentation of the main results concerning such algebras, and
the introduction of corresponding spinors and spinor groups (or briefly spin groups)
and spin representations. Then, systematically, we study the different structures given
to the spaces of the spinors for even Clifford algebras C;'Yr ; of the quadratic standard
space E, g, the embeddings of corresponding spin groups Spin(r, s) and of real pro-
jective associated quadrics Q(Er,s).

1.1 Classical Groups

A Summary of Classical Results

Hermann Weyl! introduced the term “classical group” for summarizing the follow-
ing groups: linear groups, orthogonal, unitary and symplectic groups. We recall the
classical and necessary definitions and results.

1.1.1 General Linear Groups?

(a) Let E be alinear space of finite dimension n over afield K and let GL(E) denote the
set of all linear mappings from E onto E (we recall that since E is n-dimensional, these
mappings all are bijections). GL(E) is a group under the composition of mappings,

! Hermann Weyl, The Classical Groups, Princeton University Press, 1936.
2 See the remarkable book by J. Dieudonné, La géométrie des Groupes Classiques, Springer-
Verlag, Berlin, 1971, third édition. See also the Encyclopedic Dictionary of Mathematics,

ada, Cambridge, MA, MIT Press, 1977.
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called the general linear group (or full linear group) on E. Let {e1, e, ..., e} be a

basis of E over K and let [Al! ] be the matrix associated with the element f € GL(E)
such that

flen = Ale;.

j=1

Then the mapping f — [A{ ] determines an isomorphism from GL(E) onto the
multiplicative group GL(n, K) of all square invertible matrices of degree n, with
coefficients in K. The group GL(E) is often identified with GL(n, K). GL(n, K) is
called the general linear group of degree n over K. The mapping u — detu (where
det u denotes the determinant of «) determines a homomorphism from GL(E) onto
the multiplicative group K* = K — {0}. The kernel of this homomorphism is a
normal subgroup of GL(E), denoted by SL(E) and called the special linear group or
unimodular group.

In the same way, SL(n, K) = {f € GL(n, K), det f = 1} is called the special
linear group of degree n over K. The center z of GL(n, K) is identical with the set of
all scalar matrices A1, A € K*, and the center of SL(n, K) is a finite group, namely
(M, A € K*and A" = 1}.

(b) Let us introduce P(E), the projective classical (n — 1)-dimensional space
associated with the n-dimensional K-linear space E (we recall that P(E) can be
viewed as the set of all 1-dimensional linear subspaces of E). The projective general
linear group on P(E) denoted by PGL(E) is the group of all so-called projective
transformations on P (E), that is, PGL(E) = GL(E)/z. When E = K"*!3, such
a group is denoted by PGL,(K) or PGL(n, k). PGL(E) = GL(E)/z, where z is
the center of GL(E) and PGL(n, k) = GL(n, K)/z, is called the projective general
linear group of degree n. Similarly, PSL(n, K) = SL(n, K)/zo, the quotient group of
SL(n, K) by its center, zo is called the projective special linear group of degree n.

If the ground field K is either the field R of real numbers or the field C of complex
numbers, all these groups are respectively Lie groups or complex Lie groups. Thus,
SL(n, C) is a simply connected simple and semisimple complex Lie group of type
A,_1,* and PSL(n, C) is the adjoint group of the complex simple algebra of type

3 We recall that when E = K"t the projective associated space is also denoted by K P".

4 We recall that the different structures of a compact connected simple Lie group are classically
denoted by A;(I > 1), Bij(Il > 2), C;(I > 3), D;(I > 4), Gy, Fy, E¢, E7, Eg. Each
of these symbols represents a class of groups with isomorphic Lie algebras. The first four, the
classical structures, possess a linear well-known representative: for A;, SU (/+1), the unitary
unimodular group of (/ + 1) complex variables; for C;, SpU (I), often written Sp(/), the
unitary group of / quaternionic variables; for By, (respectively D;), SO(2] + 1) (respectively
SO(21)), the unimodular orthogonal groups. The quotient group of SU (n), SpU (n) (or
Sp(n)), SO(2n) by their respective centers, which respectively are cyclic with respectively
n, 2, 2 elements, are respectively denoted by PU (n), PSpU (n) (or PSp(n)), PSO(2n). The
groups SU (n) and SpU (n) (or Sp(n)) are simply connected, while SO (n) (n > 3) possesses
a twofold simply connected covering group Spin(n), the center of which is cyclic of order 2,
th m odd (i.e., n = 2 (mod 4)), and isomorphic
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Ap—1. The group PSL(n, K), n > 2 (K = R, C, H), is a noncommutative simple
group.

1.1.1.1 Unitary Groups?

The set denoted by U (n) of all square unitary matrices of degree n with complex
elements is a group under multiplication, called the unitary group of degree n. The
normal subgroup of U (n) consisting of all matrices with determinant 1 is called
the special unitary group and denoted by SU (n). U (n) and SU (n) are subgroups of
GL(n, C) and SL(n, C). They are both compact, connected Lie groups. SU (1) = {1},
and U (1) is the classical multiplicative group of all complex numbers A such that
[A| = 1. Classically, the center z of U (n) consists of all diagonal matrices AI, A € C,
A =1,z ~U) ~ S'and U(n)/SU(n) ~ U(1), z. SU(n) = U(n). Forn > 2,
SU (n) is a simple, semisimple and simply connected Lie group. PU(n) = U(n)/z
is called the projective unitary group. PU(n) >~ SU(n)/zNSUn), z N SU(n) =~
Z/nZ (PU((n) is locally isomorphic to SU(n)). U(n) and SU (n) are compact Lie
groups.

1.1.1.2 Table of Principal Subgroups of GL (n, C)—cf. Fig. 1.1

Interpretation: “SL(n, C) — GL(n, C)” means that SL(n, C) is a subgroup of
GL(n, C). For a complex matrix « € GL(n, C) we put

o =(Ca) = @h.

Forallo € GL(n,C),« = o ifandonly if¢ € GL(n,R), @ = o iff« € U(n, C),
a=o=o" iffe €« On,R),a =a" iffad € O(n, C).

1.1.1.3 Orthogonal groups

Thus, O(n,C) = {a € GL(n, C) : (o) t=a~ = a},0(n,R) = GL(n, R)NU (n),
SO(n,R) = SL(n, C) N O(n, R). SO(n, R), denoted also by OF(n, R), is a normal
subgroup of O (n, R) ofindex 2. O (n, R) and SO(n, R), often respectively denoted by
O (n) and SO(n), are both compact Lie groups, and SO (n) is the connected component
of the identity in O (n).

to Zo @ Zp whenn = 0 (mod 4), (Cf. E. Cartan, Annali di Matematica, t. 4, 1927, pp. 209—
256). As found out by E. Cartan (E. Cartan, op. cit.), the simply connected representatives of
the exceptional structures G, Fy, Eg, E7, Eg possess centers that respectively are cyclic of
respective orders 1, 1, 3, 2, 1. Up to isomorphism, there exists only one group of respective
structure G, Fy, Eg. Atlast we have the following classical isomorphisms (Cf. for example
Armand Borel, Collected Papers, Volume I, Springer-Verlag, 1983, p. 363) Spin 3~ SpU (1),
Spin 4 >~ SpU (1) x SpU(1), Spin 5 >~ SpU(2), Spin 6 =~ SU (4). F4 D Spin 9 D Spin 8
O T, where T is a four-dimensional torus, maximal in each of the other groups (A. Borel,
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GL(n, C)
SL (n, C) % O(n, C)
SL(n, R) O(n, R)

SO (n, R)

Fig. 1.1. Classical groups

SO(n), n > 3, is a connected Lie group, and not a simply connected group. As
mentioned before, SO(n) possesses a twofold simply connected covering group de-
noted by Spin n. We recall that SO (n, C), the subgroup of elements of O(n, C) with
determinant 1, is called the complex special orthogonal group.

1.1.2 Symplectic Groups: Classical Results

Let E be a 2n-dimensional linear space over a field K, endowed with a bilinear
non-degenerate skew-symmetric form [ ]: (x, y) € E? - [x]y] € K. E is called
a symplectic space over K. The group consisting of linear automorphisms of E that
leave [ | ] invariant is called the symplectic group, denoted by Sp(E).

Let E be K2"; forall X, Y € E, with respective coordinates X, yk , with respect
to the standard basis of K2,

n
[X | Y]=) (/i —x/Hyl)
j=1

is called the standard symplectic product of K?". Then, Sp(E) is called the standard
symplectic group and denoted by Sp(2n, K) in France, and often Sp(n, K) in other
countries. We choose the notation Sp(2n, K). Any matrix in Sp(2n, K) is always of
determinant 1 and the center z of Sp(2n, K) consists of / and —I. The quotient group
of Sp(2n, K) by its center z is called the projective symplectic group over K. For
n > 1and K = R, C, the group PSp(n, K) is always simple.

1.1.3 Classical Algebraic Results
1.1.3.1 Classical Lie Algebras of Principal Subgroups of GL (r, C)

We recall the following classical results: Let E be a finite n-dimensional vector space
ra of linear endomorphisms of V, and let
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GL(E) = {x € GL(E), detx # 0} be viewed as a Lie group. As usual, we denote the
Lie algebra of GL(E) by gl(E).

We can identify g/(E) with L(E) and we have [X | Y] = XY — Y X, for all
X,Y € gl(E). Therefore, the Lie algebra of GL(n, R) is identical with M (n, R), the
classical algebra of all square real matrices of degree n. The dimension of M (n, R)
is n? over R. In the same way we obtain the following list:?

GL(n, C) gl(n, C) ~ M(n, C), dimension: 2n> over R.

SL(n,C) sl(n,C) ~ {X € M(n,C), TrX = 0}, dimension: n> — 1 over C,
2(n% — 1) over R.

Umn,C) u(n,C) ~ {X € M(n,C),' X = —X} consisting of skew-hermitian
matrices, dimension n2 over R.

On,C) on,C) ~{X € M(n,C)," X = —X}, consisting of complex skew-
symmetric matrices, dimension: n(n — 1) over R.

SU(n, C) su(n,C) ~ {X € M(n,C),’X = —X, Tr(X) = 0} consisting of
skew-hermitian matrices with null trace.

GL(n,R) gl(n,R) ~ M(n, R), dimension n? over R.

SL(n,R) si(n,R) ~ {X € M(n,R), Tr(X) = 0} consisting of real matrices
with null trace, dimension n2 — 1 over R.

Omn,R) on,R) ~ {X € M(n,R),"X = —X]J, consisting of real skew-
symmetric matrices with null trace, dimension: n(n — 1)/2 over R.
SO(n,R) so(n,R) ~ {X € M(n,R),) X = —X}, consisting of real skew-

symmetric matrices with null trace.

1.1.3.2 Other Groups and Their Lie Algebras

Let U(p, g) be the group of matrices in GL(p + ¢, C), which leave invariant the
hermitian form:

2121+ 2pZp — Lp+1Zp+l —  — Lp+qiptg
SU(p,q) =U(p,q) NSL(p +q, C).

We remark that we have U(n) = Un,0) = U(0,n) and SU(n) = U(n) N
SL(n, C), SU*(2n): the group of matrices in SL(2n, C) which commute with the
transformationi of C2" given by

(Zla ooy Zns Tn+ls ---’ZZn) - (Zn+17 "-722}17 _217 "-a_zn)

SO(p, q): the group of matrices in SL(p + ¢, R) which leave invariant thequadratic
form

2 2 2 2
x1+...+xp_xp+1_..._x

rtq:
(We find again that SO (n) = SO(0, n) = SO(n, 0).)

5 This list found out by E. Cartan is given, pp. 339-359, in the following book: S. Helgason,

1962, Academic Press, New York and London.
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SO*(2n) the group of matrices in SO(2n, C) which leave invariant the skew-
hermitian form

—Z1Zn41 F Znt121 — 22Zn42 + 24222 — -+ — ZnZ2n + 22020

In the original Elie Cartan’s list Sp(2n, C) (denoted there by Sp(n, C)) is defined
as the group of matrices in GL(2n, C) which leave invariant the exterior form

A ANZntl T2 A Znv2+ -+ 2 A 22

and Sp(2n, R), denoted there by Sp(n, R), is defined as the group of matrices in
GL(2n, R) which leave invariant the exterior form

XA Xp41l F X2 A Xpg2 -+ X0 A X2y

SpU (p. q) the group of matrices in Sp(2(p + ¢), C), or in Sp(p + ¢, C) with
Cartan’s notations which leave invariant the hermitian form ! ZK pqZ where

~1,0 0 0
o 0 0
Kea=1 0 0-1,0
00 0 1,

By definition SpU (n) = SpU (0, n) = SpU (n,0) and SpU (n) = Sp(2n, C) N
U (2n). The Lie algebras of these groups are respectively:

Zy Z . .
Upg = <t71 Zz> Z1, Z3 skew-hermitian of order ¢ and p respectively,
243 Z, arbitrary
Z\ Z .. .
SUpg = <t712 Zi) Z1, Z3 skew-hermitian of order ¢ and p respectively,

Tr Zy + Tr Z3 = 0, Z; arbitrary

Z Z _
su*(2n) = ( ol —2> Z1, Z> n x n complex matrices, Tr Z; + Tr Z; =0

so(p,q) = (,Xl XZ) All X; real, X1, X3 skew-symmetric of order ¢ and p
respectively, X, arbitrary

s0*(2n) = < Z_l Z; ) Z1, Z> n xn complex matrices, Z| skew, Z, hermitian.

V4

Z Z .

Zl _,% > Z1,7Z>,Z3 complex n x n matrices, Z, and Z3
symmetric.

<
~~
S
S

a
N
1

A~

al n x n matrices, X7 and X3 symmetric.
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Zuy  Zn Ziz Zis \ Z;jcomplex matrix, Zy and Z3
—'Z\3 Zn 'Zu  Za | of order g, Z1z and Z14 g X p

spu(p, q) = —Z13 Zis Ziu —Zip | matrices, Z; and Zy are skew-
"Zw4 —Zou —'Z1n Zm hermitian, Z3 and Z,4 are sym-
metric.

We recall the following result:

1.1.3.1.1 Theorem The groupsSU (p, q),SU*(2n),SO*(2n), Sp(2n, R),SpU(p, q)
are all connected. SO(p, q),0 < p < p + q has two connected components.®

1.1.4 Classic Groups over Noncommutative Fields
1.1.4.1 Classic Results

Let E be a right linear space over a noncommutative field K. We recall that the set of
all linear transformations of E becomes a group under the classical composition of
mappings, called by definition the general linear group of E and denoted by GL(E).
Such a group is isomorphic to the multiplicative group of all invertible square matri-
ces of degree n, with coefficients in K. The corresponding commutator subgroups,
respectively denoted by SL(E) and SL(n, K), are called the special linear group of
degree n on E and over K, respectively. The center z of GL(n, K) is the set of all
scalar matrices associated with nonzero elements in the center of K.

Let C be the commutator subgroup of the multiplicative group K* of K. For
n > 2, GL(n, K)/SL(n, K) is isomorphic to K*/C.” The center zo of SL(n, K) is
the set {al, a" € C}.

The quotient group PSL(n, K) = SL(n, k)/zo is called the projective special
linear group of degree n over K. Since K is a noncommutative field, if n > 2,
PSL(n, K) is always a simple group.

1.14.2 U(n, K, f): Unitary Group Relative to an e-Hermitian Form

We recall some basic results. Let K be a field (commutative or noncommutative).
Let J be an antiautomorphism of K [for all &, 8 € K, (a + ,B)I =aof + ﬂj,
(ozﬂ)J = ,8*7 o7 and 7 is abijection from K onto K. J is called an involution of K.
Let E be a right linear n-dimensional space on K . By definition, a sesquilinear form®
relative to J is a mapping f : E x E — K such that for all x, x1, x2, y, y1, y2 € E,
forall A, u € K,

6 Helgason, op. cit. p. 346.

7 One definesfor A € GL(n, K) anelementdet A = K*/C called the determinant of A, which
leads to such an isomorphism. The theory developed by J. Dieudonné gives the ordinary
case for a classical field K. (Cf. J. Dieudonné, La Géométrie des Groupes Classiques,
op. cit.)

8 We choose the definition given by J. Dieudonné, La Géométrie des Groupes Classiques, op.
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L flxr +x2,9) = flx1, y) + f(x2,9);
2. flx,y1+y2) = fx,y1) + fx, »);
3. fehy) =17 f(x, )

4. f(x,yu) = f(x, y)p.

If, moreover, f(y,x) = f(x,y)”, then f is called a hermitian form relative to
T If f(y,x) = —f(x,y)7, fis called a skew-hermitian form relative to 7. If
J = 1k, then a hermitian form is a symmetric bilinear form, and a skew-hermitian
form is an antisymmetric bilinear form.

A linear space E endowed with a nondegenerate hermitian form f is called a
hermitian linear space, and f (x, y) is called the hermitian inner productof x, y € E.

Suppose now £ = 1 and K is a field of characteristic zero and let A = R, C,
or H (or more generally a division algebra D over K) with center.A; and with [A; :
K] =d, [D : Al = r2? Let E be an n-dimensional linear space over K with
the structure of a right A-module. Let us assume that 4 has a K-linear involution
J. An A-valued E-hermitian form f with respect to 7 is by definition a map f
from E x E — K such that f(x,yA) = f(x,y)r and f(y,x) = Sf(x,y)j,
f(-xl + x2, )’) = f(xL y) + f(-XZa )’), f(x9 y1+ )72) = f(xa J’l) + f(-x’ }’2)

Let A denote the algebra of D-linear transformations of V. For a fixed basis of E
we have A >~ M(n, D). Lete = {ey, ..., e,} be a fixed basis of E. Then f may be
expressed by F, a hermitian square matrix of degree n such that f(x, y) = (‘X Y FY,
where X, Y, F are respective the matrices of x, y, f relative to the basis e. To any
nondegenerate .4-E-hermitian form f we can associate an involution#, namely its
relative adjunction classically defined as follows: for any linear operator a of A,
f(ax,y) = f(x,a*y),orin matrix notation, if A is the matrix of a relative to e, then
A* = (H™')' A7 H. This result will be used later.

An involution J is of the first kind if it fixes all elements in the center of the
algebra, and of the second kind otherwise.

We have

dim 45 A* = 3 2(r2 + ) if 7 is of the first kind,
r if J is of the second kind,

where A* = {a € Ala7 = +a} and AT = A* N A; and n = +1 is the sign of
the involution 7. The sign of an involution * of .4 is defined similarly. We will often
write that the sign of * is = 0 if * is of the second kind.

One can verify that if 7 is of the first kind with sign n and if * is defined by an
(A, £)-hermitian form relative to 7, then  is of the first kind with sign £n.

Let A denote the algebra of D-linear transformations on E. For the fixed basis
e = {e¢;}, one has A >~ M (n, D). We define A* = GL(E | A) = {the multiplicative
group of units of A},

AV =(q € AX/N(a) = 1} = SL(E | D),

9 When K’ is an extension field of a field K, the “degree” of the extension is denoted by
on, the Galois group is denoted by Gal(K' | K).
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where a unit is an invertible element and N denotes the reduced norm relative to its
centerK ;. The corresponding matrix groups are respectively denoted by GL(n, A)
and SL(n, A). The Lie algebra of SL(n, A) is sl(n, A) = {X € M(n, A)/Tr X = 0},
where Tr is the reduced trace of A relative to the center K; of K .10

We define the unitary group and the special unitary group by

U(E,h) ={a € GL(E|A)/h(ax, ay) = h(x, y), (x,y) € E2}
={a € GL(E|A)/AT A = 1},
SU(E, h) = U(E, h) N SL(E|A)}.

The corresponding matrix groups are classically respectively denoted by U (n, A, h),
and SU (n, A, h). For instance,

SU(n, A, h) ={AeSLin, A/ AHA = H}.
The corresponding Lie algebra is
su(n, A, h) = {X € sl(n, A)/' X7 + X =0}.

When A = K, an E-hermitian form is called £-symmetric, i.e., symmetric or alter-
nating according as the sign £ = 1 or —1, and the corresponding unitary group is
called an orthogonal group or symplectic group. In this case the letter is respectively
replaced by O or Sp.

More precisely, we recall that for 7 = 1 and £ = 1 a unitary transformation
is called an orthogonal transformation and the corresponding group is then denoted
by O(n, K, f). For 7 = 1 and £ = —1, in the same way, we obtain a symplectic
transformation, and the corresponding symplectic group is denoted by Sp(2n, K)
(or often Sp(n, K)). (One can verify that in these cases, the groups associated with
different choices of f are mutually isomorphic.) Let f be an £-hermitian form on
E; f is called an E-trace form | f] if for all x € E, there exists A € K such that
flx,x) =X + &AM T =1and € = —1 (K commutative) or £ = 1 and K is not
of characteristic 2, then any £-hermitian form is an £-trace form.

The classic Witt theorem can be proved in the following way: If f is an £-trace
form, a linear mapping v of any subspace F of E into E such that for all x,y € F,
fx),v(y)) = f(x,y), can be extended to an element u of the unitary group
U(n, K, f) associated with f. Thus, U(n, K, f) acts transitively on the maximal
totally isotropic subspaces, and their common dimension is the index m of f. If the
field K is the classic skew field H (or more generally a quaternion algebra over a
Pythagorean ordered field P) and f is a skew-hermitian form, according to a result
of J. Dieudonné, there exists an orthogonal basis e¢; of E such that f(e;,e;) = j

10 The following definitions can be found in A. A. Albert, Structure of algebras, op. cit., p. 122.
Let A be an algebra over K, £ an algebraically closed scalar extension of K. Let A be any
v-rowed representation a — a™ of A by A*. The determinant of a* is called the reduced
norm N (a) and the sum of the diagonal elements of a* is called the reduced trace Th (a),
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(quaternion unit), 1 < i < n. We will use this result later.!! (In this case, the unitary
corresponding group U (n, K, f) is determined by only n and K.)

1.1.4.3 Results Concerning the Cases of K = R, C, H

Then GL(n, K), SL(n, K), and U(n, K, f) are all Lie groups, and SL(n, K) and
U(n, K, f) are simple Lie groups except for the following cases:

(e)n=1,K =RorC,
Bn=2,K=R, J=1E=1
Y)n=4,K=RorC,J=1,E=1,m=2.

In cases («), (B), they are commutative groups; in case (), they are locally direct
sums of two noncommutative simple groups.

1.1.44 Caseof K = H

H contains C as a subfield and a vector space E of dimension n over H has the structure
of a vector space of dimension 2n over C. Thus, GL(n, H) can be considered as a
subgroup of GL(2n, C) in a natural way.

Real Forms of GSL (n, C), SO(n, C), Sp(2n, C)

Each of these classical simple groups has the structure of an algebraic classical simple
group defined over R. Thereal forms of G, i.e., the algebraic subgroups of G, the scalar
extension of which to C is G, can be viewed as SL(n, K), U(n, K, f) corresponding
to K =R,C, H.

A real form of a complex classical group G is conjugate in G to one of the
following groups:

(1) The real forms of SL(n, C): SL(n, R) (type Al), SL(k, H), only for n = 2k, (type
All), and the special unitary group SU (n, m, C), 0 < m < [n/2], relative to a
hermitian form of index m (type AIIl). ([x] denotes the integer part of the real
number x.)

(ii) The real forms of SO(2n + 1, C): the proper orthogonal group SO(2n+ 1, m, R),
0 < m < n (type BI), relative to a quadratic form of index m on a space of
dimension 2n + 1.

(iii) The real forms of SO(2n, C): SO2n,m,R), 0 < m < n (type DI), and
U(n, H, f) relative to a skew-hermitian form f on H (type DIII).

(iv) The real forms of Sp(2n, C): Sp(2n,R), type CI, the unitary group U (2n,
m,H), 0 < m < n, relative to a hermitian form of index m on H (type
CII); and SpU (n)—often denoted by Sp(n)—corresponds to the special case
m = 0.
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The quotient groups of these real forms by their centers can be realized!? as the groups
of automorphisms of semisimple algebras with involutions 7 that commute with 7.

1.2 Clifford Algebras

As pointed out by N. Bourbaki,'3 in 1876 William Clifford introduced the algebras
known as Clifford algebras and proved that they are tensor products of quaternion
algebras or of quaternion algebras by a quadratic extension.'* Let us first recall some
classical results concerning quaternion algebras.

1.2.1 Elementary Properties of Quaternion Algebras

1.2.1.1 Definition Let K be a field of characteristic different from 2. A quaternion
algebra A over K is, by definition, a central simple associative algebra over K with
[A: K]=4.1If Ais not a division, one has A >~ M (2, K), in which case A is called
a “split” quaternion algebra.

Let a;,ay € K*; one can define a quaternion algebra A(a, az) as an algebra
with unit element 1 over K generated by two elements e, e> that satisfy the following

relations: e% = aj, e% = ap, ejep = —eneq. As usual, we set eg = 1, e3 = ejep,
a3 = —ayaz. Then {ey = 1, ey, e, €3} is a basis of A(aj, ar) over K with the

following table of multiplication:

second factor
first factor el e e3
e1 aj e3 ajep
€2 —e€3 a —axe]
e3 —ajey | azeg az
where el.2 = ajep, (1 < i < 3)and e¢je; = —eje;. A(ay, ap) is often denoted by

(*2). We have the following statement.

12 A, Weil, Algebras with involutions and the classical groups, Collected Papers, Vol. 11, pp.
413-447 Springer-Verlag, New York, 1980.

13 N. Bourbaki, Eléments d’Histoire des Mathématiques, Hermann, Paris 1969, p. 173.

4w K Clifford, Mathematical Papers, London, Macmillan, 1882, pp. 266-276. This fact
can be classically illustrated by the construction due to Brauer and Weyl of the Clifford
algebra associated with a standard complex regular space, which is for n even, n = 2r,
isomorphic to m(2", C), the total matrix algebra of degree 2" with coefficient in C, and for
n odd, n = 2r + 1 isomorphic to the direct sum m (2", C) @ m(2", C) of two copies of such
an algebra (cf. exercises below).
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1.2.1.2 Proposition Let A be a quaternion algebra over K. There exists a unique
involution Jy of A(ay, az),q — q7° ofthe first kind satistying the following mutually
equivalent conditions:

(M) {geAlgh =g} =K.

(2) The sign of Jy is —1.

(3) The reduced trace of g € A is given by Tr(q) = ¢ + q.

(4) The reduced norm N(q) of g € Ais N(q) = qq”°. In the case of A(ay, as) for
q = eoao + era1 + ex0 + e3a3, ¢70 = egag — ejor; — exaty — eza3 and

3

N(g) = qq” = o — Zaia?-
i=1

It is well known that C/(A) denotes the Brauer class of A'® and if , B(K) denotes
the subgroup of the Brauer group B(K) consisting of all elements of order at most
two, CI(A(ajaz)) leads to a bilinear pairing

K*/(K*)? x K*/(K*)* =2 B(K).

Moreover, CI(A) = 1, (A(ay, ap) is a “split” quaternion algebra), iff the equation
a1x12 + azx% = 1 has a solution in K. Thus, the classical real quaternion algebra

16 We recall some classical definitions (T. Y. Lam, The algebraic theory of quadratic forms,
op. cit. chapter 4 for example): Let A be a finite-dimensional algebra over a field K : briefly
we will call it a K-algebra. Let S be a subset of a K-algebra; C4(S) ={a € A : as = sa,
for all s € S} is called by definition the centralizer of S: C4(A) = Z(A) is the center of
A. A s called K-central (or central over K) iff its center Z = K 1. A is called simple iff A
has no proper two-sided ideals. A is called a central simple algebra (C.S.A.) over K iff A
is both K -central and simple. We have the following statements:

Theorem. If A, B are K-algebras, and A’ C A, B’ C B are subalgebras, then
Cagp(A'® B') = CA(A") ® Cp(B'). If A, B are K-central, A ® B is K-central. If A
is a C.S.A. over K and B a simple algebra, A ® B is simple. If A, B are both C.S.A. over
K, A® Bis C.S.A. over K.

Definition. Let A, A’ be both C.S.A. over K. A is similar to A" if there exist finite-
dimensional spaces V and V' such that A ® EndV ~ A’ ® EndV’ as K-algebras. This
relation of similarity is an equivalence relation. The set of similarity classes of C.S.A.s
becomes a semigroup with [K] = [M (n, K)] as the identity, denoted by B(F).

Proposition and Definition. For any K -algebra A, let A0 denote the opposite algebra. If
AisaCSA, A%isa CSA and A® A ~ End A (algebra of linear endomorphisms of
A). In particular, B(F) is an abelian group with [A]_1 = [AO] for any C.S.A. A. B(F) is
called the Brauer group of A. C.

C. T. C. Wall, as clearly pointed out by T. Y. Lam (op. cit. pp. 95-96), first “observed
that it is possible and (expedient) to define a “graded Brauer group” using similarity classes
of central simple graded K -algebras (CSGA). Wall’s ‘graded Brauer group’ has since been
known as the Brauer—Wall g written BW(F)).” Example (T. Y. Lam, op. cit, p. 117):
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H = A(—1, —1), often denoted by ( _11’{_1 ), is the unique division quaternion algebra
over the real field R.

When K is a local field or an algebraic number field of finite degree, the previous
pairing is surjective and complete. Therefore, a central division algebra B over such
a field K with an involution 7 of the first kind is necessarily a quaternion algebra,
and any involution of B of the first kind with sign 1 can be written as ¢ — f~'¢7 f,
where f belongs to the multiplicative group of units of B and /7 = —nf.

Let B = (a, b/K) be a quaternion division algebra over K and let K’ = K (\/a).
Then we have an isomorphism B ® ¢ K’ >~ M (2, K') determined by

Mer) = ({f _%)

M(ey) = ((1) g) .

Let us denote by e;; the corresponding units in B @ K':

1 1 1 1
eilj=—=-(14+—<e ), epp=— e+ —ejer ),
11 2< «/51> 12 2b<2 ﬁlz)

_1 1 _1 ! 1
621—2 €2 ﬁeleZ s 622—2 \/L_lel .

Let Gal(K' | K) = {1, Iy}, where [y is the nontrivial automorphism of K’ over K
determined by ﬁlo = —,/a. We have the following relations: ell"2 = e, ell"2 =

b_1e21,and
M (D) = {(_I:)lo ’l:;é) /u, ve K’} 1

1.2.2 Clifford Algebras

1.2.2.1 Definitions and Basic Results

Let K be afield of characteristic different from 2. Let E be a vector space of dimension
n over K. Let q denote a regular quadratic form on E and let B be the corresponding
nondegenerate symmetric bilinear form such that for any x € E,q(x) = B(x, x).
(E, q) is called a regular quadratic space. Hence, we have g(x) = B(x, x) = 'XBX,
where X and B denote respectively the matrices of x € E and of B with respect to a

7 Thus we find the classical representation of H = (%F) as the real algebra of matrices
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given basis e of E. As is well known, there exists an orthogonal basis e = {ey, ..., e,}
of E such that for any

n
X = Zeix,- eE,
i=1

we have

n
q(x) =) aix},
i=1

or equivalently, B(e;, e;) = d;ja; (1 <i, j < n). By definition,

nn—1)
2

[ Tai (mod(k*)?)

i=1

Alg) = (=1

is the “discriminant” of q.

The construction of a Clifford algebra associated with a quadratic regular space
(E, q) is based on the fundamental idea of taking the square root of a quadratic form,
more precisely of writing ¢ (x) as the square of a linear form ¢ on E such that for any

x € E,q(x) = (p(x))°.

1.2.2.2 Clifford Mappings

Let A be any associative algebra with a unit element 1 4.

1.2.2.2.1 Definition A Clifford mapping f from (E, ¢) into A is a linear mapping f
such that for any x € E, (f(x))2 = g(x)14. By polarization, we obtain f(x) f(y) +
f)f(x) =2B(x,y)ly, forany x,y € E.

1.2.2.3 Clifford Algebra C(E, q)

1.2.2.3.1 Definition For a given quadratic regular space (E, g) we define a Clifford
algebra associated with (E, g) to be any pair (C, f¢), where C is an associative
algebra over K with a unity 1¢ and fc is a Clifford mapping from (E, ¢) into
C such that:

(1) 1¢ and fc(E) linearly generate C.
(2) For any Clifford mapping f from (E, ¢) into the associative algebra A with unity
14, there exists an algebra homomorphism F from C into A suchthat f = Fo fc.

We recall the following classical theorems:

1.2.2.3.2 Theorem Any quadratic regular space (E, q) possesses a Clitford algebra

tensor algebraT (E) of E| by the two-sided
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ideal 1(q) of T (E) generated by the elements x @ x — q(x)1, for any x € E.
The resulting quotient associative algebra T (E)/I(q) is then denoted by C(E, q)
and called the Clifford algebra of the quadratic regular quadratic space (E, q). The
composite of the canonical injective mapping E — 7 (E) and of the projection
T(E) — C(E,q) is a linear injection fc : E — C(E, q). It becomes a Clifford
mapping from E into C (E, q) and leads to the identification of E with fc(E).

If the dimension of E over K is n, then C(E, q) is 2" -dimensional over K. If
{e1,...,eq} isabasisof E, then1, ¢;, e;ej, (i < j),...,e1ez--- ey, form a basis of
C(E, q). In particular, if {e; }1<; <, is an orthogonal basis of E relative to q, we have

(@) ejej = —eje;, (ei)2 =qe)l (G,j = 1,2,...,n,i # j). (Furthermore,
x2 = q(x)1¢ for any x € E.) In this case C(E, q) may be defined as an associative
algebra (with a unit element) generated by the {e;} together with the relations (a).1®

The case ¢ = 0 leads to C(E, g = 0) >~ AE (the Grassmann or exterior algebra
over E).

1.2.2.4 The Principal Automorphism = and
the Principal Antiautomorphism 7 of C(E, q)

1.2.2.4.1 Theorem There exists a unique automorphism w of the algebra C(E, q)
such that m(x) = —x for any x € E. This automorphism m is called the principal
automorphism of C(E, q), and 72 =1.

There exists a unique antiautomorphism t of the algebra C (E, q) such thatt(x) =
x for any x € E. This antiautomorphism t is called the principal antiautomorphism
of C(E, q), and we have 2 =1.

V=7 o T = T ox is the unique antiautomorphism of C (E, q) such that for any
x € E,v(x) = —x. Forany a € C(E, q) we often write v(a) = a* ora; v is often
called the conjugation of C(E, q).

1.2.2.5 The Even Clifford Algebra C*(E, q)

1.2.2.5.1 Theorem Lete = {ey, ..., e,} be an orthogonal basis relative to q. With
the above notation, we have the following relations:

(e)? =a; (1<i<n,

eiej+ejei =0 (1<i,j=<n,i#)).
We put CT = {ej, ---ei, (i1 < -+ < in), m even}k (i.e., the linear space over K
generated by the (e;, - - -¢;,), m even), C~ = {e;; ---¢;, (i1 <+ <ip),modd}g.

Since the two-sided ideal I (q) is generated by “even” elements, the definition of
C* is independent of the basis.

18 Regularity is not required in the definitions above, but only quadratic regular spaces will be
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C = Ct®C~ asavectorspace,(CT)> = (C™)>*=CT,ctC~=CCt=C".
Thus C(q) = CT @ C~ has the structure of a graded algebra with the index group
{£1}. The elements of C* (respectively C™) are called respectively even elements
and odd elements. C* and C™ are both linear subspaces of C(E, q) with the same
dimension 2", as respective eigenspaces of C (E, q) for the eigenvalue 1, respec-
tively —1, of the principal automorphism  of C(E, q). C™ is a subalgebra of C with
the same unit element 1¢ (g g).

Ifg # 0, the subalgebra C* of C can be expressed as the Clifford algebra of any
subspace E1 = u' of E, the orthogonal space of a regular vector u for the quadratic
form qy = —q(u)q. For such a structure of C* the conjugation vy is the restriction of
the conjugation v of C, and the principal automorphism m; is the inner automorphism
of C™ directed by u.

Ifforafixed p € N we call C), the (Z) -dimensional subspace of C spanned by the
products ey = ey, €q, - - "€, I <oy <ay <--- <ap <n, with exactly p factors,
then C is the direct sum of the subspaces C . Cy is identified with the field K, and
C1 with the vector space E. Thus'®20

ct=> ¢, C =) ¢,

peven podd

1.2.2.5.2 Proposition C and C™ are semisimple algebras over K , and the centers of
C and C are given as follows:

| Cent C | Cent C™*
K {17eN}K WhereeN:el...en_
{1, en}k K

21
n even

n odd

Then C (n even) and C™ (n odd) are central simple algebras over K .

The anticenter A of C(E, q) is defined as the linear space of the elements a of
C(E, q) that anticommute with any x € E, or equivalently, that commute with even
elements of C and anticommute with odd elements of C(E, q).

Ifnisodd, A ={0}. Ifniseven A = Key withey = ey - - - e,. Furthermore, C
(n even) and C* (n odd) both are in the Brauer class of ®; - j((—1)*'a;, (=1)/a;).

Moreover, [1, ey is a field if and only if eX, = A(q) ¢ (K*)?, and if n is odd,
C is then a central simple algebra over the field extension K=K [V A(g)] of the
field K .

Thus, if A(g) ¢ (K *)2, then C (n odd) and C* (n even) are simple. Otherwise,
they are the direct sum of two isomorphic central simple algebras. In either case, it

19 ¢f. for example, R. Deheuvels, Tenseurs et Spineurs, op. cit., pp. 235-238; or 1. Satake,
Algebraic Structures of Symmetric Domains, op. cit., pp. 231-287.
20 The grading C = Zp Cp= Ct @ C_y moreover C = C* @ C_ is a graded Z, algebra.

21 For a subset A of K -vector space E, A - - - } denotes the linear subspace of E generated
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is known that C ~ C* over K (\/A(q)) where the meaning of ~ is that all simple
components of both sides belong to the same Brauer class over K (/A(q)).

More precisely, we have the following statement:

1.2.2.5.3 Theorem

e Ifdimg E is even, the Clifford algebra C (E, q) is a central simple algebra over K .
The principal automorphism w is then an inner automorphism of C.

e Ifdimg E is odd and ifelz\, = A(g) ¢ (K*)2, then C(E, q) is a central simple
algebra over K = K (/A(q)) = {A¢ + pmen /A, u € K}, a quadratic extension of
K,andC = Ct@enC™ isanextension of CT. Finally,m (A1 ¢ +uey) = A c—uey
is the unique automorphism of K different from the neutral element, which leaves K
invariant in the Galois group of K:

7T(Cl+ + ENb+) =da4 — ENb+ with a4, b+ € C+.

e Ifdimg E is odd and 1'fe12v = A(q) € (K*)2, then C(E, q) is the direct sum of
two isomorphic central simple algebras both isomorphic to C*. Let e%\, =a’eK.
Let& = Y1+ tey)and & = $(1 — Ley). We have €7 = &1, &3 = &. 616 =
EE =06 +E =1andey = a(&E) — &).

C = C*E & CTéE,, the two components are both simple algebras, isomorphic to
C™, and v is the automorphism of C that interchanges the units £y and &, and leaves
invariant the elements of CT, and then interchanges C; = CT&| and C; = CT&,.

Classical example:
Let us assume that K = R and that the signature of g is (7, s).

1.2.2.5.4 Proposition
R
Ctr,s)~4C
H
according as
0, £1
r—s=1{+2 (mod8)
+3,4

nn—1)

Since ej; = (—1) " 2 ey, the principal antiautomorphism t is of the first kind for
C(r,s) if and only if n = 3 (mod 4) and for C*(r, s) if and only if n = 2 (mod 4).
As pointed out by I. Satake, when t is of the first kind, the sign en can be determined
by an easy computation of the dimension of the subspace of T -stable elements.

We have the following statement:>?

1.2.2.5.5 Proposition When C™ (r, s) is not simple, i.e., when n is even and A(q) €
(K *)2, either (in the casen = 2 (mod 4)) t interchanges the two simple components

Domains, op. cit, pp. 280-281.
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of C*(r, s) or (in the case n = 0 (mod 4)) T leaves the simple components fixed and
induces on each of them an involution of the first kind with the same sign.

1.2.2.6 The Clifford Groups
1.2.2.6.1 Definitions

Let G be the set of all invertible elements g in C(E, ¢) such that gEg~' = E. Then
G forms a group relative to the multiplication of C(E, g). This group G is called
the Clifford group. The subgroup G™ = G N CT(E, q) is called the special Clifford
group.

The linear transformation ¢(g) : x — gxg~! of E induced by g € G belongs to
the orthogonal group O (g) of E relative to g. Furthermore, the mapping ¢ — ¢(g)
is a homomorphism from G into O(q). Therefore, ¢ is a representation of G on E.
This representation is called the vector representation of G. The kernel of ¢ is the
set of invertible elements in the center Z of C(E, gq). If x € E N G, then g(x) # 0
and —¢(x) is the classical reflection mapping of E relative to x, the hyperplane
orthogonal to x.

Ifn =dimEiseven, G = GT UG, ¢(GT) = S0(q) = 07 (q), ¢(G™) =
0~ (g). G™ is a subgroup of index 2 in G.

If n = dim E is odd, ¢(G) = ¢(GT) = SO(q). Any elements g € G can be
written as g = zay---azp with a;, 1 < i < 2p, regular vectors of E and z =
al + Bey. Wenote that g € G iff B =0and g € G~ iff ¢ = 0.

The mapping N : Gt — K* (the multiplicative group of K) defined by N(g) =
g%g, forany g € G, is a homomorphism and N (g) is called the spinorial norm of
g € G*. The normal subgroup of G* defined as the kernel of N is called the reduced
Clifford group and denoted by Ga' .

The subgroup (,o(Gar ) of SO(gq) is denoted by OJ (g) and called the reduced
orthogonal group.

Example:
Let us assume that the ground field K is R, the field of real numbers. Then, 06r Q)
coincides with the identity component of the Lorentz group O(g).

1.2.2.6.2 Definitions

The Clifford regular group G is the multiplicative group of invertible elements g in
C(E, g) that satisfy, for any x € E, m(g)xg ' =yekE.

The linear transformation ¥ (g) : x — m(g)xg~! induced by g € G belongs
to the orthogonal group O(g) of E relative to g. The mapping g — ¥(g) is a
homomorphism from G into O (g). Therefore, V is a representation of G on E, called
the regular vector representationof G. The kernel of v is K*. G is identical to the
subset of C(E, g) consisting of products of regular (or nonisotropic) vectors of E,
and G can be, equivalently, defined as the multiplicative group formed, with the unit
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IfGt =GNCHE,q). G- =GNC(E.q),G = GG , we have
Gt =G*,G~ =G, where G = G if dim E is even, G is the subgroup Gt U G~
ofG1fd1mE1soddwls¢onG+—G+and1/rls—goonG = G, and
Y (GT) =0T (g)and ¥(G™) = 0~ (g).

The mapping N’ : G — K* definedby N'(g) = v(g).g = g'g = (mot)g-gisa
homomorphism from G into the multiplicative group K * that applies the centerK *-1¢
of G onto (K*)2. N’ is called the graded norm.

For g € G, g=ay---ar witha;, 1 < j <k, regular vectors of £, we have

k
N(g) = []a)

and N'(g) = (—1)*N(g)and g~ ! = ¢ /N(g) =g /N/(g) N’is N on G and N’
is —N on G~ . The reduced Clifford group Go = Go appears as the kernel of the
homomorphism N or N’ from Gt into K*.

1.2.2.7 The Spin Group Spin (E, q)

We present the following general definition of Spin(E, ¢).23

1.2.2.7.1 Definition For any quadratic regular space (E, q), the spin group is defined
to be the normal subgroup of the even Clifford group defined as the kernel of the norm
homomorphism?* according to the following exact sequence:

1 — Z, — Spin(E, q) — O (q) — 1.

If g is positive, O ~ SO(n, R). Then G = Spin(E, ¢) is denoted by Spin n and
called the classical spinor group of degree n.

We recall the following classical result.?

1.2.2.7.2 Proposition (a) Let (E, q) be a quadratic regular n-dimensional complex
space or Euclidean real space. The spin group Spin(E, gq) is the group consisting
of products in the Clifford algebra C(E, q) of an even number of unitary vectors in
E. Spin(E, q) is connected and simply arcwise connected and constitutes a twofold
covering of SO(E, q).

(b) Let (E,q) = E,s be a standard pseudo-Euclidean space of type (r,s),
Spin(E, ) = Spin (r, s), the corresponding spin group is the group consisting of
products in the Clifford algebra C(E,) of an even number of a; € E such that
q(a;) = 1 and of an even number of b; such that q(b;) = —1.

23 Cf., for example, R. Deheuvels, Tenseurs et Spineurs, op. cit., pp. 249-255.
24 In 1.2.2.6.1 such a subgroup was called the reduced Clifford group and denoted by G(')".
pineurs, op. cit., p. 254.
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Spin(r, s) is connected and simply arcwise connected if (r,s) # 1. Spin(r, s)
is a twofold covering of SOT (r,s) = O ' (r,s), the identity component of the
“generalized Lorentz group O(r, s),” consisting of proper rotations in O(r, s) that
preserve the complete orientation of E, . On the other hand, Spin(l, 1) has two
connected components.?

1.2.2.7.3 Proposition Let us assume that K =R, C. The Lie algebra spin(E, q) of
Spin(E, q) is the Lie subalgebra of the Lie algebra associated with the associative al-
gebra C(E, q)?" consisting of the space C»(E, q) defined above. spin(E, q) operates

26 Following Deheuvels (R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit.),
we denote by RO(q), for a quadratic regular complex or Euclidean real space, the twofold
covering group of O(g) (according to the exact sequence 1 — Zy, — RO(q) — O(q) —
1); RO(r, s) the twofold covering group of the standard pseudo-Euclidean real space E; ¢
with (r, s) # (1, 1) (according to the exact sequence 1 — Zy — RO(r,s) — O(r,s) —
1). We have the following classical exact sequences:

1 — Z, — Spinn — SO(n) — 1,
1 > Zy — Spin(r, 5) = SOt (r,5) > 1 (with SOT (r,5) = 0T (1, ).

Some authors, such as Max Karoubi and A. Crumeyrolle and I. Satake, for example, often
introduce the following groups: Pin(r, s)—respectively Spin(r, s)—as the subgroup of the
regular Clifford group G—respectively even Clifford group G+—cons1st1ng of elements
of G, respectively G, such that [N'(g)| = |g"g| = 1. According to their notation, we have

1 — Z, — Spinn — SO(n) — 1,
1 — Z, — Pin(r,s) > O(r,s) = 1, (r,s) # (1, 1),
1 — Z, — Spin(r, s) — SO(r,s) — 1.

(We again clarify the definitions above. When (E, ¢) is a quadratic regular complex or
Euclidean real space, RO(E, q) is the subgroup of the regular Clifford group G consisting
of elements g € G such that N(g) = 1 and ROT(E,q) = Spin(E, q). If (E,q) is a
pseudo-Euclidean standard space E; 5, RO(r, s) denotes the group—previously denoted by
Pin(r, s)—of elements g € G such that N’ (g) = £1 or equivalently N(g) = £1. But with
our notation Spin(r, s) is the identity component in RO(r, s)).

Subsequently, we choose the previous convention according to the following exact se-
quences:

1 — Z, — Spinn — SO(n) — 1,
1 — Zy — Spin(r, s) - 0T (r,5) > 1.

In the case (r,s) = (1, 1), Eq is a hyperbolic real plane. Each component of RO(1, 1)
possesses two arcwise connected components, and thus RO(1, 1) has eight connected
components.

27 It is well known that one can associate with any associative algebra A a Lie algebra by
setting [a | b] = ab — ba for any a, b € A.
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in E by means of the bracket product of C(E, q):

Ifx e E, a:ZAijeiejeCz(E,q), then[a,x] =ax —xa € E.

i<j

The linear space Spin (E,q) = C»(E, q) is isomorphic to the space A*(E), and
its dimension over K is %n(n — 1). The linear representation of Spin(E, q) onto
C2(E, q) by inner automorphisms of C (E, q) is naturally the adjoint representation
of Spin(E, q) in its Lie algebra.

Classical examples:*
Spin2 >~ § L.
Spin3 =~ SU(2) =~ SpU (1) {group consisting of classical quaternions with norm 1};
Spin4 ~ SU(2) x SU(Q2) ~ §3 x §3;
Spin 5 >~ SpU (2);
Spin 6 >~ SU (4);
Spin(1, 3) >~ SL(2, C) (cf. below, exercises).

1.2.2.8 Spinors and Spin Representations

We recall the following important statement:

1.2.2.8.1 Theorem (structure theorem of Wedderburn®®) Any simple algebra’® is
isomorphic to the algebra of endomorphisms of a right vector space M over a field—
not necessarily commutative—I" that is an extension of the ground field K of A. In
other words, A is isomorphic to the algebra of square matrices of degree p over the
field ", where p = dimr M. Therefore dimg A = pzdim xT.

1.2.2.8.2 Structure of Clifford Algebras for Regular Quadratic Spaces

Let E be a K-n-dimensional space. According to Proposition 1.2.2.5.2, the Clifford
algebra C(E, g) of a quadratic regular space is a central simple algebra if n is even,
the direct sum of two isomorphic central simple algebras both isomorphic to the
even Clifford algebra C*(E, ¢) if n is odd and if €3, = (e1---¢,)? € (K*)%, and a

central simple algebra over the field K=K WAQ@Q)) = K( 612\1) if n is odd and if

ejz\, = A(g) ¢ (K*)2. Then the Clifford algebra is always isomorphic to an algebra
of square matrices or to the direct sum of two copies of such algebras over a field that
is not necessarily commutative.

28 We recall the following classical definition: The set of unit vectors @ € R” is by definition
the unit sphere $" 1.

29 Cf. for example: R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit., p. 340.

30 We recall that a simple algebra is an algebra A of finite dimension, with a unit element,
which has only A and {0} for two-sided ideals. A semisimple algebra A an algebra direct

sum of a finite number of simple algebras A;. (Each A; is a two-sided ideal of A and A is
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1.2.2.8.3 Definition Let (£, g) be a quadratic regular space and C(E, q) its Clifford
semisimple algebra. By definition we call any minimal faithful module over C(E, q)
the space of spinors associated with C (E, g). When S is the direct sum of two simple
nonisomorphic modules, (S = S1 & $2), S;(i = 1,2) are called the spaces of half-
spinors.

1.2.2.8.4 Spin-Representations in the Case K = C(n = dim E > 3)

In this case O(T ~ SO(n, C), then we denote Gg by Spin(n, C) and call it by definition
the complex spinor group of degree n.

Spin(n, C) is a simply connected covering group via the covering homomorphism
¢. Spin(n, C) is the complexification of the compact Lie group Spin(n) and is a
complex analytic subgroup of the complex Lie group C(E, g)* consisting of all
invertible elements of C(E, g).

The spin representations of the group Spin(n, C)3! are defined as follows:

Case n = 2r, (n even)

C(E, g)isacentral simple algebra. C(E, ¢g) is isomorphic to a total matrix algebra
of degree 2" over C. C(E, q) possesses, up to an equivalence, a unique irreducible
representation p of degree 2". We call the corresponding space S of this representation
the space of spinors for C. The representation of CT, o™ induced by p, is called the
spin representation of C*. p induces a representation of the Clifford group G of the
even Clifford group (~?+ = G™, and of the reduced Clifford group G, which are
respectively denoted by p, p*, and par and are also called spin representations.

Thus, the restriction p™ of p to Spin(n, C) = G(J)r (or eventually Spin n) defines
a representation p of degree 2" of Spin(n, C) (or eventually Spin n). Since C™ is not
simple, p™ is notirreducible: p* is the sum of two inequivalent simple representations
both of degree 2" -1 pj_', and ,0‘_", and the same is true for ,0(‘)" , the spin representations
of Spin(n, C). Thus, S can be represented in one and only one way as the sum of two
subspaces each of which yields a irreducible (or simple) representation: S = ST@S™.

By taking a suitable minimal left ideal P of C (E, q) as the representation space of
the representation p, one obtains the representation of pi by putting P™ = PN C™
and P-=PNC™.

As pointed out by C. Chevalley, we usually choose for p the representation u €
C(E,q) — p(u) such that p(u). vf = uvf, where f = y1yz---y, with {x;}1<i<r
and {y;}1<j<r two respective bases of the respective maximal totally isotropic sub-
spaces F, F’ such that E = F 4+ F’ (Witt’s decomposition) with, 2B(x;, y;) = &;;
and for P the space C(E,q)f with basis {x; x;, ---X;, f}1<i;<ir<--<iy<r- Thus
Pt =CTNSetP™ = C~ NS. The representations p* and p~ are respectively
called the even (or odd) half-spin representations. ,o(;“ . and p(;[ are not well defined on
SO(n, C) (or eventually SO(n)). They are of valence 2 on these groups. The represen-
tations of the Lie algebra so(n, C), a complex Lie algebra of type D, corresponding

31 Cf., for example, C. Chevalley, op. cit., pp. 55-58.
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to p(')" , and p(‘)"_ are also called half-spin representations of this Lie algebra so(n, C).

Casen =2r + 1 (n odd)

C(E, q) is semisimple and C™ is central simple. C* is isomorphic to a total
matrix algebra of degree 2 over C. C* possesses a unique—up to an equivalence—
irreducible representation p thatis of degree 2", which we call the spin representation
of C*. The space S of this representation will be called the space of spinors. The
induced representations of GT, Gg induced by p™ are called the spin representations
of G*, respectively G, and denoted by p™ and p , respectively.

Thus, ,o(‘)|r is the spin representation of degree 2" of Ga' = Spin(n, C) (or even-
tually of Spinn). The corresponding representation of the Lie algebra so(n, C), a
complex Lie algebra of type B,, is also called the spin representation of so(n, C). We
note that p is not well defined on SO(n, C) (or eventually SO(n)); p is of valence 2
on SO(n, C) oron SO(n). As pointed out by C. Chevalley, it is possible in exactly two
ways to extend the spin representation of CT on S to an irreducible representation of
C on S. The two representations of C that extend p™ are called the spin representa-
tions of C, and the induced representations of G are called the spin representations
of G.

1.3 Involutions of Algebras

We recall briefly the main results that can be found in the remarkable book of A. A.
Albert.??

1.3.1 Classical Definitions

Let A be a unitary algebra over K, K being a commutative field with characteristic
different from 2.

1.3.1.1 Definition A nonsingular linear transformation 7 over K of A is called a K -
involution or briefly an involution of A if J 21, (ab)‘7 =bpT a7 ,foranya, b € A,
and whenever such a 7 exists, A is called a [J-involutorial algebra.

1.3.1.2 Theorem The product S = T'J of any two involutions of A is an automor-
phism over K of A.

1.3.2 J-Symmetric and 7-Skew Quantities3

1.3.2.1 Definition A quantity s of A is called [J-symmetric, respectively 7 -skew, iff
s =s7, respectively s = —s7.

32 AL A. Albert, Structure of Algebras, op. cit. chapter X.
33 We take the word used by A. A. Albert: “q uantity” stands for “element.”
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1.3.2.2 Theorem The set S 7(A) of all J -symmetric quantities of A is a linear subset
over K of A and is a subalgebra of A iff all [J -symmetric quantities are commutative
with one another.

If A = S7(A), the algebra A is a commutative algebra. Let Z be the center of A.
Then S 7(Z) is a subalgebra of Z. The set C;(A) of all J -skew quantities of A is a
linear subset over K of A.

For any [J -involutorial algebra over K, A is the supplementary sum: A = S7(A)®
Cr(A).

Let A be a J -involutorial algebra over K and let Z be the center of A. If Z contains
a regular 7 -skew quantity ¢ = —q* , then the setC7(A) =qS7(A), g% isin S7(A)
and A = S7(A) ® qS7(A).

1.3.2.3 Definition Let A be J-involutorial over K and Z be the center of A. We
call A J-involutorial of the first kind, respectively of second kind, according as
S7(Z) = Z or S7(Z) # Z respectively.

We will now be particularly interested in the case that A is a simple algebra, and
we will assume that the center of A is a field R.

Every quantity g # O of a field R is regular. Moreover, the subset G of all J-
symmetric quantities of R is a subfield over K of R by Theorem 1.3.2.2. Hence either
A is J-involutorial of the first kind or R contains a quantity ¢ as in Theorem 1.3.2.2.

We have the following theorem (A. A. Albert, op. cit. Theorem 10, p. 153):

1.3.2.4 Theorem Let the center of a J -involutorial algebra A of the second kind be
a field R such that R O G (G the subfield over K of all J-symmetric quantities of
R). Then R = G () is a separable quadratic field over G such that

DHed =1-0,02—60=BinG.

(i)A =G7(A)®OG7(A) = {uy,...,uy} over R withu; = u;7 in G 7(A).
Moreover, we can replace 6 in (ii) by ¢ = 6 — 1/2 and obtain R = G(q),

(iii) ¢7 = —q,¢* =a inG.

1.3.3 Involutions over G of a Simple Algebra

We assume henceforth that A is a simple algebra over K. Then the center R of A is
always afield, and the subfield G 7 (R) of all 7-symmetric quantities of R is uniquely
determined by 7. We recall the following definition given before.

1.3.3.1 Definition Let G be a subfield over K of the center R of a simple algebra A.
Then we call an involution J of A an involution over G of A if G 7(R) = G, that
is, k = k7 for k in R if and only if k is in G.

The result of Theorem 1.3.2.2 now implies that we may limit our study of the
I simple algebra A over R to the discussion
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of the case that R has an automorphism C over G as follows: Either R = G, C is
the identity automorphism 7, or R = G(0) is a separable quadratic extension over
the set G consisting of all quantities of R unaltered by C, C’=1,02-0isinG,

iv)o€ =1-0=07.

We will adopt this notation here and henceforth. If 7 is an involution over G of
A, then we have seen that necessarily kT = k€ for every k of R. If also J is an
involution over G, we have k7 = k€ = kT; C? = I gives kY = k. Combining
this result with that of Theorem 1.3.1.2 we have the following result:

1.3.3.2 Lemma Let T and J be involutions over G of A over K. Then T 7 is an
automorphism over the center R of A.

Complete information on the relation between any two involutions over the same
G of A is now given by the following theorem:

1.3.3.3 Theorem Let R be the center of a simple algebra A and T an involution over
G of A. Then a self-correspondence a — a* is an involution J over G of A if and
only if there exists a regular quantity y = £y in A such that

) ad = y~taly (@ in A).

The correspondence S given by a <> y~'ay is an automorphism of A over R. If
y = £y then the resulting 7 of (v) is clearly the product 7 = T'S and hence is a non-

singular linear transformation over G of A. Now a = yay~ !, a%T = (y“lay)T =

yTal 3Ty~ = yaTy=! = aTS™' ST = TS~!. Then J2 = TSTS = T25~!
S = I.Also, (ab)? = (ab)ST = (a®b5)T = b5TaST, so that 7 is an involution of
A. It is an involution over G since k7 isin R, kTS = (kT)S = kT for every k of R,
S is an automorphism over R.

Conversely, let 7 be an involution over G. By Lemma 1.3.3.2 and a corollary of
the classical theorem of Skolem—Noether,>* S = T'7 is an inner automorphism of
A,a® = go_lago for go a regular quantity of A. Thena’ = asd = (g(‘)j)aj(gg)_l,
at =g 'aT g, where g = g(‘)7 is regular. We apply 7 to a’/ = g~'a” g and obtain
a=g7 @) (g =g g"gg a g(s7" g 9) " = (g7 g a(g~ ™) for
every a of A. Then y = g~ !g7 isin the center R of A, g7 = yg. If y = —1 the

34 Theorem of Skolem—Noether (A. A. Albert, op. cit. p. 51, for example, or J. P. Serre,
Seminaire H. Cartan, E.N.S. 1950-1951, 2¢ exposé 7-01: W. A. Benjamin, Inc, 1967, New
York, Amsterdam).

Theorem: Let A be a central simple algebra finite over K, and let f and g be two
K -isomorphisms from a simple algebra B into A. Then, there exists an invertible element
x € A such that forany b € B, f(b) = xg(b)x 1.

Corollary: Any K -automorphism of a central simple algebra finite over K is an inner
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quantity y = g = —g! has the property we desire. Otherwise, y = g+g7 = (1+y)g
is a T-symmetric quantity and is regular, y " 'a”y = g~'a” g = a7 as desired.

It is clear, that if 7 is any involution over G of A defined by a quantity y of A
satisfying (v), the multiples oy of y by nonzero quantities & of R have the property
(ay)~lal (ay) = a” and define the same involution 7 of A as y. Conversely, if
a? =y~laly = y;'a" yo for every a of A, then yoy~'a” = a” yoy~! forevery a
of A.Buta = (a”)7, yoy~'a = aygy~! foreverya of A, yoy~! =« in R, yo = ay.
We have shown that the quantity y of (v) is uniquely determined by .7 up to a nonzero
factor in R.

We remark also that if yT =y, then y*7 =y! =y, and that if yT = —y, then

J T — _
yoe =y ==y

Two involutions J and Jy are called cogredient if there exists an automorphism
S over R of A such that 7o = S~!7S. Then S is an inner automorphism of A over

. —1
R and a® = z~'az for a regular quantity z of A. But then a5 = zaz™!,

ovi)a = 27y N zaz ) yz = Tyz)~'al (T y2) = vy 'al o,

where yp = 7T vz. The argument above shows that the two involutions 7 and [Jy
over G are cogredient if only if the defining yo is 7-congruent to a multiple of y by
a quantity in the center.

The automorphisms S of an algebra may be thought of as replacing any fixed
representation a of its abstract arbitrary quantity by another representation a’. Now
Jo is the involution a5 < (a° )‘7O —aS57'TS = (aj )S. Thus cogredient involutions
are essentially merely different representations of the same abstract involution.

1.4 Clifford Algebras for Standard Pseudo-Euclidean Spaces
E, s and Real Projective Associated Quadrics

1.4.1 Clifford Algebras C, s and C;f : A Review of Standard Definitions

Let V = E, ; be the standard m-dimensional pseudo-Euclidean space of type (r, s),
r4s=m.Let (x|y) = x'yl 4 g xTy" —xHyr Tl o xSy be s scalar
product, relative to an orthogonal basis of V,namely e = {ey, ..., e,} withg(e;) = 1,
I <i<randg(ej) =—1,r+1 =< j <m.C(V) = C,; denotes its Clifford algebra.
C, s is an associative algebra with a unit element 1¢, 2" -dimensional over R. 7 is its
principal automorphism, 7 its principal antiautomorphism (main involution of C, y),
v =7 oT = 7 o the conjugation in Cj ;. C;’fs = C™ (V) denotes its even Clifford
subalgebra, 2~ -dimensional over R. G denotes the regular Clifford groupof Crs.
N, respectively N’, denotes the usual spinorial norm and the graded norm.

We recall that for ¢ = x1---x, € G, the product of p regular vectors of V,
N'(g) = (=1)’N(g) and g~' = g"/N(g) = g"/N'(3). Let T = e1---ey. If
m =2k, J* = (=D, T = 7" = (=D*T, T = (=D T If m = 2k + 1,
1)k+lj, j_l — (_1)k-‘rSj_
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SpinV = Spin(r, s) is the kernel of the restriction of the homomorphism N to
GT = CT(V)NG. (Werecall that G consists of elements that can be written as the
products of an even number of regular vectors of V.) Form > 2, SpinV is connected
and included into the G* subgroup of G™ consisting of g € G™ that can be written
as the product of an even number of positive vectors of V and of an even number of
negative vectors of E.

The group Spin V linearly generates C*(V) = C*(r, s)—(subalgebra of even
elements)—in which it is embedded. Now we are going to study in detail the nature
of the algebras C, s and C,;.

1.4.2 Classification of Clifford Algebras C,,; and C;f;

According to Theorem 1.2.2.5.1, we know that the subalgebra Ct of C can be ex-
pressed as the Clifford algebra of any subspace E| = u™ of E, orthogonal space to
a regular vector u for the quadratic form g; = —¢q(u)q.

Thus, let us take a vector u of V such that (# | #) = ¢ = £1. The mapping ¢
from ut into CT(V) : y € ut — uy = @(y) is such that (¢(y))?> = —(u | u)(y |
y) = —&(y | y) and represents C* (V) as the Clifford algebra of the vector space u"
endowed with the quadratic form induced from that of V by multiplying by (—¢) and
thus of signature (r,s — 1) if e = —1 or (s,r — 1) if ¢ = 1. All such structures of
Clifford algebras for CT (V) corresponding to different choices of u define the same
conjugation, which is identical to the restriction of T to CT(V).

One can establish the classifying Table 1.1, which gives explicitly the nature of
C,s and C;‘" s> according to r — s modulo 8. Such a result is due to the nature of
the Brauer—Wall group:>> BW (R) = Z/8Z. We agree to denote by m(n, F) the real
algebra of square matrices of degree n with coefficients in the field F = R, C, or H
(the usual noncommutative field of real quaternions). We denote by [k] the integer
part of the real k.

Proof. The construction of such a table entails the knowledge of some properties of
periodicity modulo 8 of real quadratic regular spaces.3®
Let us first recall the following well-known results given in the above reference:
Crs®C1,1 = Cr41,5+1 (One caneven use a tensor product of Z,-graded algebras);
Crs ®Co2~=Csr12:Cro2R@®R, Cpy = C;
Crs ® Cop = Cyry2; Co0o = Cr1 @m(2,R), Cor ~ H;
mmn,R)@mmn,R) >mmm,R);CQIC~CoC,;
m(n,R) ® R ~ m(n, R);
m(n, C) ® C ~ m(n, C);*’
mn, R)@H~mn, H; HR C~m2,C), HRH >~ m(4, R);

35 C.T. C. Wall, Graded algebras anti-involutions, simple groups and symmetric spaces, op.
cit.
36 Cf., for example, T. Y. Lam, The Al gebraic Theory of Quadratic Forms, op. cit., chapter 5.

cohomologie des groupes, op. cit., p. 603.

—
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Table 1.1. Fundamental Table

r+s r—s
(mod 2) | (mod 8) s Crs
0 0 | m@"T Ry @m@ " R) | m2%,R)
1 1 m2"T R m@l 7] R) @ m2!2] R)
0 2 m@ "7, C) m2% R
1 3 m2"T - H) m@l7], )
0 4 m@ "1 ) m25 =1 H)
om@ "7~ H)
1 5 m@"T 1 W m@ 217 )y @ m@!21-1 1)
0 6 m ", C) m22! H)
1 m@2"T  R) m@l%1, )

Co.nt8 = Co,n ® Co g, Cog =~ m(16,R); hence we can deduce that if Co ,

m(m, F), where F is the field R, C, or H, we obtain that Co ;g

~

m(l6m, F),

which leads us to the following table first given in Atiyah et al.>® and now
classical.?”

n Cn0 Coun CE=Cro®C>Cy, ®C
1| R&R C CopC

2 | m@2,R) H m(2, C)

3 | m2,0) HoH m2,C) ®m(2,C)

4 | m@2,H) m(2, H) m(4, C)

51 mQHdmR2,H) | m4,C) m4,C) ®m4, C)

6 | m4,H) m(8, R) m(8, C)

7 | m(@8,C) m(8, R)y@dm@,R) | m(8,C)dm(8,C)

8 | m(16,R) m(16, R) m(16, C)

Thus, for example, C14,0 2 m (64, H) since 14 = 6 (mod 8) and C¢ ¢ > m(4, H).
Since C, s ® C1,1 =2 Cr41,5+1, if we assume that r > s, we obtain

Crs0®C11®---®Cy 1,
—_—

s factors

38 M. F. Atiyah, R. Bott, and A. Shapiro, Clifford Modules, op. cit., p. 12.

39 Cf., for example, D. Husemoller, Fibre Bundles, op. cit., p. 161.
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and furthermore C1 | >~ m(2, R)40, whence we deduce that C.; >~ Cr_; 0®@m(2°, R)
and if C,_; o is isomorphic to m(m, F), we find that C,. s ~ m(m, F) @ m(2°m, F),
which leads us to a previous case.

If we assume that r < s, the study of the nature of C, s leads to that of Cp s—,,
whence we can deduce the nature of C, in a similar way. As for the nature of C;’F o
it is sufficient to recall that according as a fundamental remark (1.2.2.e), C ;" 4> can be
realized as the Clifford algebra C(E), with E| = ut, with (u | u) = ¢ = £1 and there-
fore endowed with a quadratic form of signature (r,s — 1) if e = —1 or (s,r — 1)
ife =1.

For example, the even Clifford algebra CL is isomorphic to m(2*, H) as
4 —7 = —3 =5 (mod 8), and the Clifford algebra Cy 7 is isomorphic to m(2*, H) &
m(2*, H).

1.4.3 Real Projective Quadrics Q(E,,s)

We recall some classical results that will be developed in every detail in Chapter 2.
Let us consider again the standard pseudo-Euclidean regular space of type
(r,s), V. = E,s, withm = r +s = dimV, with its standard scalar product
(xly) = xlyl 4+ 4 x"y" — x" Lyl oo xSy in an orthogonal basis
e=1{ey,...,ep}withg(e;) = 1forl <i <randg(e;) = —1forr+1 =< j <r+s.

1.4.3.1 Definition The isotropic cone Q, minus its origin, is a differentiable singular
submanifold of V = E, ;. If P denotes the projection from V \ {0} onto its associated
projective space P(V), 0 = P(Q\{0}) is naturally provided with a pseudo-
Riemannian conformal structure of type (r — 1,5 — 1). Q = Q(Em) is called,
by definition, the standard real projective quadric of type (7, s).

1.4.3.2 Theorem (Definition) Let F = V & H, where H is the standard real hyper-
bolic plane equipped with an isotropic basis {e, n} such that2(e, n) = 1. Therefore,
F' is a standard regular pseudo-Euclidean vector space of type (r + 1,s + 1). Let
Q(F), (m + 1)-dimensional, denote its isotropic cone. M = P(Q(F)\{0}), im-
age into P(F) of the isotropic cone minus its origin of F, is m-dimensional and
called the compactification of V. = E, . M is identical to the homogeneous space
PO(F)/Sim(V),41 quotient group of PO(F) = O(r + 1,s + 1)/Z, by the group
SimV of similarities of V.

40 Directly for Cyy, there are four basis elements 1, ey, ep, and ejer with e% =1, e% =
—1,e1e0 = —ezel,(elez)2 = 1, (ejep)e; = —en, (e1ex)en = —ep. If we map 1 —

10 . (01! S (0! d th (Lo t an algeb
01 ,eq 10 ,en 10 , and then ejep 0—1 , we get an algebra

isomorphism between C11 and m(2, R).
41 1t will be shown in Chapter 2 that in fact PO(F) = O(r + 1, s + 1)/Z, can be called the
conformal group of V = E, .




30 1 Classic Groups: Clifford Algebras, Projective Quadrics, and Spin Groups

Then, we have the following statement:

1.4.3.3 Proposition There is a natural mapping from S” x §* onto the projective
quadric M = O(F) that leads to the identification of M with the quotient of the
manifold S” x S° by the equivalence relation (a, b) ~ (—a, —b), and thus S" x S* be-
comes a twotold covering space of M, connected if r and s both are different from zero.

Ifr and s are both > 2, 8" x S* is simply connected and is the universal covering
space of M, the fundamental group of which is Z.

Ifr ors = 1, 8" x S is not simply connected and the fundamental group of
M is infinite. The special case of s = 0 is studied below. Let F = V & H. Let
{e1,...,er er41, ..., €45} be the standard orthonormal basis of V and {eq, e,+1}
be a basis of H such that for any x in H, x = x%0 + x" ey, (x|x) = (x9)2% —
( xn+1)2‘

The equation of the cone Q(F) is the following

r n+1
x=0a%x" ") e Q(F) if and only if X:()c’-)2 — Z «hHr=0
i=0 I=r+1

The Euclidean sphere of radius /2 associated with the basis {eo, ..., ent1} Of F has
the following equation:

n+1
Z<x>2+ doahr=2.

I=r+1

x belongs to the intersection of Q(F) and of the sphere if and only if

r ' n+1 '
Yo=Y o) =1,
i=0 j=r+1

that is, if and only if x belongs to the product of the unit sphere S" of the stan-
dard Euclidean space E, |, with the basis {eg, . . ., e;}, by the unit sphere S* of the

standard Euclidean space Eg |, with the basis {e, 1, ..., e,4+1}. Let y be any point
belonging to Q(F) \ {0}. Necessarily ZrH (y)? = Z"J_ri+1(y1)2 =1 > 0. The

generator line to which y belongs cuts S” x S* at the two points iﬁ y. Conversely
any couple of points (a,b) € S" x §*° belongs to generator line of Q(F), which it
determines.

We have found a natural mapping from S" x S° onto the projective quadric
M = P(Q(F) \ {0}) which leads to the identification of M with the quotient of
the manifold S” x S* by the equivalence relation: (a,b) ~ (—a, —b). Therefore
S" x 8% becomes a two—fold covering of M, and is connected if r and s are both
different from zero. If r or s is equal to zero, M is not simply connected.
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Letay and ay be two orthogonal vectors of S”, and by and b, two other orthogonal
vectors of S*. Then, forany 6 € R, the point xg = (a; cos(0)+az sin(0), by cos(0) +
by sin(#)) belongs to §™ x S*.

When 6 continuously describes the segment [0, ], xy describes, in S" x S%, a
couple of half big-circles which join (ay, by) to (—ay, —by) and its image by the
projection P in M describes a continuous closed path ({xg}), with origin and end-
point P((ay, by)), which cannot be continuously deformed into a point, with keeping
fixed its origin and its endpoint. P({xg}), which is the image in P(F) of the plane
{(a1, b1), (a2, b2)}, is a projective line belonging to M, and any generator line of M
is of such a type.

If r and s are more than 2, S” x §* is simply connected and is the universal
covering of M, the fundamental group of which is Z; (any line in M is a “generator”
of the group).

Ifr ors =1, S" x S* is not simply connected and the fundamental group of M
is infinite.

Suppose s = 0. The equation of the cone Q(F) is then @2+ 4 (™2 —
(x"t12 = 0, and that of §" is (x°)2 4+ --- 4+ (x")? = 1. Let # be the mapping from
the projective quadric M onto S" defined by

~ o | ~ xO xn+1

=Y. " eM— ax = (W”W) e s".
The restriction to S™ x {1} of the projection from Q(F) \ {0} onto M and the mapping
7 are inverse to each other.

The group 7 o PO(n + 1, 1) o 7! is called by definition the Mébius group of
the sphere, in agreement with the introduction to Chapter 2. It is classically the group
of conformal isometries of S onto S" forn > 2, and is classically generated by
inversions of E, 1, which leave globally invariant S", and orthogonal symmetries of
E,+1. The conformal group of S" is strictly larger than its subgroup of isometries;
the difference of their dimensions is (”+1)2(”+2) -z ("2+ D — yi + 1. This property is
specific for the spheres. In fact, any compact Riemannian manifold, whose conformal
group is strictly larger than its subgroup of isometries is necessarily isometric to a
sphere (cf. below Chapter 2).

In a recent paper,*> Arkadiusz Jadczyk has found another way to study the con-
formal group of the sphere S". His method uses transtormers of Gilbert and Murray
and the properties of the trace in Clitford algebras to construct a two-fold covering
group Spin™ (1, n + 1)—called also Spoin by other authors—of the conformal group
of the sphere S™. His results are in complete agreement with the results given below
in Chapter 2.

42 A. Jadczyk, Quantum Fractals on n—spheres. Clifford Algebra Approach, Advances in Ap-
plied Clifford Algebra, Vol. 17 no 2, December 2006.
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1.5 Pseudoquaternionic Structures on the Space S of Spinors
for C, o»m =2k +1,r —s = =+£3 (mod 8). Embedding
of Corresponding Spin Groups SpinE, ; and Real
Projective Quadrics Q(E, ;)%

1.5.1 Quaternionic Structures on Right Vector Spaces over H
1.5.1.1 Structure of the Principal Automorphism of H

Let H be the usual R-associative algebra of real quaternions with “units™: 1, i, j, k (cf.
1.2.1 above). Let v denote the usual conjugation defined forqg = a+if+jy+ké € H
by ¢ = o —iff — jy — ké. H can be identified with the Clifford algebra Cp > (cf.
1.4.2 above).

According to the general Theorem 1.2.2.5.1 above, we know that H is a central
simple algebra over R with center R.

Furthermore, we can apply the fundamental Theorem 1.3.3.3 concerning invo-
lutions of simple central algebras to H. Then, any involution « of H is the com-
posite of the conjugation v and of an inner automorphism directed by an element
u, determined up to a nonzero factor in R, which is either v-symmetric or v-skew:
q“ :u‘lq”u withu' =uoru’= —u.Ifu’ =u,wehaveu® =u" =u.Ifu" = —u,
then u® =u" = —u.

Moreover, the principal automorphism 7 of the real Clifford algebra H is naturally
the mapping ¢ — k~'qk = —kqk since k~' = —k, according to Theorem 1.2.2.5.3

above. H = % and if eg, ey are the elements of the orthogonal basis of Eg 2

such that e% = e% = —1, the four “units” of Hare 1, e; =i,e; = j, and ejer =k,

and k = ejep belongs to the anticenter of Cp . Thus 7 is an inner automorphism
“directed” by k.

1.5.1.2 The Groups SpU (p, ¢) and SO*(2n)
1.5.1.2.1 Algebraic Remark

Let us take E, a right vector space over H with dimgE = n, with basis ¢ =

{817 LR} 8}’[}'
Let b be a sesquilinear form on E.**

43 All the main results of the following sections were given in the following paper: P. Angles,
Algebres de Clifford Cy s des espaces quadratiques pseudo-euclidiens standards E; g et
structures correspondantes sur les espaces de spineurs associés. Plongements naturels des
quadriques projectives Q(Ej ) associés aux espaces Ey s, op. cit.

4 We recall briefly that b is a mapping from E x E into H such that for any x, y, x;, y; € E
(i = 1,2), for any q € H, b(x, yq) = b(x, y)q; b(xq, y) = q"b(x, y); b(x| +x2,y) =

1) +b(x, y2). b(x,y) = (‘X)"BY, where B,

¢ for b, x, and y.




1.5 Pseudoquaternionic Structures on the Space S of Spinors 33

By restriction of the noncommutative field H to C, E naturally becomes a C-vector
space with basis &€ = {e1, ..., &4, €1, - - -, €&nj }, and an easy computation shows that
the components of b, with respect to the complex structure of E, are respectively the
complex forms & and a defined for any x, y € E by b(x,y) = h(x,y) + ja(x, ),
where a is a complex bilinear form and # is a sesquilinear form, linear in the second
argument and antilinear in the first one.

By using the fundamental Theorem 1.3.3.3 we can lead the study of H-skew
sesquilinear forms on E back to that of H-symmetric ones by changing the involu-
tion of H.

If b is H-skew for v, i.e., for any x,y € E, b(y,x) = —(b(x, y))" let us put
g(x,y) = b(y, x)k, id est b(x, y) = g(x, y)k~!. Then,

g(y,x) = b(y, )k = —((b(x, Yk = —(g(x, Nk~ )k = (g(x, y)k)"k
=k"(g(x, y)'k = —kg(x, )’k =m(g(x, )" = (wov)(g(x,y))
= (g(x, y)"

since w o v = 7 and according to 1.5.1.1. Then g is H-symmetric for the involution
7 of H.

1.5.1.2.2 The Group SpU (p, q)

Let E be a right n-dimensional vector space over H.

1.5.1.2.2.1 Definition A sesquilinear H-symmetric form denoted by { |} on E such
that for any x € E — {0}, {x | x} > 0, is called a quaternionic scalar product on E.
An easy computation shows that the components of { |} are respectively a hermi-
tian scalar product denoted by (|) and a symplectic scalar product denoted by [|].
Therefore, forany x, y € E, {x |y} = (x| y) +jlx | y].

If e = {e1,..., &,} is the standard basis of E over H, which is orthonormal for
the quaternionic scalar product, let us put

n n
X = Zsix’ and y = Zaiy’.
i=1 i=1

We put x' = & + jg" and y' = n' + jn" . We observe that for any z € C,
jz =2j, where for z = o 4+ if8, z = o — ip is the classical conjugate of z. Then

n 2n n
lyy =Y (D" =) &t Y Ent -,
i=1

k=1 i=1

b is H-symmetric (or H-hermitian) iff for any x, y € E we have b(y, x) = b(x, y)" and
thusforany x € E, b(x, x) € R, the field of real numbers. b is H-skew (or H-anti-hermitian)
%
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Thus we have the following theorem:

1.5.1.2.2.2 Definition (Theorem*®) The symplectic unitary group of degree # is, by
definition, the group consisting of automorphisms of a quaternionian right space E
over H, that leave invariant the quaternonian scalar product of E, the group law being
the classical composition. We have SpU (E) = U(E, C) N Sp(E, C).

Example:
Let H" be the classical standard n-dimensional right space over H. We put

n n n
{x|y}= Z(xi)”yi, where x = Zsixi and y = Zeiyi, e={e1,...,&n}
i=1 i=1 i=1

being the standard canonical basis.

Then we find that SpU (n) = U(2n) N Sp(2n, C), where U (2n) is the standard
unitary group of C*" and Sp(2n, C) the standard symplectic group on C**. If we
assume that E is provided with a pseudoquaternionian scalar product of type (p, q),

which can be written in an orthogonal basis ¢ = {¢1, ..., &,} as
P _ ptqg _
ey =)0 = > Gy
i=1 i=p+1

with p+¢ = n, we find again, by the same method that the pseudoquaternionic group
of type (p, g) associated with the pseudoquaternionic scalar product of type (p, q),
namely SpU (p, q) appears as

SpU(p.q) = U2p,2q) N Sp2(p + ), ©).
Since classically, U 2p, g) = SO22p, 2q)NSp[2(p+q), R], we obtain the following
result:
1.5.1.2.2.3 Proposition SpU (p,q) = SO(4p,4q) N SpQR(p +¢q),C) N Sp(4(p +
q), R).

Thus, E becomes a vector space over R, the field of real numbers, of dimension
4n = 4(p + q) over R, a basis of which over R is

{e1, ..., &n €10, ..., €l E1], .., En], €1k, ..., exk}).

46 Another proof is the following:
ueSpU(E) < Vx,yeE, {ulx)u(y)}={x]|y}

Vx,y€E, () |u)={(x]y)
and [u(x) | u(y)] =[x | y]
U(E,C) N Sp(E, C).




1.5 Pseudoquaternionic Structures on the Space S of Spinors 35

Let us consider the antilinear operator of the complex 2n-dimensional space E de-
fined for any x € E by T'(x) = xj. (The antilinearity comes from the fact that for
any x € E, (xi)j = —(xj)i.) We have clearly T2 = —1I. Conversely, the datum of
such an operator T on a complex vector space E implies that the dimension of E is
even*’ and allows us to define a quaternionian structure by putting

x-q=x@z+ji)=xz+ @ =xz+Tx) -2\
We can now formulate the following statement.

1.5.1.2.2.4 Theorem SpU (p, q) is the set of elements u € U(2p,2q) such that
uoT =T ou.SpU(p, q) is the set of elements u € Sp(2(p + q), C) such that
uol =Tou.

For this purpose, let us write first the fact that h € U(2p,2q) and that
uoT=Tou.Then, h(u(x),u(y))=h(x,y) forany x, y € E is equivalent to u €
UQ2p,2q).IfuoT =T ou,since we have classically forany x, y; h(xj, y) =a(x, y),
thena(u(x), u(y)) =hx)j, u(y)) =h(T ou(x), u(y)) =h(uoT (x), u(y)), which
implies that a(u(x), u(y)) =h(T (x), y) since u € U(2p, 2q) and therefore

a@u(x),u(y)) = h(T(x),y) = h(xj,y) =a(x,y)andu € Sp2(p +¢q), ©).

Conversely, let us assume that u € Sp(2(p + ¢),C) and that u o T = T o u.
Then, a(u(x), u(y)) = a(x, y)forany x, y € E.Thus, classically,48 h(ux),u(y)) =
—a(u(x)j,u(y)) = —a(Tou(x),u(y)) = —aoT (x),u(y)) = —a(T (x), y) since
u e SpQ(p + ¢q), C). Thus we obtain that 2 (u(x), u(y)) = —a(T(x), y) = h(x, y)
and thenu € U(2p, 2q).

1.5.1.2.3 The Group SO*(2n) as a Quaternionic Group

Let us take b an H-skew sesquilinear form on E such that b(x, y) = h(x,y) +
ja(x,y), where h is a C-skew hermitian form on the 2n-dimensional complex space
E, and a is a symmetric bilinear complex form on E. According to 1.1.5.2, we know
that there exists an orthonormal basis {&}1</<, of E such that b(g/, &) = j (“unit”
quaternion with j2 = —1). Therefore we can deduce according to another result of
J. Dieudonné*® that all nondegenerate H skew-hermitian on E are equivalent with
maximal index [%], where n is the dimension of E over H ([r] is the integer part of

47 The proof is easy and the same used for the following classical result: The study of complex
n-dimensional spaces E is identical to the study of real finite-dimensional spaces F provided

with a linear operator 7 such that [/ 2 — _I.If E denotes a complex n-dimensional space,
R E, the real associated space obtained by restriction of C to R, we have that E is identical
to RE, J).

48 Cf. R. Deheuvels, Formes quadratiques et groupes classiques, op. cit., p. 441.
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the real number r). We put

X = Xn:axl, y= Xn:slyl
I=1 I=1

with x! = g/ + jent! yl = pl + jy*+! with &' and 5’ belonging to C. We obtain that

b(x,y) = Z(& — "' +s;"+’>—2( —Elyt 4 & ’>+JZs

=1

1.5.1.2.3.1 Definition (Theorem) The unitary group of automorphisms of E that
leave b invariant is denoted by U, (E, b), which we agree to call, by definition, the
symplectoquaternionic group U, (E, b) = Uy, (h, C) N O(2n, C), where Uy, (h, C)
denotes the unitary group for the skew-hermitian complex form E.

According to a previous definition given in 1.1.3.2, the special unitary correspond-
ing group SU,,(E, b), the group consisting of elements of U, (E, b) with determinant
equal 1,isSU, (E, b) = SU7,(h, C)NSO(2n, C), and can be identified with SO* (2n),
SO*(2n) = SU, (E, D).

1.5.2 Invariant Scalar Products on Spaces S of Spinors

We want to present a general method initiated by R. Deheuvels®® for the special case
m=r-+s =4k +2,r —s = 4l 4+ 2 following another general idea of André
Weil ! The Ariadne’s thread is the following one for the case that the ground field K
is commutative.

1.5.2.1 Definition Let E be vector space over a commutative field K. By definition
we call a scalar product on E any K-symmetric or K -skew nondegenerate bilinear
form b on E.

As already said (1.1.5.2), with any K -linear operator u belonging to the algebra
Lk (E) of linear operators of £ we can associate its adjoint operator u* defined by
b(ux,y) = b(x,u*y) forany x, y in E. The adjunction, with respectto b, * : u — u*
is an involution of Lk (E).

An easy computation shows that we also have b(x, uy) = b(u*x, y). Moreover, if
A € K*, the mapping (x, y) — Ab(x, y) is another “scalar product” that determines
the same adjunction as b on Lk (E), with the same invariance group and the same
linear subspaces of symmetric operators u (such that u = u™) or skew operators (such
that u = —u™) (cf. exercises).

Conversely, one can verify that if we assume that b and &', both scalar prod-
ucts on E, have the same adjunction on Lk (E), then there exists A € K* such that
b'(x,y) = Ab(x, y) forany x, y in E.

30 R. Deheuvels, (a) Groupes conformes et algebres de Clifford, Rend. Sem. Mat. Univer.
Politecn. Torino, vol 43, 2, 1985, pp. 205-226. (b) Tenseurs et spineurs. P.U.F. Paris, 1993.
ST A. Weil, Algebras with involutions and the classical groups, Collected papers, vol. 11, pp.
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Furthermore, since the field of complex numbers C often plays an important role,
let us consider E a vector space over a commutative field L provided with an involu-
tive automorphism 7 : A — X = J(1).5% Let K be the subfield of elements i of K
such that @ = p and letbe g € L be such that 7(g) = g = —¢q # 0. Then the subset
K_ of elements z € L such that 7 = —J(X) is a vector subspace of the K-vector
space L, and we have L = K @ K_ = K @ gK (compare with Theorems 1.3.2.2
and 1.3.2.4 for involutions of algebras).

1.5.2.2 Definition By definition a hermitian scalar product respectively skew-
hermitian—relative to J on E—is any sesquilinear nondegenerate form b on E that
satisfies b(y, x) = eb(x, y)‘7 with ¢ = 1 in the case of a hermitian form and ¢ = —1
in the case of a skew-hermitian form. The corresponding adjunction * : u — u™ is an
involution of the algebra Lx (E) : (uv)* = v*u*, u™ = u, (\u)* = ru* = AT y* 53

Then we have the following result:

1.5.2.2.1 Proposition If b is a hermitian scalar product on E, then qb is a skew-
hermitian scalar product on E, where q is defined abovein 1.5.2.1, sothatqg = —q # 0.
If b is a skew-hermitian scalar product on E, then gqb is a hermitian scalar product on
E. Both b and gb have the same corresponding adjunction. The proof is immediate
and is left as a simple exercise.

1.5.2.2.2 Theorem Let E be a space over the field K, let (|) denote any nonde-
generate scalar product on E, and let * be the corresponding adjunction defined on
Lk (E). Letu be any invertible element in Lk (E). The following two statements are
equivalent to each other

(i) The inner automorphism a — u~'au of Lx (E) commutes with *.
(ii) u is a similarity of E relative to (|), i.e., there exists A € K* such that
(ux|uy) = A (x|y) forany x,y € E.

Note: Classically the statement (ii) is equivalent to (ii)’: u preserves the orthogonal-
ity id est for any x, y € E if (x]y) = 0, then (ux|uy) = 0. (cf. exercise (V) at the
end of this chapter). To prove the above theorem, let 6, be the inner automorphism
a — u"'au of L;(E). We put u = v~'. Then 6, commutes with * if and only if

(vav™h* = v a*v* = va*v~!. Then, setting f = va*v™! = a = v ¥a*v*,

we compute v¥va* = v*fv = v¥av = v'v~a*v*v = a*v*v. Thus we find
that v*va* = a*v*v. Conversely, if v*va* = a*v*v, then, with ; = a™v*v and
o) = v*va*, we have v *a*v* = v Bv! = v ! Byp*pary=! =
va*v~!, which explains the fact that 6, commutes with *.

Thus 6, commutes with * if and only if v*va® = a*v*v id est if and only if
v¥v = Al, L € K*, where I denotes the identity element of Lx (E) or, equivalently
if and only if u*u = wl, p € K*. Moreover, by definition of the adjunction *, we

have that (vx|vy) = (x|v*vy) for any x, y € E. Therefore (i) implies (ii) since if

= v

52 Since the field L is commutative, 7 is also an involution (antiautomorphism) of L.
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v¥*v = Al — that is equivalent to (i) —, then we have (ii)’: If v*v = Al,
(vx|vy) = A(x|y)and (x]y) = Oimplies that (vx|vy) = 0 and therefore (ux|uy) = 0.
Conversely, since ( | ) is nondegenerate, if, by assumption, (ux|uy) = p(x|y) and on
the other hand (ux|uy) = (x|u*uy) we find that we have: (x|Ay — u*uy) = 0 and
therefore u*u = ul with u € K*

We know that all the Clifford algebras have two fundamental involutions: the
principal antiautomorphism t and the conjugation v = 7 o T = 7 o . We can now
ask the following problem:

Do there exist scalar products on the space of spinors for which 7 and v are possi-
ble adjunctions? (One can show that such scalar products are unique up to a nonzero
scalar.)

We are going to study in detail the casem = r +s = 2k + 1,r —s = £3 (mod 8).

1.5.3 Involutions on the Real Algebra Ly (S) where S is a Quaternionic
Right Vector Space on H, with dimg$ = n

1.5.3.1 Introductory Notes

Let S be a quaternionic right space over H with dimg$ = n. According to (1.5.1.2),
we know that by changing the involution of H, if b is an H skew-hermitian form for
v the classical conjugation of H, then b is an H-hermitian form for t = m o v the
principal antiautomorphism of the Clifford algebra H = %. Thus, we are led to
the study of H-hermitian scalar products or pseudoquaternionic scalar products on
S. With such a general pseudoquaternionic scalar product » on §, we can associate
the adjunction @ — a™* in the real algebra A = Ly(S) such that (a + b)* = a* + b*,
(@*)* =a, (ab)* = b*a*, (A.1)* = 1.1, for any A € R and for any a, b € A.

The real algebra m (n, H)—isomorphic to Ly (S)—of square matrices of degree
n on the field H is provided with the structure of a right quaternionic space of di-
mension n? on H. A suitable basis for such a structure consists of the n> matrices &;/,
1 < i, j < n, such that the only nonzero coefficient of the matrix ¢;; is that of the
row i and column j, which is 1. The adjoint of A is then A* =" A, where A", is the
conjugate of A.

We are now going to show that any involution o of the real algebra Ly (S) can
be considered as the adjunction for a nondegenerate sesquilinear form on S.

If A is a central simple algebra over a commutative field K according to Wedder-
burn’s theorem,”* A is isomorphic to L (S), where S is a right vector space on the

54 We present again the result already given (1.2.2.8.1)

Wedderburn’s theorem: Let A be a simple algebra with a unit element over a commu-
tative field K, of finite dimension over K. Then A is isomorphic to an algebra of matrices
on a not necessarily commutative field T, extension of K, that contains K in its center and

is finite over K.

Thus, any simple algebra A, with a unit element, is isomorphic to the algebra of endo-
morphisms of a right vector space M over a not necessarily commutative field I', extension
of K, which means that A is isomorphic to the algebra of all square matrices of degree
Then dimg A = pzdimKF. Cf., for example,
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field I', a not necessarily commutative finite extension of K. Since there K = R, ac-
cording to a general classical result of Weierstrass and Frobenius,” I' = Cor I' = H.
According to the fundamental table of 1.4.2 (case r — s = £3 (mod 8)), for the
study of corresponding C;f 4> the corresponding field with which we are concerned is
therefore that where I' = H, the noncommutative field of quaternions.
According to previous remarks (1.2.2.8), A possesses a simple .A-module and

can be identified>® with the real algebra of linear operators of the right quaternionic
space S.
Let e = {e1, ..., &,} be an arbitrary basis of S. Such a basis determines on S a

quaternionic standard scalar product®’ and ¢ is an orthonormal basis for this standard
quaternionic scalar product. Any element a in .4 is represented by its matrix A relative
to the basis ¢, and the adjunction * is such that A* =" A", According to the fundamental
Theorem 1.3.3.3, if « is an involution of A we have for any matrix A associated with
a with obvious notations, A% = U~ '(*AY)U with'U" = U or 'U" = —U.

Moreover, if 'UY = U, then U is the matrix, in the basis &, of a nondegenerate
H-symmetric sesquilinear form that determines on S a pseudoquaternionic scalar
product, the adjunction of which is precisely «.

If U = —U, then U is the matrix, in the basis €, of a nondegenerate H -skew
sesquilinear form on S of maximal index [5], according to (1.5.1.2), the adjunction
of which is precisely «.

Furthermore, we know that in such a case, by changing the involution of H, we
are led to the first case.

Now we are going to study the following problem:

If the involution « on the central simple algebra A = Ly (S) is associated with
a pseudoquaternionic scalar product of signature (p, g), determine the signature of
such a pseudoquaternionic scalar product for which « is precisely the adjunction.

1.5.3.2 Associated Form with an Involution & on A = Ly (S)

A = Ly(S) is a real central simple algebra. Since dimgS = n, and dimgH = 4,
according to Wedderburn’s theorem (1.5.2.8.1) dimg.A = 4n>. As in a paper of André

J. P. Serre: Seminaire H. Cartan. E.N.S., 1950-1951, exposé 6-01, W. A. Benjamin Inc.
1967, New York, Amsterdam.

55 Cf., forexample, Marcel Riesz, Lecture Series, Clifford numbers and spinors: Lectures deliv-
ered, October 1957, January 1958, the institute for fluid dynamics and applied mathematics,
University of Maryland, 1957-1958, p. 21. The result of Weierstrass and Frobenius is more
general: All finite associative division algebras over the real field are isomorphic to either
the real or complex field or to the quaternion algebra.

56 For more precisions; cf. R. Deheuvels, Formes quadratiques et groupes classiques, op. cit.,
chapitre VIIIL.

57 Such a scalar product { |} is such that {¢; | ¢} = §;;, 1 <, j < n, and thus for any

n n n
xnyeS fxlyi=Y @y withx:Zsixi andy:Zaiyi.

i=1 i=1
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Weil,*8 let us consider /() the endomorphism x — ax of the underlying vector space
to A. Then Tr(I(a)) is well defined as the trace of the regular representation of A.

The trace Tr(I(a)) is invariant under all automorphisms of A, and since A is
semisimple, Tr(/(a)) is also invariant under all antiautomorphisms of A. If X is such
an antiautomorphism of A, Tr(/(x*y)) is a nondegenerate bilinear form on A x A.
Since (x*y)* = y*x**, and therefore Tr(/(x*y)) = Tr(/(y*x**), the bilinear form
(x,y) = Tr(l(x*y)) is symmetric if and only if A2 =1,1ie.,if and only if A is an
involution of A. Thus, we are led to the following definition:

1.5.3.2.1 Definition Let « be an involution of A = Ly (S). The mapping (x, y) —
Tr(/(x%y)) is a nondegenerate symmetric bilinear form on .4 called the form associ-
ated with the involution «.

1.5.3.3 Signature of the Quadratic Form x — Tr(/(x*x))
m(n, H) is a right vector space of dimension n? over H with a standard basis con-
sisting of the n? matrices gu (cf. above 1.5.3.1) (1 < u, t < n) over H and a basis &’
over R consisting of the 4n? elements {eut,s €urls €ur j, €urk} (cf. 1.5.1.2.2.3).

Let us assume that there exists on S a pseudoquaternionic scalar product of type
(p, q), the adjunction of which is @. We want to determine the signature of the
quadratic real form, defined on A = Ly (S) by x — Tr(/ (x%x)).>

We have just seen (1.5.3.1) that there exists on S a pseudoquaternionic scalar
product of signature (p, ¢) the adjunction of which is precisely «. Let us take for ¢
an orthogonal basis for such a scalar product. One can verify immediately that the
corresponding basis ¢’ is an orthogonal basis for the bilinear symmetric real form

58 A. Weil, op. cit., p. 601.

59 Let us add some supplementary remarks. Let m (n, H) be provided with its structure of a ring
and of a quaternionic right vector space of dimension n? over H. Let [ (A) : Bemn,H) —
AB; I(A) is a linear mapping from m(n, H) into m(n, H). As pointed out by J. Dieudonné
(J. Dieudonné, Les determinants sur un corps non commutatif, Bull. Soc. Math. de France,
71, 1943, pp. 27-45), one can define Tr(/(A)) = nTr A € H. Moreover, Tr(*A”) =
(Tr A)Y. Then Tr(I(" AV)) = (Tr(I(A)))".

Let us take «, an involution of A such that for any a, b € A, for any A € R, (ab)¥ =
b*a%, (a*)¥ = a, (A.1)* = A.1, for any A € R. The translation of these facts in m(n, H)
is the following: (AB)¥ = B*AY, (A%)Y = A, (A.Id)* = A.Id for any A, B € m(n, H)
and for any A € R.

In other words, « is an R-linear mapping from m(n, H) into m(n, H) and « is an anti-
automorphism for the ring structure of m(n, H). One can easily verify that Tr(l’ (A%)Y) =
Tr(I(A)). As pointed out by A. Weil (op. cit, p. 601), if A is semisimple the right-hand
and left-hand regular representations are equivalent, and then the trace is invariant un-
der all antiautomorphisms of A. Then consider the mapping A —! (A%)Y. Therefore,
Tr(I(A%)) = (Tr(I/(A)))". Thus the mapping f from m(n, H) x m(n, H) into H de-
fined by f(A, B) = Tr(l(A*B)) is such that f(B, A) = (f(A, B))”, f(A+ A',B) =

A.B)+ f(A'.B A, B+ B’ A, B)+ f(A, B))forany A, B, A’, B inm(n, H)
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(x,y) = Tr(l(x*y)). Let H = diag(«y, . .., o) be the matrix of the pseudoquater-
nionic scalar product relative to ¢, with oy, ..., > Oand apy1, ..., apg <0
with p+¢q =n. A = H-'(AY)H. If

A= Z&'jaij,
i

we find that

)\‘.
Te(l(A%A) = ) i,
L]

where |ay| = (a,‘(’lakl)l/ 2 is the classical absolute value of the quaternion ay; (for
ay = a+if+ jy + k8, lay|? = o® + B + y? + §2). Then we have obtained the
following statement:

1.5.3.1 Theorem The signature of the quadratic real form defined on Ly(S) by
A — Tr(l(A%A)) is (4(p* + g°) + 8pq). (We observe that 4(p*> + ¢*) + 8pq =
4n? = dimg Ly (S).)

1.5.4 Quaternionic Structures on the Space S of Spinors for
CHor+s=m=2k+1,r—s=£3(mod8)

We know how to get a realization of C;‘yr 4> by the choice of a vector u € E, such
that (u|u) = € = £1: we consider the Clifford algebra C(E;) with E; = u™’, E; the
standard space of type (r,s — 1) ife = —lor (s,r — 1) ife = 1.

According to the fundamental theorem (1.3.3.3), any involution « of A = C;’r P
can be written with notation in terms of matrices: AY = U~ (* A”)U with (U") = U
or (UY) = —=U.If *U") = U, then U% = ('U") = U, and if (U") = —U, then
U*=("U" =-U.

We can now specify the element U that is determined up to a nonzero scalar fac-
tor. According to Theorem 1.2.2.5.1, if we realize C;',’S as C(E1) = C(ul) such that
(u|u) =—1,wecantake J; € C r+ ; to be the product of the elements of the basis of
E; chosen, and U is proportional to 7.

If we realize C ;" yasC (ur) such that (u | u) = 1, we can take jl’ to be the product
of the elements of the basis of £ chosen, and U is proportional to 7, 1/ . We obtain the

following table:

Realization of C,':

Cuh), (ulu) = —1 Cuh), (ulu) =1
ut of type (r, s — 1) ut of type (s,r — 1)
2 _ —1 k+s—1 -.71/2 — (_1)k+s

Ji = (=D
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m=r+s=2k+1,r—s=308),k=s+14)

j12 =1 ‘71/2 -1

s even (and r odd)

Jf=~Ji, N(J) = —1 TP =-J,.NJJ) =1
Ji ¢ Spin(E) J, € Spin(Ey.;)

s odd (and r even)

JF =T, NJ) =1 TP =T, N =—1
Jh € Spin(E} ) ‘71/ ¢ Spin(E;.5)
m=r+s=2k+1,r—s=-308),k=s+24)

J2=-1 J2=1

s even (and r odd)

Jf =N NG =—1 TP =T, N(Jp =1
Ji ¢ Spin(Ey.) J, € Spin(E,.)

s odd (and r even)

Jr=—J1, N(J) = 1 J" == N(J) = —1
Ji € Spin(E, ) J) ¢ Spin(Ers)

The cases k even and k odd appear naturally. Let us take for /the involution « the
principal antiautomorphism t of C;"r s JI = Ji (respectively J," = J|) if and only
if k is even, and Jf = —J (respectively jl/ T = —._71’ ) if and only if k is odd.

1.5.4.1 Case That k Is Even

Then C;’F s 18 a central simple real algebra isomorphic to mz(ZmT_l_l, H) accord-
ing to the fundamental table (1.4.2), and the minimal module of C;f‘ . 1s the space
S of spinors associated with C,*;. (We recall that C,7; can be identified with the
real algebra Ly(S), with dimg S = 2k=1) According to Wedderburn’s theorem,
dimg C;fy = 2% = (dimg $)* x dimg H = (212 x 4.

Furthermore, we have seen that with any involution « of C ,+ o >~ Lu(S) we can
associate the bilinear symmetric real form (x, y) — Tr(/(x*y)). Since V = E, s isa
quadratic regular space of type (7, s), letus take an orthogonal basisof V: {eq, ..., e, }.
We know that the 22% elements e - e, With 1 <iy <ip <--- < iy < 2k consti-
tute a basis of C/f;.

If we take e; = e;, ---e;,, and e = e, ---ej,, both elements of this basis of
C r+ o e} .er is also an element of this basis and is a nonscalar element if / % L. In such
a case the translation /(ejey) is a permutation of the elements of this basis without
any fixed element and with trace zero.

Moreover, such a basis of C, is also an orthogonal basis for the above bilinear
symmetric real form associated with 7. e;.el = N(ey) = (ej; | €i) - (ein, | €iy).
Then Tr(I(e}.e)) = 2?N(e;) and Tr(I(e}.e;)) is positive if and only if e; contains
an even number of negative vectors of the basis of V and therefore an even number
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Moreover, if p(m), respectively i (m) denotes the number of subsets of the set
{1, ..., m} that have even cardinality, respectively odd cardinality, we have p(m) =
i(m) = 2™~ Let us assume that C;fs is realized as C(E;) with E; = u', where
| lu)y=e==x1.lfe=1,FE) =E;,_1andife; = -1, E; = E,s—1. Weput E; =
Euy m,- The number of positive vectors of the basis of C;fs = C(E1) = C(Emy,m,)
is p(mp)p(m>), and the number of negative vectors of this basis is i(m1)i(m2).
Since p(m1)p(my) = i(my)i(my), the quadratic form x — Tr(/(x"x)) is a neutral
form.

Since we have seen that the signature of this quadratic form is (4(p> +¢2), 8pq),
we find that p?> + ¢ = 2pq.ie.p=q = %dimH S =2k2 = 2”72 The pseudo-
quaternionic scalar product is also a neutral one. Furthermore, the pseudounitary
symplectic group of automorphisms of S that leave invariant this pseudoquaternionic
scalar product consists of elements u of Ly (S) =~ C;f , such that u®u = 1. We have
obtained the following theorem:

1.5.4.1.1 Theorem The space of spinors S associated with the Clifford algebras C ;" B
(r+s=2k+1,kevenandr —s = £3 (mod 8)) is provided with a natural pseudo-
quaternionic structure and a pseudoquaternionic neutral scalar product, determined
up to a nonzero scalar factor, invariant under the spin group Spin V. = Spin E, ;. For

m > 7 we have the following embedding: Spin E, ; C SpU (2%4—2, 2%4—2).

Since SpU (2”7 ~2,2"7 ~2) isembeddedinto U (2“7 ~1,2"7 1) (cf. 1.5.1.2.2.2
above), we are led to prove that in fact, Spin E,. s is embedded in SU (2 2t 2 2t ),
i.e., that all the elements of Spin E, ; have determinant = 1, as linear operators of S.
We give a general demonstration that can be applied in any case.

Any element g of Spin E, s can be written as g = ujuy - - - uj, a product of an
even number of vectors u; in E,. ¢ with N (#;) = (u; | u;) = 1 and of an even number

of vectors uj in E, s with N(u;) = (u; | uj) = —1.Since ujup = uz(uz_luluz) and
classically y; = uz_luluz € E, s with N(y1) = N(u1), we can always assume that
the elements u#; with N (u;) = —1, if they exist, are taken first in the writing of g.

Moreover, if two such elements u; are linearly dependent, by using such permu-
tations as above, we are led to a factor +1. Then, we can assume that g = u - - - uyy,
with u; two by two linearly independent, with u; such that N(u;) = —1 are taken
first, if they exist. If u; satisfy “;2 =1 = N(u;), u; is aninvolutive linear operator of §
with determinant = =£1. Then, let u; and u; be two consecutive linearly independent
vectors with N (1) = N(uz) = —1 and let P be the plane that they generate. Now,
there exists, if r > 2,z € E,gsuchthat (z | z2) =1, (z | u1) = (z | u2) = 0 and
(zu1)? = 1, (zuz)® = 1, zujzus = —ujus. Thus zu; and zus are involutive linear
operators of S with a determinant = =£1 (cf. Appendix).

Therefore, any element g of Spin E, s is the product of elements that have de-
terminant = £1. Spin E, ; is thus contained into the subgroup of the unitary group
U, 2" !

2

consisting of elements £1. But since Spin E, ; is connected
determinant 1.
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We have obtained the following result:

1.5.4.1.2 Theorem Form > 7,r +s = 2k + 1, k even, r —s = £3 (mod §8),
Spin E,, € SU(2"7 1, 2"7 1),

1.5.4.2 Case That k Is Odd

In this case, the space S of spinors for C r+ B

sesquilinear form b of index %dimH S = 2"7 2. The group of automorphisms of
S that leave b invariant consists of elements u of Cj,‘ o =~ Lu(S) such that u™u = 1.
Spin E, s is included in this group. The same demonstration as above leads to the

is provided with a nondegenerate H-skew

following conclusion: Spin E,; € SO*(2p), where p = 2mT_1_2, by showing that
all the elements of Spin E, ; have as linear operators of S determinant 1. Moreover,
SO*(2p) is naturally included in SU (p, p), as pointed out by I. Satake.®® We have
thus obtained the following result:

1.5.4.2.1 Theorem The space of spinors S for Clifford algebras CT,r +s = 2k + 1,

r,s?
r —s = %3 (mod 8), k even, is provided with a nondegenerate H-skew sesquilinear

form. Moreover, Spin E,.; C SO*(ZmT_l) - SU(ZmT_l_l, ZmT_l_l) form >17.

With r +s = 2k + 1, one can verify that one can always find a realization of C;,r P
such that for r — s = 3 (mod 8), r and k odd, and s even, there exists an operator
J| € Spin(E,) of S such that \7’% = —1. Similarly, for r —s = —3 (mod 8),
k and s odd, and r even, there exists (71 with the same properties. The above justifies,
in each case, the structure obtained: SO*.

1.5.5 Embedding of Projective Quadrics
1.5.5.1 Review of General Results®!

Let us take again the space Sy of spinors for the standard Clifford algebra C(E, g) of
a quadratic regular space (E, g). Let (|) denote the associated scalar product. Any
vector x in E is represented by a linear operator of Sy. If x is an isotropic vector, we
have x2 = 0 inside C (E, q), and then Im x C Ker x.

If x is isotropic and different from zero, as classically, one can find y, an isotropic
vector such as 2(x|y) = 1 or, equivalently, in C(E, g) such as xy + yx = 1. We
notice that

(i) (xy)? = (1 — yx)xy and (yx)? = yx,
(i) (xy)(yx) = 0 = (yx)(xy).

60 Ichiro Satake: Algebraic structures of symmetric domains, op. cit., p. 278.

61 The method has been initiated for the case r — s = 2 (mod 4), r and s even, which is
equivalenttom = r +s = 4k + 2 and r — s = 4/ 4 2, by R. Deheuvels, Rend. Sem. Mat.
p. 205-226.
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The two supplementary idempotents (xy) and (yx) depend only on the hyperbolic
oriented plane H = {x, y}. Any orthogonal symmetry of H interchanges them. They
both belong to CT(E, ¢) and are represented in any space on which CT(E, ¢) oper-
ates, in Sp for example, by two supplementary projections.

Let x” and y’ be two other isotropic vectors such that 2(x’|y") = 1, which generate
the hyperbolic plane H' assumed different from H. At least one of the vectors x, y,
for example x, does not belong to H’. The two decompositions of the unit element
associated with H and H', 1 = xy+yx = x'y’+y'x’, are therefore different. If xy =
x'y" we have xx'y’ = 0in C(E, g) and if xy = y’x’ we have xy'x’ = 0in C(E, q).

Classically, we know that the product of three linearly independent vectors of
E is always different from zero in C(E, g). Moreover, in Sy, if s € Ker x, we have
s = (xy+yx)s = (xy)s € Im x. Therefore we obtain that Im x = Kerx = Im(xy) =
Ker(xy) is a linear subspace of dimension %dim Si.

Let us now consider the space S of spinors for C*(E, ¢), which is a subspace
(proper or not) of S, invariant under the action of C*(E, ¢). Let us denote by (xy)s,
respectively (yx)g, the respective projections of S defined by the respective ele-
ments (xy) and (yx) in CT(E, g). Then, we put S(x) = Im (xy)s = Ker ((yx)s) =
(Imx) NS = (Kerx)NS.Forany A # 0, S(Ax) = S(x).

Let { | } be a scalar product on S associated with the involution 7, i.e., such that for
any a € C*(E, q) the linear operators that represent respectively a and a® in S are
adjoint to each other with respect to { | }. We have (xy)* = (yx) and (yx)* = (xy).
Therefore, for any s, ¢ in S, {(x, y)s | (xy)t} = {s | (yx)(xy)t} = 0. The subspace
S(x) = Im(xy)s is totally isotropic for { | }. Since S = Im(xy)s ®Im(yx)s is a direct
sum, S = S(x) @ S(y) is a direct sum of two totally isotropic subspaces; then these
subspaces are maximal totally isotropic both of dimension %dim S. Such a demon-
stration shows that the scalar product { | } is necessarily neutral if there exist isotropic
nonzero vectors in E.

If x and x’ are two isotropic vectors of E that generate a regular plane, the results
above show that we have § = S(x) & S(y) and then S(x) N S(y) = 0, and moreover,
S(x) is different from S(y). Furthermore, if x and x" are two linearly independent
isotropic vectors that generate a totally isotropic plane, there exist classically®? two
isotropic vectors y and y’ that generate a totally isotropic plane orthogonal to {x, x’}
suchthat xy+yx = 1 = x'y +y'x’, whilexy'+y'x = x'y+yx' =0 = xx’'+x'x =
yy' +y'y. Weput p = (xy)s, ¢ = (yx)s, p' = (x'Y)s, ¢ = (y'x")s. We can now
deduce the following obvious results: pg’ = ¢'p, p'q = qp’, pp' = p'p. 99’ = ¢'q.
If we assume S(x) = S(x'), i.e., Im p = Im p’, then ¢’p = 0 and gp’ = 0, whence
p=p(p'+q)=pp =p'p=p andthen ¢ = q’, and since CT(E, g) C L(S),
xy = x'y"and yx = y'x’, acontradictory result. Thus we have obtained the following:

1.5.5.1.1 Theorem The mapping

{isotropic line K x of E} — maximal totally isotropic subspace S(x) of (S, {|})

62 Cf., for example, C. Chevalley, The Algebraic Theory of Spinors, op. cit., or R. Deheuvels,

op. cit.
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in injective and realizes a natural embedding of Q(E), the projective quadric associ-
ated with E, into the Grassmannian G (S, %dim S) of subspaces of S of dimension =

dim S.

Now we are going to specify such an embedding in the case that E = E, is a
pseudo-Euclidean space of type (r, s) withm =dim E =r+s =2k+1,r—s = £3
(mod 8).

1.5.5.2 Case That k Is Even

We know that there exists on S a pseudoquaternionic neutral scalar product of type
(p, p) with p = Ldimg § = 2k-2 = ZmT_l_z, associated with the involution t and
CT(E,q) ~ Lu(S). Asis known,® the Grassmannian of maximal totally isotropic
subspaces of dimension k, denoted here by G (S), of S a right vector space of di-
mension n = p + g, over H, provided with a pseudoquaternionic scalar product of
type (p, g) is homeomorphic to (SpU (p) x SpU(q))/(SpU (k) x SpU(p — k)x
SpU(q — k)). Then we obtain here that G(S, %dim S) is homeomorphic to
SpU (%dimH S), whence we deduce the following result:

1.5.5.2.1 Theorem Form >7,m =r +s =2k + 1,k even,r —s = £3 (mod §),
the projective quadric Q(E,, s) 18 naturally embedded into SpU (ZMT_I_z).

The set of subspaces of S that are positive maximal and then of dimension
%dimH S = 2k2 jsan open set of the Grassmannian G (S, % dim S), which® we
agree to call the semi-Grassmannian of (S, {|}) and which we denote by G(S).
Gy gS) is the classical simply connected symmetric space of type CII in Elie Cartan’s
list,%

SpU (2K2, 2572y /spU (2F72) x spU (22,

and Q(Er,s) is embedded into the “boundary” of G (S) in G(S, PARESY

G+ (S) can be identified with the symmetric space of involutions of Lg(S) =~
C*(r, s) that commute with T : ot = ta and that are strictly positive, which by defi-
nition® means that the real corresponding quadratic form on C*(r, s), Tr(l(x%x)),
is positive definite. As a matter of fact, if « is an involution, there exists (Theorem
1.3.3.3) an element u € Ly (S) determined up to a nonzero scalar factor such that

63 Cf., for example. I. R. Porteus, op. cit., p. 237, Theorem 12-19 and p. 350, Proposition
17-46.

64 R, Deheuvels, Rend. Sem. Mat. Univers. Politecn. Torino, op. cit.

65 Cf., for example, S. Helgason, Differential Geometry and Symmetric Spaces, op. cit., or
J. A. Wolf, Spaces of Constant Curvature, op. cit.

06 Cf A, Weil, op. cit.; I. Satake, op. cit.; R. Deheuvels, op. cit.
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1. a* = u"'au, for any a in Lg(S),
2. ut =u* =u.

Now, ot = ta implies that u> = A.1, with A a real number since (u?)* = A.1 =
u?> = A.1. Since u? = u®u and since « is a positive involution, A is a positive real
number. Replacing u by A~ !/?u, we obtain an involutive element u € Lg(S) such
that u™ = u® = u (with u? = 1), associated with the involution & of L (5).

An associated scalar product [ | ] on S is given by [x|y] = {ux|y}, corresponding
to the involution «. The eigenspace of u for the eigenvalue 1 is then a maximal strictly
positive subspace P, of (S, {|}), since for any nonzero element x in P, we have

{x|x} = {ux|x} = [x]|x] > 0.

Then P, is an element of G (S). Conversely, the datum of such a subspace P de-
termines its orthogonal Q, which is maximal and strictly negative. P and Q are, in
fact, the eigenspaces relative to the eigenvalues 1 and —1 of an involutive element «

of Ly (S), which determines a strictly positive involution « by putting for any x in S,

x% = xT® with et = ta. We recall that as usual, we put for any x, xIW = y=xy

such that j(u)j(v) = j(uv).

1.5.5.3 Case There k Is Odd

If k is odd, we know (1.5.1.2.3) that there exists on S a nondegenerate H-skew
sesquilinear form b on S of maximal index 27 ~2, and the corresponding special
m—1

T)‘67

unitary group SU ol = SO*(2 It is known®® that the Grassmannian of

. . . . . m=1_
maximal totally isotropic subspaces of dimension 2°2 2 of the complex vector

space S provided with the skew-hermitian form / is homeomorphic to U (2mT_1_1)
and according to results recalled by Porteous®® the Grassmannian of maximal totally

. . . . m_1_ . .
isotropic subspaces of dimension 22" ~2 of the complex vector space S provided with

the symmetric complex bilinear form a is homeomorphic to 0(2%1) /U (2%4’1).
Thus we can deduce that the Grassmannian of maximal totally isotropic subspaces of

dimension 2”7 ~2 of the quaternionic right vector space S provided with the form b
is homeomorphic to O (2%). Then we have the following result:

1.5.5.3.1 Theorem Form >7,m =r +s =2k + 1,k odd, r —s = 3 (mod 8),
the projective quadric Q(Er,s) is naturally embedded into O (Zm%l ).

m—1 m—1
67 The unitary group of b is UzmTq C,hynoR2 2 ,0C,n=dimg S = 2 71

68 1 R, Porteus, op. cit., Theorem 12-12 p. 233, and Proposition 17-46, p. 350.
%9 Ibid., Theorem 12-19, p. 237.
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1.6 Real Structures on the Space S of Spinors for C;',' om=2k+1,

r —s = £1 (mod 8). Embedding of Corresponding
Spin Groups and Associated Real Projective Quadrics

1.6.1 Involutions of the Real Algebra L (S), where S is a Real Space
over R of Even Dimension

1.6.1.1 Introductory Notes

Let S be a real vector space of even dimension n. Let b be a pseudo-Euclidean or
symplectic scalar product on S. We know, (1.1.5.2), that we can define the adjunction
x in LR (S)—relative to b—such that for any a, b in LR (S), for any X in R, we have

(a +b)* =a* +b*, (ab)* =b*a*, 0W)* =Al, (a®)* =a.

Now we want to show that any involution « of the real algebra Lgr(S) can be con-
sidered as the adjunction relative to a nondegenerate real symmetric or skew bilinear
form on S.

Lete = {1, ..., &,} be an arbitrary basis of S. Such a basis determines a pseudo-
Euclidean scalar product on S, according to which ¢ is an orthonormal basis. Any
element a in LR (S) = A is represented by its matrix A in &, and the adjunction * is
such that A* =" A.

If « is an involution of A, according to 1.3.3.3, « can be written as A% =
U ''A)U with'U = U or'U = —U.If'U = U, then 'U = U% = U and if
'U = —U, then'U = U% = —U. U is determined up to a nonzero scalar factor
and represents in the basis € the matrix of a nondegenerate bilinear form, symmetric
(respectively skew) if 'U = U (respectively U = —U), the adjunction of which is
precisely «.

It is well known that a real symplectic vector space, the scalar product of which is
denoted by [ | ], is provided with a pseudo-Euclidean structure, the scalar product of
which is denoted by (| ), if and only if there exists a transfer symplectic operator 7T,
with 72 = —1. § is then provided with a pseudo-hermitian structure, the scalar prod-
uctof whichisdenoted by (| ) andforany x, y € Swehave (x | y) = (x | y)—i[x | y]
with (x | y) = —[Tx | y], or, equivalently, [x | y] = (Tx | y). T is an orthogonal
and symplectic operator.”® Therefore we find that, as usual,

U(p,q) =S02p,2q)NSp2(p +q),R).

1.6.1.2 Properties of the Trace

Then the problem that appears is the following one: Since in 1.5.3, the form
(x,y) — Tr(I{(x*y) is a nondegenerate symmetric bilinear form associated with
the involution « of A. Mutatis, mutandis, the demonstration is the same. Let &’ be

70 Cf., for example, R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit., pp.
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the basis of Lg(S) associated with the basis ¢ of S, &/ = {eij, 1 < i, j < n}, where
¢ij is the linear operator on S, the matrix of which in ¢ has all elements equal to zero
except for that row i and column j, which is equal to 1.

If we choose an orthogonal basis ¢ for the pseudo-Euclidean scalar producton S, &’
is an orthogonal basis for the bilinear form Tr(/(x*y) on A. If H = diag(Ay, ..., A,)
is the matrix of the pseudo-Euclidean scalar product in & with A1, ..., 1, > 0 and
Aptls.oshprg < 0 (p+ g = n), we find easily that X* = H '('X)H, and if
X = [x;;], we find that

Tr(((X*X) =) A—;m-n :

and that the signature of the quadratic form X — Tr(I(X“X) on Ais (p>+¢2, 2pq).

1.6.2 Real Symplectic or Pseudo-Euclidean Structures on the Space S
of Spinors for CY ,m =r +s =2k +1,r —s = £1 (mod 8)

rys?
Now, according to the fundamental table (1.4.2), CT (r, s) >~ LR(S), where dimg S =

2" Following the method used in 1.5 and according to the results above (1.6.1),
AT = U1 AU with'U = U" = U or'U = U™ = —U, where U is determined
up to a nonzero scalar. As in 1.5, U is proportional to 1, the product of the elements
of a basis of E| = u=, where u is a vector of E, s such that (u | u) = 1 and E| is
a pseudo-Euclidean space E, ;1 if (u | u) = —lor E ,—1,if (u | u) = 1; Ct(r,s)
is then represented as the Clifford algebra C(u"). We obtain the following table:

Realization of C}}:
Cuh), (u|u)=-1 Cuh), w|u=1
E; =ut of type (r,s — 1) E; =ut of type (s,r — 1)
J1 product of the elements of 7] product of the elements of

the chosen basis of E| the chosen basis of E|
$2 — (_1)k+s—1 \71’2 — (_1)k+s
m=r+s=2k+1,r—s=1+48lk =s (mod4)
JE=-1 J2=-1
s even
Jf =T N = -1 T =T NI =1
J1 ¢ Spin(Ey. ) ‘71/ € Spin(E; )
s odd
I =-J.NJ) =1 TP =-TJ.NJ) =—1
J1 € Spin(E, r) J| ¢ Spin(E, r)

m=r+s=2k+1,r—s=-14+8l,k=s—1(mod4)
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s even

T =-T.NJ) =1 J*=-T.NJI) =1
Jh ¢ Spin(E;.5) jl/ € Spin(Ey,s)

s odd

JE=T.NT) =1 TP =T NJT) =-1
Ji € Spin(Er,s) ‘71/ ¢ Spin(Er,s)

We deduce the following result:

1.6.2.1 Theorem The space S of spinors associated with the Clifford algebras C;‘: o
withm =r +5s =2k+1,r —s = £1 (mod 8), possesses a natural real pseudo-
Euclidean or symplectic structure according as k is even or odd, the scalar product
of which is invariant by the spin group Spin E, ;. For m > 7 we have the embedding
of Spin E, s into SO(p, p) or Sp(2p, R) with p = 21 = k- according as k is
even or odd.

The dichotomy k even or k odd results from the fact that J = J; (or J, 1/ =7,
respectively jf = -7 (or Jl/f = —jl’ ), according as k is even or odd, which de-
termines the choice of the pseudo-Euclidean, respectively symplectic, scalar product
on S.

1.6.2.1 The Case of k Even

If k is even, the same technique as in 1.5 shows that the quadratic form defined on
CT(r,s) = LRr(S) is neutral and that S is a pseudo-Euclidean neutral vector space
of type (ZMT_I_I, ZmT_l_l). The unitary group of automorphisms of S that leave this
scalar product invariant consists of elements u € C¥(r, s) such that u*u = 1 and
thus contains Spin E, ;. Moreover, we want to show that Spin E. ; is embedded into
SO(ZmT_l_l, ZMT_I_I), for m > 7, i.e., that the elements of Spin E, ; have a determi-
nant equal to 1, as linear operators of S.

Ifr —s = 1+48l, s is even, and u is such that (u | ) = —1, we can take again
the above demonstration of 1.5 for the case » — s = £3 (mod 8), which shows that
any element g in Spin E,  is the product of elements that have determinant equal to
+11in S. Spin E,.; is then embedded into the subgroup of O (2~1, 2=1) consisting
of elements with determinant equal to &1 in S, but according to the connectedness of
Spin E, ; all these elements necessarily have determinant equal to 1. If (u | u) =1
we again use the same method.

Ifr —s = —1+8l, s is odd, and if u is such that (u|u) = —1, we can also take
the following route. Since m is odd, J = ey ... e, belongs to the center of C, ; and

J? = (=K = —1. Let us take a vector u; such that u% = —1.Then (Ju;)? =1,
Ju1 is an involution of S, and then has determinant equal to +1.
If u; and v belongto V = E, g, then Ju1Jv) = w1 J*v; = —uqvy, whence we

can deduce thatany element g of Spin E, ; is a product of elements with determinant =
+1 in S and the connectedness of Spin V yields the result. If (# | u) = 1, we take the
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1.6.2.2 The Case of k Odd

(b) If k is odd, the symplectic structure comes naturally.

1.6.2.3 Remark According to the table above (1.6.2), we can always find a realization
of CT(r, s) such that J; or Jl’ is in the symplectic case an element of Spin E, ;, the
square of which is equal to —1, and thus a symplectic automorphism of S with square
equalto —1.If r —s = 1+ 8/ and s is odd, this elementis [J;. If r —s = —1+ 8/ and
s is even, this element is 7]. [J; (respectively 7}) is a transfer operator that provides
S with a pseudo-Euclidean neutral structure associated with the symplectic structure
(the neutrality of the structure can be shown as in 1.5.3).

Furthermore, J; belongs to the anticenter of a Clifford algebra C,,—; of a
vector space of precise dimension 2k = r + s — 1 and 7| belongs to the anti-
center of a Clifford algebra Cs ,_1 of a vector space of dimension 2k. Thus, [J
and J] commute with any element in Spin V. Then, the pseudo-Euclidean scalar
product ¢ classically defined for any x, y in S by e(x,y) = —[J1x | y], respec-
tively e(x, y) = —[._7{x | ], is such that for any g in Spin V, for any x, y in S,
e(gx, gy) = —[Jigx | gyl = —[gJix | gyl = —[J1x | y] = e(x, ), since g is
in Spin V and leaves [ | ] invariant (and the same is true with jl/ ). Thus, if k is odd
andr —s =1+ 8/ (s odd) and if k is odd and r — s = —1 + 8/ (s even), Spin V is
embedded into SU (2"_2, 2k _2), for m > 7, which is a refinement of the result above.

1.6.3 Embedding of Corresponding Projective Quadrics

We obtain the following result:

1.6.3.1 T!leorem Form >7,m =r+s = 2k+1,r—s = +1 (mod 8), the projective
quadric Q(E,.;) is embedded into the group O (2K~1) ifk is even and into the group
U210 2% 1) and even into U (2K~ if k is odd.

The embedding can be made asin 1.5.5. If k is even we know’! that the Grassmann-
ian Gy (S) of a totally isotropic subspaces of dimension k’ of the pseudo-Euclidean
space S of type (p, ¢) is homeomorphic to (O(p) x O(p))/(Ok') x O(p — k')x
O(q — k’)), which gives a homeomorphism of G(S, %dim $) with O (2k—1) (with
notation of 1.5.5). If k is odd, we know’? that the Grassmannian G(S, 1dim )
is homeomorphic to U (25170 (@2*1) and even in U2k 1) according to the re-
mark of 1.6.2.3 above. If k is even, the same approach as in 1.5.5 shows that the
set of subspaces of S that are maximal and strictly positive, and thus of dimension
2k=1 s an open set of the Grassmannian G (S, 2k_1) called, by definition, the semi-
Grassmannian of (S, (|) and denoted by G (S). G4 (S) is the classical symmetric
space SOT(2k=1 2k=1y /50251 x SO(2%~1) of type BDI in Elie Cartan’s list.”?

71 For example, L. R. Porteous, op. cit., p. 237 and p. 350.
72 Ibid., p. 233.
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Asin 1.5.5, G4+ (S) can be identified with the symmetric space of involutions « of
C™(r, s) that commute with 7 and that are strictly positive. If k is odd, according to the
existence of the pseudo-Euclidean structure associated with the symplectic structure,
we obtain analogous conclusions with respect to a previous remark (1.6.2.3).

1.7 Study of the Cases r — s = 0 (mod 8) and r — s = 4 (mod 8)

According to the fundamental table (1.4.2),ifr —s = 0 (mod 8) C T (r, s) is a semisim-
ple algebra, isomorphic to the direct sum of two algebras isomorphic to m (2@ ,R),
andifr —s = 4 (mod 8), CT (r, 5) is isomorphic to the direct sum of two algebras iso-

morphic to m(Z@_l, H). Now,”* if m is even and m = 2 (mod 4), t interchanges
the two simple components of CT(r, s), and if m = 0 (mod 4), T leaves invariant
each of the two components of C*(r, s) and induces on each of them an involution
of the first type,”” i.e., fixes all elements in the center of the algebra. Let us put for the
algebra A, Pr(A) = {x,x € A| x" =x}, J:(A) = {x,x € A| x" = —x}, spaces
of even elements, respectively odd elements, for the involution 7 of the algebra A. We
recall that for any element e; = e;; e, (1 <iy <ip <---<ip < m)of the basis
of C, s associated with the basis {e;}1<;<m of E,; we have ¢}, = (=)PP=D/2¢
One easily verify that

P‘L’ (Cr,s) = @Cp(Er,s) jr (Cr,s) = @Cp(Er,s)
p=0orl (mod4) p =2or3(mod4)

P‘l.' (C;":S) = ®Cp(Er,s) jr(c;tv) = @Cp(Er,s)
p =0 (mod 4) p =2 (mod4)

where as usual, C,(E, ) denotes the subspace of p-vectors of Er,s.76 Accord-
ing to Weil,”” if (x,y) — Tr((x7y)) is the nondegenerate symmetric bilinear
form defined on C,7;, C/f; is the direct orthogonal sum of P:(C,%) and J;(C,})):
Cl = P(CY) & J:(C}ty). We are going to use classical results concerning the

structure of Clifford algebras.”®

1.7.1 Study of the Case r — s = 0 (mod 8)

The even Clifford algebra C;f , for a standard pseudo-Euclidean space E, s, m =
r+s =2k, r —s = 0 (mod 8) is the direct sum of two simple algebras C; and C»

74 1. Satake, op. cit., p. 281.

75 Ibid., p. 268.

76 Cf., for example, R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit.,
p. 327.

LN Weil, op. cit. lemma 1, p. 603.

78 Cf. R. Deheuvels, Formes Quadratiques et Groupes Classiques, chapter VII (“theorem

334, chapters VIII-13 and VIII-14).
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isomorphic to its even subalgebra (C;f) ", isomorphic itself to m (2=, R) according
to the fundamental table (1.4.2).7°

More precisely, C;f; = C; @ Ca with C; = (Cf)Te1, C2 = (C/F))Tea, where
&1 = %(1 +J1), 6 = %(1 —J1), if we denote by J; the product of the elements of the
basis of ut = E;, chosen for the realization of C;’F S,SO withey +6y = 1,160 = 0.
Cy and C, are both two-sided ideals of C;'Yr ;- Now let us consider S, the space of
spinors for C ;" ,» the minimal faithful module, defined up to an isomorphism, of the
algebra C;. According to Deheuvels,?! since Cf; is semisimple, S is a direct sum of
two nonisomorphic submodules, spaces of spinors called semispinors, S = S1 @ S».
We obtain the following table:

m=r+s =2k, r—s=28Il, k=s(mod4);

Realization of C,';:

C(E1) = C(u") C(E)) = C(u')

(ulu)=—1,C(E) =C(Ers-1) (ulu)y=1,C(E) = C(Esr-1)

J1 product of the elements of J{ product of the elements of
the chosen basis of £ = ut the chosen basis of £ = u"

Ji =D g0 = D TP =D g = D
1.7.1.1 k even (r and s even), m = 0 (mod 4)

TJ=LJF=-J. NJ) = —1 Jr=17"=-J.NJ) = -1

gt =3 g =3,
Let us write the two-sided ideals C; and C; of C;f o
C1 = (C)Ter, respectively (C,F)"e],
C2 = (CH) T2, respectively (C;F) e
with

1
&i orelf:E 1:|:‘71 fori =1,2.
VAt

79 An elementary calculation shows that if we realize C;'f sasCrg_1, (C;’" o) T realized as Crs—2
or Cy_1 1, in both cases (C;fx)+ is isomorphic to m(2k=1 R), and if we realize C;t's as
Cy.r—1, (C)* realized as Cy 5 or C,_y 1, in both cases (C,/5)T is isomorphic to
m(2k=1 R).

80 Cf. R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit., “théoreme VIII-8,”
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We know that 7 leaves invariant C; and C,. We are going to use classical results
concerning faithful representations of semisimple algebras.®?> We put S| as a C-
simple module, S; as C>-simple module, and for j # i, (i, j = 1,2), C;S; = 0, and
S; is isomorphic as a C;-simple module, with a simple left ideal of C: H; = C;e;,
where ¢; is an idempotent of H;. C| is a central simple algebra, the C-simple module
of which is S1, and Cy can be identified with the real algebra Lr(S) >~ m(2k_1, R),
to which the results of 1.6 can be applied.

Let t be chosen for involution of Cy. Let ¢! = {83}15,' <n (n = dimg S7) be an
arbitrary basis of Sj. This basis determines on S; a standard Euclidean scalar prod-
uct, according to which el is an orthogonal basis. Any element of C; = Lg(S1)
is represented by its matrix in e!, and the corresponding adjunction # is such that
A* = '"A Asin 1.6, A" = U™'(A)U with'U = U or'U = —U.If'U = U,
then ‘U = U? = U, and if 'U = —U, then ‘U = U* = —U. The element U
that conducts the inner automorphism is determined up to a nonzero scalar factor, as
above (1.6), and is proportional to Ji (or T, 1/ ), the product of the elements of the basis
chosen for the realization of (C;’r )T isomorphic to C;. Now we have jf = -7,

respectively jl/ T = —jl’ , and then U determines on S| a symplectic scalar product
the adjunction of which is 7. Moreover, the nondegenerate symmetric bilinear form
(x,y) = Tr(l(x"y)) defined on C is a neutral form. The demonstration is the same
as in 1.6 and can be also made for C» and S,.

Furthermore, S = S @ S> is provided with a symplectic scalar product defined
forany z = z1+z2 (withz; € S; fori = 1,2),7 = 2} +z) (withz] € S; fori = 1,2),
by [z | 2] = [z1 | 2}]1+ [z2 | Z5]. Since any element g € Spin(E, ;) can be written
g=g1+g.8 € Ci, g € Cy,and since g» - S; = 0 and g1.52 = 0, and since
the group of automorphisms of S; (respectively Sz) leaving invariant the symplectic
scalar product consists of elements « in C;7 such that u™u = 1, we can deduce that
Spin(E,.) is included in Sp(2p, R) with p = 2=, Asin 1.6, we have the following
embedding of O (E +.s), the corresponding projective quadric, into U (2=1) /0 (2K 1).
Thus, we have the following results:

1.7.1.1.1 Theorem Form > 8,r —s = 0 (mod 8), m = r +s = 2k, k even
(r and s eveg) and then m = 0 (mod 4). Spin(E, 5) is embedded into Sp(2p, R) with
p =2k O(E, ) is embedded into U (2¥~1)/ 0 (2~ 1).

1.7.1.1.2 Fundamental Remark

Since k is even, r and s even, we can always find a realization of (C;’r S)+: Cys—2,0r
respectively Cs, »—2, such that for jl, respectively for j 1/ , we have jlz = —1, respec-
tively j 1/ 2 — —1. Moreover, j 1 and j 1’ , since the dimension is even, both belong to the

anticenter of (C,f;)" and then commute with even elements in (C,},)*. Since we have
the above decomposition g = g1 + g2 (g; € C;, fori = 1, 2) for any g in Spin(E, ),

82 Cf., for example, R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit.,
“proposition VIII-13-C” p. 341, “théoreme VIII-13-E” p. 343, “théoréeme VIII-4-A” pp.
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we can deduce on S as on S, the existence of a “structure of type SO(py, p1),” and
consequently, Spin V is embedded into SU (2¥=1, 25— 1), following the same route as
in 1.6 and using a consideration of determinant equal to 1. Therefore, as in 1.6, the
corresponding projective quadric O(E r.s) 1s embedded into U Q1 for k > 4.

1.7.1.2 kodd (r and s odd) m = 2 k = 2 (mod 4)
We obtain with the above notation

T =0 NT) =Tt =1, =T NJI)=1=7J2
Jr = Jr=J.

We know that t interchanges C and C», the two simple components of C j‘ 5> since
m = 2 (mod 4).83

Moreover, C; and C, are orthogonal for the real symmetric bilinear form:
(x,y) — Tr(I(x"y)). In the first case, case of Ji, we now have (1 + 7)) = 1+ 74,
(1 —=J)" =1—J1,andsince (1 + 7)) (1 — J)* = (1 + J1)(1 = J1) = 0 since
JE=1ifx = (1 +TaeCi,y =41 —T)b e Ca, we find that x7y = 0. The
same can be done in the case \71/ .

According to classical results concerning faithful representations of semisimple
algebras84 already given, S is a C|-simple module, S, is a C>-simple module, and if
J#i(,j=1,2),C;.S; =0and S; is isomorphic to a left simple ideal H; = C;é¢;
of C;—where ¢; is an idempotent of H;, fori = 1, 2—according to its structure as a
C;-module.

Asin the above case 1.7.1.1, C is a central simple algebra, the C;-simple module
of which is S, and Cy can be identified with Lg(S;) = m(2k_l , R). With previous
notation, any element of C; is represented by its matrix in &', an arbitrary basis of
Sy, and AT = U‘l(’A)U now with U = U = U, and U is proportional to jl,
respectively to jl’ . S1 is then provided with a pseudo-Euclidean scalar product. As in
1.6 above, if (p, g) denotes the signature of such a pseudo-Euclidean scalar product
defined on S;, we verify that the signature of the quadratic form X — Tr(I[(X* X))
defined on Cy is (p? + g2, 2pq), and the same approach as in 1.6.5 shows that such
a quadratic form is a neutral one. Therefore, the pseudo-Euclidean scalar product
defined on S is also a neutral one.

The same is true for C> and S>. S = S1 & 7 is then provided with a pseudo-
Euclidean neutral scalar product defined for any z = z; + z2, 7/ = z/l + z/z, where
z; and z} belong to S; fori = 1,2,by (z | 2') = (z1 | 2}) + (z2 | 25). Asin 1.7.1.1
above, we can write g € Spin(E,5) as g = g1 + g2 with g; € C; fori = 1,2; and
for j #i wehave g;S; =0(, j =1,2).

Since the group of automorphisms of Sp, respectively S», that leave invariant
this pseudo-Euclidean neutral scalar product consists of elements u in C,T , such that

831, Satake, op. cit.
84 Cf., for example, R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit.,
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u'u = 1, using the same route as in 1.5 we show easily that any element in Spin(E ;)
is a product of elements with determinant equal to =1 in Sy, respectively S, and for a
reason of connectedness, all these elements have necessarily determinant equal to 1.
Thus, Spin(E, ) is included into SO(p1, p2) with p| = 2k=1 and the corresponding
projective quadricQ(Er, s) 1s embedded into 0(2"_1) (for m > 8). We have then
obtained the following result:

1.7.1.2.1 Theorem Form > 8,m = r+s = 2k, k odd (r and s Qdd), m = 2 (mod4),
Spin(E,.s) is embedded into SO(py, p1) with p; = 2¥=1, and Q(E, ) is embedded
into 0 (21,

1.7.2 Study of the Case r — s =4 (mod 8)

According to the fundamental table (1.4.2), the Clifford algebra C;'Yr , in the case
m=r+s =2k, r—s =4 (mod 8) is the direct sum of two simple algebras, both
isomorphic toits even subalgebra (C,"’r )T andalsoisomorphic tom (2¥=2, H). With the
same notation as above, C,; = C1 @& C2, C1 = (C) e, Co = (C)Ter. Let S be
the space of spinors for C;f , asemisimple minimal faithful module over C,Jf 4> the direct
sum of two simple nonisomorphic submodules S; and S,. We have the following table:

m=r+s=2k,r—s=4+8l,k=s+2 (mod4)
Realization of C,7: C(E, ;1) Gl C(Eg 1)

Er,s—l =E; = ut Es,r—l =E = ut

J1 product of the elements of J| product of the elements of
the chosen basis of ut the chosen basis of u+

T =D =0 a I = G0 g = 0L

jl product of the elements of the j{ product of the elements of the
chosen basis for the realization of chosen basis for the realization of
(€t (C)F

Ji =D JiT =g

1.7.2.1 k Even, r and s Even, m = 0 (mod 4)

Therouteisthe sameasin 1.7.1.1. Cy is a central simple algebra the C1-simple module
of which is Sy, and C; can be identified with the real algebra Lr (S1) ~ m(2¥=2), H)
for which previous results (1.5) can be applied. C is identified with the real algebra of
linear operators of the quaternionic right vector space S;. We choose t for involution
of Cy. Lete! = {81.1}15,'5,1, n = dimg($)) = 2%=2 be an arbitrary basis of Sy. This
basis determines on S; a quaternionic scalar product for which ¢! is an orthogonal
basis. Any element a in Cj is represented by its matrix in !, and the corresponding
ation as above (1.5), A* = AY. Asin 1.5,
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AT = UV (AU with'U = U or'UY = —U.If'UY = U, then'U" = U = U,
and if 'UY = —U, then'U" = U = —U.

The element U that conducts the inner automorphism is proportional to T
respectively jl/ . Since now we have J; = —J;, respectively Je = —jl/ , U de-
termines on S; a nondegenerate H-skew sesquilinear form on S;, of maximal in-
dex [5]. Furthermore, the nondegenerate real symmetric corresponding bilinear form
(x,y) = Tr(I(x"y)) defined on C| is a neutral one, using the same approach asin 1.5.
The same is true for C; and S,, where we find that S = S; @ S, is provided with a non-
degenerate H-skew sesquilinear form b defined by b(z, z') = b1(z1, 2}) + b2(22, 25),
where z = z1 4+ 22,7 = 2| + 2}, zi and 2/ in S;, i = 1,2, and b; is the restriction
to S; of the above sesquilinear form. As in 1.7.1 we find that Spin(E, ;) is embedded
into Uy, (S, b) and even in SU,, (S, b) = SO*(2n), with n; = dimg S = 2F1,
following the same approach as in 1.5, and that the corresponding projective quadric
Q(Em) is embedded into O (2%), for k > 3. Then we have obtained the following:

1.7.2.1.1 Theorem Form > 6,m =r + s = 2k, k even, r and s even, m = 0 (mod
4), Spin(E,.y) is embedded into SO*(2%), Q(E,.s) is embedded into O (2¥).

1.7.2.2 k Odd, r and s Odd, m = 2 (mod 4)

Then we obtain
J2=1,TJF =, Jr=1,77=J;,
JP = Jr=J.

Asin 1.7.1.2, Cy and C; are interchanged by t and are orthogonal for the real bilin-
ear symmetric form (x, y) — Tr(/(x7y)). S isa Cy-simple module, S; is a Cp-simple
module, and for j # i, C;.5; = Ofori, j = 1, 2. Cyisacentral simple algebra the C-
simple module of which is S1, and C| can be identified with Lg (S1) = m (22, H).

Any element in C; is represented by its matrix in &', a basis of S;, and
A" = U"'('A")U with 'U’ = U = U", and U is proportional to J;, respec-
tively jl/ . 1 is then provided with a pseudoquaternionic scalar product of signature
(p, q)-Asin 1.5, we verify that the signature of the corresponding real quadratic form
X — Tr(((X" X)) is (4(p* + ¢?), 8pq). Moreover, this quadratic form is a neutral
one, following the same route as in 1.5. The same can be done for S, and C>. We
have obtained the following result:

1.7.2.2.1 Theorem Form > 6,m =r +s = 2k, k odd, r and s odd, m = g (mod
4), Spin(E,.;) is embedded into SpU (p, p) C SU (2p, 2p) with p = 2872 Q(E,.;)
is embedded into SpU (28—2).

1.8 Study of the Case r — s = 2 (mod 8)

In these cases, C ,+ . = A s isomorphic to m(2[m771], C) according to the fundamental
table (1.4.2) (m = r + s = 2k). A can be identified with the central simple complex

. . m—1
tor space of dimension 21" 1.
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1.8.1 Involutions on A = L¢(S), where S is a Complex Vector
Space of Dimension n

Let ¢ = {e1,...,¢&,} be an arbitrary basis of S. Such a basis determines on S a
hermitian standard scalar product for which ¢ is an orthonormal basis. Any element
a in A is represented by its matrix A in ¢ and the corresponding adjunction = is
such that A* =' A. Any involution & of A is such that according to the fundamental
Theorem 1.3.3.3, A = U"'(A)U with'U = U or'U = —U.If'U = U, U is
the matrix in ¢ of a nondegenerate C-sesquilinear form that determines a pseudo-
hermitian scalar product the adjunction of which is precisely a. If ‘U = —U, U is
the matrix in ¢ of a nondegenerate skew-hermitian sesquilinear form the adjunction
of which is «. (This form is, in fact, of maximal index [%].) It is classical®® that then
ib is a pseudo-hermitian sesquilinear form.

With the same notation as above, J7 = (—1)¥7, Jl = (=D 17, and Tt =
(—l)k_l.j{ . The dichotomy k even and k odd appears naturally, since the element
that conducts the inner automorphism is proportional to 71 (respectively J7). If k is
even, S is provided with a nondegenerate skew-hermitian form » and with ib a non-
degenerate pseudo-hermitian form. If k is odd, S is provided with a pseudo-hermitian
scalar product.

As above, we are going to study the following problem: If the involution « on the
complex central simple algebra A = L¢(S) is associated with a pseudo-hermitian
scalar product, determine the signature (p, ¢) of this pseudo-hermitian scalar product,
the adjunction of which is «.

1.8.2 Associated Form with an Involution & of A = L¢(S)

The same approach as above leads to the following result:3

1.8.2.1 Proposition The form (x,y) € A*> — Tr(I(x*y)) is a nondegenerate
hermitian form on A associated with the involution o of A, and the signature of
the hermitian associated quadratic form on A : x — Tr(1(x®y)) is (p*> + g%, 2pq).

1.8.3 Pseudo-Hermitian Structures on the Spaces of Spinors
S for C;',‘s (r —s = £2 (mod 8))

Let us take for involution t the principal antiautomorphism of A = Crf 5
The corresponding hermitian form on C;f ¢ is (x, y) = Tr(/(x*y)). The minimal

module of C,; is the space of spinors associated with C,{. As usual,?’ let us take

uinV = E,.g such that (u | u) = £1 and put W = ut. C;fs is the complexifi-
cation of its subalgebra Ct(W), which is invariant by t. Sincem = 2k =r + s,

dime C;f; = dimg C*(W) = 2% 2 and dim¢ § = 2¢-1.

85 For example, R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit., p. 222.
One can show itimmediately thatif /U = —U, letustake Uy = iU, thenwehave’ Uy = Uj.
86 Cf. also R. Deheuvels, Groupes Conformes et Algébres de Clifford, op. cit., pp. 219-220.
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The basis of C*(W) associated with an orthonormal basis {ej, ..., eax_1} of W
is a complex basis of CT(E,.5). If we denote by e; = e;, - - - €;,, andep, = e, -+~ €}y,
two elements of such a basis, then e; ey is also an element of this basis and a non-
scalar one if I # L. In such a case the translation [ (e; e1) permutes the vectors of the
basis without any fixed element and with trace equal to zero.

The basis of C*(W) is a complex orthogonal basis of C;’yr , for the form asso-
ciated with 7. (ejey) is a scalar equal to N(e;) = (e;; | e;,)---(eiy | €iy) and
Trc(l(ejer)) = dim CT(W).N(ey) is positive if and only if e; contains an even
number of negative vectors of the basis of W and consequently, an even number
of positive vectors of the basis of W. As above, if we denote by p(n) and i(n) the
respective numbers of subsets of {1, 2, ..., n} with an even cardinality, respectively
an odd cardinality, we have p(n) = i(n) = 2"~!. If the corresponding signature of
W is (p1, p2) according to the choice of u, itis (r, s — 1) or (s, r — 1), the number of
positive vectors of the basis of C*(W) is p(p1) p(p2), and the number of negative
vectors is i (p1)i(p2). Both these both numbers are equal, and the pseudo-hermitian
form (x, y) — Tr(I(x"y)) on C/'| is a neutral one.

Therefore, we deduce that if k is even, ib is a pseudo-hermitian neutral scalar
product of signature (2772,2772) and then b is a nondegenerate skew-hermitian
form of maximal index 27 ~2 and if k is odd, S is provided with a pseudo-hermitian
scalar product of signature (2%_2, 2%_2).

Since the pseudounitary group of automorphisms of § that leave invariant each
of these sesquilinear forms consists in each case of elements u of C ;” ;= Lc(S) such
that u®u = 1, Spin E, ; is then embedded into it.

As above, using the lemma given in the appendix, we can verify that

e ifkiseven, Spin E, ; is embedded into SU (p, p) with p = 2%_2,
* ifkisodd, Spin E, ; is embedded into SO*(2p) with p = 272 and then embed-
ded into SU (p, p) with p =27 2.

Then, we have obtained the following result:

1.8.3.1 Theorem Form > 6, m =2k =r +s,r —s = £2 (mod 8), the space S
of spinors associated with the even algebras Crf , possesses a natural complex struc-
ture and a pseudo-hermitian neutral scalar product. In each case (k even and k odd)
Spin(E, ) is embedded into SU (p, p) with p = 272,

We find directly the results obtained by René Deheuvels®® for m = 4k + 2,
r—s =2 (mod4).
1.8.4 Embedding of the Corresponding Projective Quadric Q(E,, s)
According to Porteous,? the Grassmannian of maximal totally isotropic subspaces of

dimension (%)dim S of the complex space S with dimc S = 277 1is homeomorphic

88 R. Deheuvels, Groupes Conformes et Algébres de Clifford, op. cit.
89 1. R. Porteous, Topological Geomet. . cit., Theorem 12-12 p. 233 and Proposition 17-46
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to U (2%_2) in each case, k even or k odd. We have then obtained the following
theorem:

1~.8.4.1 Theorem Form = 2k,m > 6,r — s = £2 (mod 8), the projective quadric
Q(E, ) is embedded into the group U (p), where p = 2772 = k-2,

Such a result generalizes the results of Deheuvels.”® The set of maximal and
strictly positive subspaces of S and then of dimension (%)dim S is an open set of the
Grassmannian G (S, (%)dim S) called the semi-Grassmannian of § and denoted by
GT(S). GT(S) is the classical symmetric hermitian space of type Alll in Elie Cartan’s
list. ! SU (p, p)/S(U(p) x U(p)) with p =272 and Q(E,.,) is embedded into the
boundary of G*(S) into G(S, (%)dim S).

As in Deheuvels,”? G*(S) can be identified with the symmetric space of involu-

tions of CrJf , that commute with 7 and that are strictly positive.

1.8.5 Concluding Remarks

We can now give the following summary concerning the spin groups Spin E, :

1.8.5.1 Theorem In each case r — s = =+3,+1,0,4, &2 (mod 8), where m =
dimgr E,s = r + s > 8, the spin group Spin E, s is naturally embedded into a
pseudounitary neutral group SU (240%) 2¢0>9)) with

-1

”‘T —1 ifr —s =3 (mod8),
m—1 .
T—Z ifr —s = =+1 (mod3),
m .

a(r,s) = 3 -1 ifr —s =0 (mod8),
%—1 ifr —s =4 (mod8),
m .
0 -2 ifr —s = 42 (mod 8).

1.9 Appendix

Proof of the following lemma that has been used before, in particular in 1.5.4.1. E,
denotes R"** endowed with a quadratic form g of signature (r, 5); B(x, y) denotes
the symmetric bilinear associated form.

90 R. Deheuvels, Groupes Conformes et Algébres de Clifford, op. cit., part 10.
91 Cf., for example, S. Helgason, op. cit., p. 354.
res de Clifford op. cit., pp. 224-225.
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Lemma Let (V,q) be the quadratic standard pseudo-Euclidean space E, s with
r > 2. For any pair of linearly independent vectors {uy, uz} such that B(uy, uy) =
B(uy,ur) = —1, there exists z € V such that B(z,z) = 1 and B(z,uy) =
B(z,up) =0.

A quadratic real plane P that inherits two linearly independent vectors u1 and u;
with g(u1) = q(uz) = —1 is necessarily isomorphic to one of the three following
standard planes (R%, q): P1 : qi(x) = —(xD)? Eo2 @ q2(x) = —(x1)? — (xD)?%;
Epp:q3(x) = (") — ()2

In the last two cases P is a direct factor of E, s and E.; = P @ PL. According
to the classical Witt’s isomorphism theorem, we have:

o if P~ Egy, Pt~ E,; »withr > 1,

o if P~ Ey, Pt~ E,_1,s—1. In the first case and in the second one, if r > 2,
there always exists z € P with ¢(z) = 1,

e if P >~ Py and if D is the isotropic line of P, there exists an isotropic line D’,
linearly independent of P, such that D L D’ and so P @ D’ is regular and iso-
morphic to £} . According to Witt’s theorem, (P & D’ )L >~ E,_1 s—2. We obtain
the existence of z if r > 2.

1.10 Exercises

(D In the first exercise we summarize classical properties of H

(A) Let H be the standard Clifford algebra C(E¢2) = <_11+1). Let e; and e; be
an orthogonal basis of Ep > with e% =—1=gql(ey), e% =—1=gq(er).

(a) Show that C(Ep ) admits the following basis: 1, eq, ez, ejez2 with ejex +
ere1 =0.Weputey =i,er = j,ejeo =k.Then H={q = l.a+ib+ jc+ kd
with a, b, ¢, d € R} is a skew field with the usual addition and the following table
for the “unit elements” i, j, k: i = j2 =k* = —1,ij = —ji = k, jk = —kj = i,
ki =—ik =j.

Mb)Ifg =a+ib+ jc+kd,provethatn(q) =a—ib— jc+kd,t(q) =a+ib+
je—kd,v(g) =q* =a—ib— jc—kd, v(q) is called the conjugate quaternion of g.

(c) Prove that for any ¢ in H, 7(¢q) = kqk~', where k! = —k. More generally
for any even-dimensional regular standard space (E, g) over the field K show that
in the corresponding Clifford algebra C(E, ¢g) for any a in C(E, q), m(a) = uau',
where u = ej - - - ¢, is the product of the elements of an orthogonal basis for g of the
space (E, q).

(d) We put N(¢) = qq* = gq*q. Verify that N(¢) = a®> + b> + > + d*
and that N(¢)N(¢") = N(gq’) (N is called the usual quaternionic norm). Write
the result known as the Euler—Lagrange identity. For ¢ = a + ib + jc + kd,
g =d +ib +jc+kd: (@ +b*+cr+d?) (@ +b?+c?+d?) = (ad’ +bb +cc' +
dd")? +(ab' —ba' +cd —dc')? + (ac' —bd' —ca' +db')* + (ad’ +bc’' —cb’ —da')>.
(e) ForanyginH,weputg = a+ib+ jc+kd = (a+ib)+ j(c—id) = u+ jv
lassical field C of complex numbers into
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H by putting a +ib — a +ib + j.0 + k.0 € H. C operates by right multiplication
into H and 1, j become the elements of a basis of Hover C. If z = a + ib € C,
verify that jz = zj, where z = a — ib is the classical conjugate complex of z, and
thatg™ =a —ib— jc —kd =i — jv.

(f) Show that the form (¢1, ¢2) € H?> — g7 g2 is a quaternionic scalar product on
H. What are the complex components in the basis {1, j} of H over C of this form?
Prove now that SpU (1) = U(2) N Sp(2, C).

(B) (a) We associate with any quaternion ¢ in H a mapping R, from H by R,
q) =qq'.

(b) Show that R is an endomorphism of H with respect to its structure of a right
space over C.

(c) Let A, be the matrix of R, corresponding to the basis {1, j} of H over C.
Determine Ay, A;, Aj, Ag, and for any ¢ = u + jv € H show that

Al = 10 A= i 0 A= 0-—1 A= 0 —i
01 0—i 10 —i 0
and that
U —v
Au+jv:
v ou

(d) Verify that the mapping ¢ — R, is a representation of the algebra H by square
matrices of degree 2 with coefficients in C. B
(e) Show that g* is associated with the matrix A« =" Ay.

(C) Let M,,(R) be the real associative algebra of square matrices of degree n with
coefficients in R and let /,, denote the unit element. We assume that there exist two
matrices A and B in M, (R) such that A> = —1,, B> = —1I,,, AB + BA =0 ().

(a) Show that n cannot be odd.

(b) Show that the subspace H generated by I,,, A, B, and AB constitutes a sub-
algebra of M, (R).

(c) If t,x,y,z are in R, determine the product (I, + xA + yB + zAB)
(tl, —xA — yB — ZAB).

(d) Deduce that I,,, A, B, AB are linearly independent and form a basis of H and
that H is a noncommutative field.

(e) Now, once and for all, we putn =4, J = 0 -1 and O the null matrix
-1 0
in M>(R). We define A = J 0 and B = 0 -k in M4(R) and C = AB.
0 -J L, 0

(o) Show that A and B satisfy the above condition (I).
H again denotes the subspace of M4(R) generated by I,, A, B,C = AB. Its
s {14, A, B, C} of H is denoted by B.
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(B) If M belongs to H*, show that ‘M € H. What is the relation between M -1
and 'M?

(D) Study of the automorphisms of the algebra H.

(a) By definition a pure quaternion is any element M in H such that M =' M.
Show that the set of pure quaternions £ is a space over R with dimg £ = 3 and with
basis {A, B, C} = C. Is L a subalgebra of H?

(b) £ is provided with the usual structure of a Euclidean space such that
C = {A, B, C} is an orthonormal basis. We denote by (M|N) the usual scalar
product of M and N in L. ||M]| denotes the corresponding norm. Show that
J(MN + NM) = —(M|N) 1.

(c) Verify that a quaternion is pure if and only if its square is a square matrix Al4
with A a negative real number.

(d) Let ¢ be an isomorphism of algebras from H into itself. Show that for any
M e L, p(M) € L with |M]|| = ||¢(M)]| and that the restriction of ¢ to L is an
orthogonal transformation.

(e) Let M and N be both pure quaternions. We want to show that if |M|| = [|N]|,
there exists P € H* such that M = P~ N P.

(o) First, study the case that M and N are proportional.

(B) Now we assume that M and N are not proportional. Verify thatif | M| = ||N||
we have M(MN) — (MN)N = ||M||2(M — N). Deduce that there exists a nonzero
matrix P such that MP = PN.

(f) Now show thatif we put P = al4+ Q, witha inR and Q in £, Q is orthogonal
both to M and N.

(g) Deduce that any algebra isomorphism ¢ from H into itself is defined by
¢(M) = P~'M P, where P is a nonzero element in H. We may observe that such an
isomorphism ¢ is determined by ¢ (A) and ¢ (B) and begin by searching the isomor-
phisms that leave A invariant.

(h) What is the general theorem that we have verified?

(I1) The construction of Brauer and Weyl*>

(a) Let (E, q) be a quadratic regular space over K = R or C and let AE be the
exterior algebra of E. Let g be the bilinear symmetric form associated with g. Show
that with any x in E we can associate an antiderivation d, of degree —1 of AE, with
square equal to zero such that for any decomposable p-vector y; A --- Ay, we have
(i A2 A AYp) =20 (=) T1g(x, yi)y1 A+ AFi A+ A yp, where the
symbol” means that the corresponding y; is missing.

b)Weput Ly : t € A(E) = Ly(t) =x At € A(E). Verify that L,zc = 0 and
thatp : x € E — ¢(x) = dy + Ly € L(A(E)) is a Clifford mapping from E into
LIN(E)).

(c) Deduce that any quadratic regular n-dimensional space over K = R or C pos-
sesses a Clifford algebra C (E, ¢) defined as the quotient of C(E), the tensor algebra of

ons, Amer. J. Math., 57, pp. 425-449, 1935.
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E, by the two-sided ideal N (¢g) generated by the elements x ® x —¢g(x).1,x € E, and
thatdimg C(E, g) = 2". One may prove that the 2" elements 1¢, ef = ¢, e, - - - ei,
(1 iy <ip <--- <ip <n) constitute a basis of C(E, g) and prove the result by
a recurrence using 2(a).

(d) Show that the mapping ¢ from E3 o = E3 into the real algebram (2, C) defined

for m = xe1 + yey + ze3 by p(m) = ToxTw , where {eq, e, e3} is an
x+iy —z

orthonormal basis of E3, is a Clifford mapping. Deduce that ¢ (E3) is the real space

of hermitian matrices with trace equal to zero. We put

01 0—i 1
o1 = gle) = , 02 = (e) = ", o3 =g(es) = Loo=1
10 i 0 0-—1

(Pauli’s matrices). Show that the eight matrices oy, o1, 02, 03, 0102, 0103, 0203,
010703 are linearly independent over R and that the real algebra m (2, C) is a Clifford
algebra of E3.

(e) More generally, let £, be the standard complex n-dimensional space provided
with the standard quadratic form ¢ such that for any x in &,,

n

q(x) =y (/)

j=1

with respect to an orthonormal basis {ey, ..., e,} of &,.

(@) First, we assume that n is even, n = 2r. Let m(2", C) be identified with the
tensor product of r copies of m(2, C),i.e.,m(2",C) =m(2,C)®---@m(2, C). We
define a mapping p from &, into m(2", C). For 1 < j < r we put

p(31)2p120’3®®o’3®0—1®1®®1,

Jj—1 r—1
plertj) =prij=03Q - Q0380 Q -1,
j—1 r—1

andifnisodd (n = 2r + 1),

pe2+1) = pr41 =03Q03Q - ®03.

r

Show that p is a Clifford mapping. Deduce that if n is even, n = 2r, C(&,) =

2r+1) =m(2",C) dm(2", C).



1.10 Exercises 65

(IIT) Classical spin groups. Spinors in the usual standard Euclidean space E3

(A) Show that Spin 1 = {1}.

(B) Show that Spin2 ~ SO(2) ~ S' ~ U(1).

(C) (1) Use the fundamental table to show that C(E3) = C3,9 >~ m(2, C), where
E3 = E3, and that the corresponding spinor complex space S is C2.

(2) Let H; be the vector space of pure quaternions, i.e., by definition, of quater-
nions ¢ such that v(¢) = ¢* = —q, where v is the standard conjugation in H (cf.
exercise I(A)). We identify H; with the standard Euclidean space E3, and S3 with
the multiplicative group of unitary pure quaternions (we recall that as usual, the set
of unit vectors a € E, o = E, = R”" is the unit sphere $"=1) and that a unitary
quaternion g is a quaternion such that N(q) = 1 (cf. exercise I(A)). If ¢ € $3 and
x € Hy, show that (gxg~!)* = —gxg~" and thus that gxg~! € H;.

(3) Show that the mapping ¢ : ¢ — ¢(g) such that ¢(¢) - x = —gxq~ isa
homomorphism from S onto SO(3) such that Ker ¢ ~ Z, and realizes a twofold
universal covering. Conclude that the Poincaré group of SO(3) is of order 2.

(4) Deduce that Spin 3 ~ S ~ SpU(1).

(5) (a) Show that any matrix in SU (2) can be written as

1

A= a b or u —v — A

—ba v ou

with |a|? + |b|> = 1 or respectively |u|> 4+ [v|> = 1 and that the mapping from
SU(2) into S defined by A(a, b) — a + jb, respectively Aj(u, v) — u + jv,is an
isomorphism (cf. exercise I(B)). Deduce that Spin 3 >~ SU (2) and that the space S of
spinors for E3 can be identified with C? and is provided with the standard hermitian
scalar product defined for s = &g1 4+ nes and s’ = £'e| + ez by (s|s’) = EE' + iy,
where {1, &2} is an orthonormal basis for (| ).

(b) Let CP; = P(C?) be the standard complex projective line. Show that CP;
can be identified with the Cauchy plane C=CU {oo}. (If the vector (&, n) represents
a chosen complex line in C2, cut it with the affine complex line £ = 1 and putz = /&
if £ # 0, and if we consider the line & = 0, put z = oo.

(c) Show that the group of homographies of the Cauchy plane PL(1,C) =
GL(22,C)/CI = SL(2,C)/{I, —1}. The subgroup PU(1,C) = SUQ)/{I, -1} =
SO (3) is the projective unitary group CP;. Hints: Show that to any linear mapping
m from S, identified with C?, into S there corresponds a homography p;(m) in the

Cauchy plane. Let &’ = a& +bn, n' = c& + dn and, therefore ¢’ = - p(m)(¢) =

=4 =
Z?i;. Give conclusions. Study the converse.
(d) With any x = xle; + x%ey + x3e3 in E3, x # 0, where {e1, €2, 3} is an or-
. . x3 xb—ix?
thonormal basis, we associate X = . We recall, (I, d) above
xl+ix2 X3

: x — X is a Clifford mapping

o)

that ¢ such that m(2, C) is a Clifford algebra of E3

matrices with trace equal to zero.
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Show that X is unitary if and only if ||x|| = 1 and that the eigenvalues of X are
=+||x|| and that if ||x|| = 1, X represents an orthogonal symmetry of S. Verify that to
any x # 0, x € E3 we can associate a complex line ®(x) in S the eigencomplex line
associated with the eigenvalue || x || of X. Put @(x) (€, 1) € C2. Show that for any
x € 82— (x|l = 1) — we have o = + T2 Or equivalently — ”& == 1_'7x3.
Verify that ® is a mapping from E3 — {0} onto CP; (and in partlcular, from S onto
CPy). Show that forany x € S 2 O(—x)isa complex line orthogonal to ® (x). Show

. | ) 3
that © can be written ®(x) = z = g = XHLX’; = x11 —— and that © is the classical
inversion with center B(x1 =0,x2=0,x%= —-1) and power 2 that sends S2 into

the equatorial plane (x!, x?) and B into the point at infinity occ.

(e) Let {e1, &2} be the orthonormal basis for the hermitian scalar product of
S = C2. Lets = (&, n) be a unitary spinor of S and r = (7, —&) the corresponding
orthogonal unitary spinor. Let o be the orthogonal symmetry that leaves s invariant

such that o (#) = —t. Show that the corresponding matrix relative to {e1, &2} of o is
A= |56 L %é ]
26n  —(5—nm)

(f) Solve the equation Ay = X (cf. part Il d above) and determine x = (x!, x2, x3)
in E3 such that ¢(x) = X = Ay. Deduce that there exists a mapping ¢; from S onto
E3 such that ¢(s) = x, whence ¢(S3) = S2. Determine ¢! (x) for any x € S2.
(Such a mapping ¢ from S* onto S? is called the classical Hopf’s fibration, the fibers
of which are gol_l (x) for any x € S2.) Deduce a mapping ¢y from CP; onto S such
that g o ® = Id, and that § 2 is homeomorphic with CP;.

(g) Deduce the following commutative diagram:

R

s=@Eme S’ oi(s)= x € §?

z= %ECP1= C Ules)}

such that if 2 € SU(2) = Spin 3 and if h = p(h) € SO(3) according to the exact
sequence 1 — Zo — SU(2) —? SO(3) — 1, we have for any s € S, ¢1(hs) =
he1(s). Let h € SU(2) = Spin(3) and let pi(h) and i = p(h) be the respective
correspondlng homography of C P and rotation of SO(3). Show that o (p1(h))(z) =
htﬂo(Z) and that @(h(x)) p1(h)®(x). Find again that PU(1) = SUQ2)/
{1, -1} =S0Q@3).

(D) (1) Let £,n € S3. Put Xepn 1 ¢ — &¢n for any ¢ € H. Verify that
Xep €SO4).

(2) Verify that u : $3 x §3 — SO(4) defined by (¢, 1) — Xg , is a homomor-
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(IV) Prove the results given as exercises in 1.5.2
(V) Orthogonality preserving transformations
Complete the following outline of a proof:

This is the adaptation of the theorem by J.M. Arnaudies and H. Fraysse, (Cours
de mathematiques, 4 : Algebre bilineaire et. geometrie . Dunod Universite, Paris
1999) for the case of a nondegenerate pseudo-Euclidean bilinear form. While in the
Euclidean case it is enough to assume that u € Homg £, in the general case we have
to add the further assumption that « is invertible. Using a “projection” on an isotropic
vector, find a simple counterexample with a noninvertible u.

Proposition
Let u be an invertible element in £(E) such that (x|y) = 0 implies (ux|uy) = 0 for
allx,y € E. Thenu*u = C € R\ {0}.

Proof.

We will first prove that there exists constant C # 0 such that (ux|uy) = C (x|y) forall

nonisotropic vectors x, y € E.Lety € E, y> # 0. Let fy denote the linear functional

fy(x) = (ux|uy). The set yt C E={x € E: (y|x) = 0} is then a hyperplane,
(Exercise: Prove this statement.)

and f is identically zero on yt.
(Exercise: Prove this statement.)

Since x +— (x]y) is a nonzero linear functional vanishing on yt, there exists
f(y) € Rsuchthat fy,(x) = f(y)(x]y) forall x € E.
(Exercise: Prove this statement.)

We will next show that if y/ € E, (y/)® # 0, then f(y') = f(y). Let us assume,
first, that (y|y”) # 0. Then

(wy'luy) = fy (¢'ly) = (uyluy’) = fy 1Y) = fyr OIy),

so that fy = fy.
(Exercise: Check carefully the above.)

Now, suppose that (y’|y) = 0. Since both y2 and (y)? are not zero, and since
(y +2y")? = y2 + A(y)?, there exists A > 0 such that y” = y 4+ Ay’ is nonisotropic.
(Exercise: Check carefully the above.)

On the other hand (y|y”) = y*> # 0, and also (y'|y”) = A(y')?> # 0. Therefore
fy = fy// = fy/,

(Exercise: Check carefully the above.)

Let us denote the value of the function y +— f,, which, as we have shown, is constant
on all nonisotropic vectors, by C. We thus have (ux|uy) = C(x|y) for all nonisotropic
x|wy) = 0 for all nonisotropic x, y, and
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therefore for all vectors e¢; of an orthonormal basis of E. It follows that w = 0, or
u*u=C.I.
(Exercise: Check all points and fill in the gaps.)

The constant C must be different from zero, otherwise we would have, for an arbitrary
y € E, (ux|y) = (ux|uu—"y) = 0, which, due to the nondegeneracy of the inner
product, would imply u = 0.

(Exercise: Check all points and fill in the gaps.)

Note: The last part of the theorem does not hold, in a pseudo-Euclidean case, with-
out the assumption that u is invertible. Indeed, it is enough to consider the case of
E1,1 with the orthonormal basis ep, €1, (eO)2 = —1, (e1)2 = 1, and u defined as
ux = (x|eg) eg. Then u preserves orthogonality, u # 0, but u*u = 0.

(Exercise: Check all points and fill in the gaps.)
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2

Real Conformal Spin Structures

The second chapter deals with real conformal (pseudo-Euclidean) spin structures.
First, we recall the principal properties of Mobius geometry and we present the study
of the standard Euclidean plane. Then, we construct covering groups for the gen-
eral conformal group C,(p, ¢g) of a standard real space E,(p, g). We define a nat-
ural injective map that sends all the elements of E, (p, ¢) into the isotropic cone of
E,12(p+1, g+1),inorder to obtain an algebraic isomorphism of Lie groups between
C,(p,q)and PO(p+1, g+1). The classical conformal pseudo-orthogonal flat geom-
etry is then revealed. Explicit matrix characterizations of the elements of C,, (p, ¢) are
given. Then, we define new groups called conformal spinoriality groups. The study of
conformal spin structures on riemannian or pseudo-riemannian manifolds can now be
made. The preceding conformal spinoriality groups play an essential part. The links
between classical spin structures and conformal spin ones are emphasized. Then we
study Cartan and Ehresmann conformal connections, Oguie conformal geodesics,
and generalized conformal connections. Finally, we present the Vahlen matrices and
exercises.

2.1 Some Historical Remarks

The development of quantum mechanics has emphasized the part played by the rep-
resentations of either Lie groups in theoretical physics or finite groups in theoretical
chemistry. As pointed out by Theo Kahan,' “the unique mathematical route for study-
ing the properties concerning the symmetries of a physical system and the meaning of
the structure of elementary particles and their associate fields is the theory of groups.”?
Researchers have been led to associate with any of these particles or with a set of

! Theo Kahan, Théorie des Groupes en Physique Classique et Quantique, Tome 1, Fascicule
1, pp. V=XV, Dunod, Paris, 1960.

2 We recall the following successful thought of the french mathematician Henri Poincaré

cf. Theo Kahan, ibidem, p. XIV): “the concept of group preexists in our mind, at least,

sensibility but as a kind of our understanding.”
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particles a quantum field the structure of which enables us to know the properties
of these corpuscles. Principles of symmetry appear and rule the universe of parti-
cles. The presence of symmetries implies that of the group-theoretic point of view.
According to a well-known happy thought of Albert Einstein, the theory of groups
leads the theoretical physicist to a better understanding of the apparent confusion of
things.

The Galilean group governs classical mechanics. In special relativity, the first im-
portant group is the inhomogeneous or extended Lorentz group, or Poincaré group,
the semidirect product of the homogeneous Lorentz group by the group of the transla-
tions of the Minkowski classical space. As claimed by Theo Kahan,? “mathematics is
no longer a tool but “objects” and particles become the representations of the Lorentz
group in the sense that the electron is the Dirac equation.”

But in the universe of elementary particles, new phase and gauge groups come
and enforce their “symmetries.” It is well known that the theory of special relativity
was established by A. Einstein in 1905 on the basis of the formalism introduced by
M. Faraday in his study of the electromagnetic field and of its fundamental laws and
completed by J. C. Maxwell, about 1887, for its mathematical presentation.

As emphasized by S. Sternberg,* “in order to elaborate a covariant theory, the
search of a correct Lie group G for the building of unitary theories including gravity
and electromagnetic field, has been the object of the physicists. The classical theory
of the electromagnetic field shows the part played by the conformal group SO (2, 4),
which leaves invariant Maxwell’s equations.”

First, H. Bateman® and E. Cunningham® showed how the equations of the electro-
magnetic field are invariant not only for the Poincaré group but for the larger one: the
conformal group. Elie Cartan himself’ studied the structure of SO (2, 4) and showed
by an analysis of the roots that SU (2, 2) is a covering group.

R. Brauer and H. Weyl in 1935,% and P. A. M. Dirac in 1936,° gave a “projective
representation” in a six-dimensional space.

Physicists such as W. A. Hepner, Y. Murai, and I. Segal'? have used the properties
of the Lie algebra £LSOT(2,4) = so*(2, 4). Independently, SO (2, 4) appears as a
group of Dirac’s matrices and as a dynamical group for the hydrogen atom.'!

3 Ibid., pp. V-XV.

45, Sternberg, for example, Lectures on Differential Geometry, Prentice-Hall Mathematics
series, second printing, 1965.

5 H. Bateman, The conformal transformations of a space of four dimensions and their appli-
cations to geometrical optics, J. of London Math. Soc., 8, 70, 1908; and The transformation
of the Electrodynamical Equations, ibid., 8, 223, 1909.

6E. Cunningham, The principle of relativity in electrodynamics and an extension thereof,
ibid., 8, 77, 19009.

7 B. Cartan, Ann I’ENS, 31, pp. 263-355, 1914,

8 R. Brauer and H. Weyl, Amer. J. Math., op. cit., 57-425.

9 P. A. M. Dirac, Ann. of Math., op. cit., 37-429.

10'W. A. Hepner, op. cit.; Y. Murai, op. cit.; . Segal, op. cit.
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N. H. Kuiper!? showed that the conformal group of R”, n = p+¢ > 2, is induced
by the projective group that leaves invariant a quadric in R P"*!. His method used pro-
jective coordinates and was a generalization of the classical stereographic projection
for three-dimensional spaces and emphasized the part played by the classical Liou-
ville’s theorem.!? Such a theorem has also been generalized for pseudo-Euclidean
spaces by J. Haantjes.'*

Besides, according to Nicolas Bourbaki,!> A. F. Mobius constructed, in the golden
period of geometry, a geometry called Mobius geometry, the links of which to physics
had not been understood. The notion of spin structure on a manifold V was intro-
duced by A. Haefliger, who specified an idea from Ehresmann.'® J. Milnor!” and
A. Lichnerowicz'® have taken an interest in those structures. In a self-contained way,
A. Crumeyrolle!® has developed the study of vector bundles associated with spin
structures, in any dimension and signature. He introduced the general definitions of
spin structures on a real paracompact n-dimensional smooth pseudo-riemannian (in
particular riemannian) manifold and drew up necessary and sufficient conditions for
their existence in a purely geometrical way. More precisely, he defined the notion of
spinoriality groups such that the existence of a spin structure on V can be submitted to
the reduction of the structure group O (p, ¢g) of “the bundle of orthonormal frames of
V,” to a spinoriality group, after having been complexified. One of the main guiding
principles is that the study of fields over curved spaces is nothing but the consideration
of spin-orthogonal, or symplectic, fibrations. According to the same guidance, there
appears the problem of the investigation of conformal spin structures, in which the
part previously assigned to the group O(p, ¢) will now be given to the conformal
one: Cn(p, q).

12N H. Kuiper, op. cit.

13 3. A. Schouten and D. J. Struik, op. cit.

4y Haantjes, op. cit.

15 N. Bourbaki, Elements d’Histoire de Mathématiques, op. cit.

16 A, Haefliger, Sur I’extension du groupe structural d’un espace fibré, C. R. A. S. Paris, 243,
1956, pp. 558-560.

17 1. Milnor, Spin structure on manifolds, Enseignement Mathématique, Genéve, 2 série 9,
1963, pp. 198-203.

I8 A Lichnerowicz, Champs spinoriels et propagateurs en relativité générale, Bull. Soc. Math.
France, 92, 1964, pp. 11-100; and A. Lichnerowicz, Champ de Dirac, champ du neutrino
et transformations C. P. T. sur un espace-temps courbe, Ann. I’lLH.P,, Section A (N.S.), 1,
1964, pp. 233-290.

194, Crumeyrolle, Structures spinorielles, Ann. I’LLH.P, Section A (N.S.), 11, 1969, pp. 19-55;
A. Crumeyrolle, Groupes de spinorialité, Ann. [’I.H.P, Section A (N.S.), 14, 1971, pp. 309—
323; A. Crumeyrolle, Dérivations, formes et opérateurs usuels sur les champs spinoriels
des variétés différentiables de dimension paire, Ann. I’LH.P.,, Section A (N.S.), 16, 1972,
pp. 171-201; and A. Crumeyrolle, Fibrations spinorielles et twisteurs généralisés, Period.
Math. Hungar., 6, 1975, pp. 143—171 or Spin fibrations over manifolds and generalized

twistors, Differential geometry (Proc. Sympos. Pure Math., Vol. 27, Part 1, Stanford Univ.,

bvidence, RI, 1975, pp. 53-67.
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2.2 Mobius Geometry

2.2.1 Mibius Geometry: A Summary of Classical Results
2.2.1.1 The Space of Hyperspheres

We introduce V,, = Ej o, the standard Euclidean space R" provided with the norm || ||
such that for any & € V, ||§]|> = g;;£'&/. Any hypersphere of V admits an equation
X0gij€'e! —2g;;€' X7 +2x"H! =0, (1)

where the real numbers X9, X 1, ..., X" notall equal to zero, are determined up
to a nonzero factor. Such real numbers are called homogeneous coordinates of the
hypersphere. When X is different from zero, (1) can be written as

. . o 0
ar (60— XY (e - X0 2 XX — 200X )
J X0 X0 (XO)Z

Thus, any equation of type (1) defines

e a real hypersphere if X° # 0 and g,-inXj —2Xx0xn+ > 0.

o ahyperplane if X°=0and (X',...,X") #(0,...,0).

e the hyperplane at infinity, by passing to the projective space, if X° = --.
X" =0and X"T! £0.

Therefore, the hyperspheres—in a general sense—of V,, can be represented as points
of the projective space P"+1 2!

We agree to call an “analytic sphere” any point (X°, ..., X"T1) in R"*2\ {0}. If
we define w : R"T2\ {0} — P"*! the canonical projection, any real hypersphere—in
a general sense—of V,, can be written: 7w (X), where X € R"*2 \ {0} with ¢(X) =
gii X' XJ —2x0x"+1 > 0.

We recall that 7 (X) = m(Y) is equivalent to the existence of a real number X,
A # 0, such that Y = AX. The bilinear symmetric form associated with the quadratic
form ¢ is often called the inner product in R"*2 and is defined for X, Y in R"*? by
XY = gij X' X/ — X0yt — yOx+1 ‘and it is also called the inner product of the
corresponding analytic spheres.

We obtain the following results, which are given as exercises (cf. below 2.13):

2.2.1.1.1 Proposition The radius of the hypersphere w(X) is [q(X)/(XO)z]l/ 2,
The angle 6 between two intersecting real hyperspheres w(X) and 7 (Y) is deter-
mined by 0 < 6 < /2 and cos6 = |X - Y|/[(X - X)'/2(Y - Y)1/2] with g(X) > 0
andq(Y) > 0.

20 Cf., for example, M. Berger, Géométrie, volume 5, Cedic, Nathan, Paris, pp. 75-80, 1977;
A. Toure, These Université Pierre et Marie Curie, Paris VI, 1981; and P. Angles, Les struc-

tures spinorielles conformes réelles, These, Université Paul Sabatier, 1983.

I denotes the projective space P (R"12).
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2.2.1.1.2 Propositiqn If g(X) = 0 and XY £ 0, 7(X) is reduced to the point of
coordinates §' = X’/XO, 1<i<n,of Vandifq(Y) > 0, X-Y = 0 is equivalent
to “the hypersphere  (Y) contains the point&.”

2.2.1.2 The Mobius Space

According to what has been said before, there exists a bijective mapping from V,,
onto the subset of P"*! consisting of points whose homogeneous coordinates satisfy
q(X) =0and X° #£0.

2.2.1.2.1 Definition (Cf. 1.4.3.2 for general definitions for pseudo-Euclidean
spaces) By definition, the Mbius space of order n is the quadric hypersurface Q" of
P"+! with the homogeneous equation

g X' X7 —2x9%x"+! = 0.

The only point of Q" whose coordinates satisfy X 0 =1 is the point (0,0,...,0,1)
called, by definition, the point at infinity and often denoted by co. Thus, usually, one
writes X for X"*1. Q" can be identified with the one-point compactification of V,,
denoted by V, =V, U {o0}.

Let V41 be the standard Euclidean space R"*! with the standard norm ||Y | =
(gijY 1yJ 4+ (y™+1)2)1/2 with obvious notation and let Vy+2 be the standard Euclidean
space provided with the norm

Y1l = (gi; Y'Y+ (x" ™2+ (v9)H)/2,

and let S” be the unit sphere of V. The stereographic projection s from S” onto
the hyperplane defined by Yyt =0, in Vp+1, with origin w = (0,0, ..., 0, 1) leads
to the identification of S with V,, = V,, U {00} and s(w) = oco. Let i denote the
injective mapping from V,,41 into P (V,42), viewed as V41 U T, Where T, denotes
the hyperplane at infinity Y = 0. We obtain that i (S") is the projective quadric of
P (V,42), an equation of which is, in homogeneous coordinates,

g Y'Y+ (" — (¥%? =o. @)

Let p be the projective morphism of P (V,2) induced by the rotation Y — r(Y) = Z
of V47 definedby Z/ =Y/ for1 < j <n,

ZO _ XO + Yn+l YO _ Yﬂ-’rl

N NG

The image by p of the projective quadric defined by (2) is Q" as (Y"t1)2 — (Y9)2 =
—27971+1 Thus, we obtain that

sTHV). 2)
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2.2.1.3 The Mobius Group: M,

2.2.1.3.1 Definitions In the n-dimensional Euclidean space V,,, let A be a point of V,.
For any point P of V,, let Q the point on the ray AP such that AP - AQ = k, where
k is a nonzero real number. By definition, we call the transformation that sends P to
Q the inversion of center A and power k. Inversions are not bijective transformations
of V, but of V,,.

The Mébius group M,, is defined as the group generated by inversions of V,,
and symmetries with respect to a hyperplane.?? In order to study this group M,,, it
is convenient to interpret inversions and symmetries in vV, by means of orthogonal
symmetries in the pseudo-Euclidean space of “analytic spheres,” i.e., of the space
R"*2 provided with its inner product X - ¥ = g;; X' X/ — X0yl — yOxn+l we
will denote such a space by

Zn — (Rn+2’ q).

The quadratic form ¢ is of signature (n + 1, 1).

Any point & € V, can be written as & = 7 (X), where X is an isotropic element
of >, (i.e., such that ¢(X) = 0), where 7 denotes the projection from ), onto
the projective associated space. A linear mapping f from ), into itself induces a
punctual transformation of V, if and only if ¢(X) = 0 = q(f (X)) = 0, for any X

of ).

We have the following results left as exercises (cf. below 2.13).

2.2.1.3.2 Proposition Let B = (B°, B!, ..., B"*!) be a nonisotropic element
of )",. Let sp be the associated symmetry with respect to the hyperplane Bt
defined by sp : X — Y = X — 2(B.B)"Y(X.B)B. Then sp induces a bijection
op of V, that is

e a symmetry with respect to the hyperplane defined by the equation

ZBg — Bl =0, ifB"=0.

22 We recall the classic definition, cf., for example, C. Chevalley, The Algebraic Theory of
Spinors, op. cit., p. 19. Let (E, Q) be a standard regular quadratic n-dimensional space
over a field K, of characteristic different from 2. Let G = O(Q) denote the corresponding
orthogonal group. Let H be a hyperplane whose conjugate contains a nonsingular vector z.
Let Q(z) = a.Forany x € E,weputs-x = x — 2a_1B(x, Z)z. An easy computation
shows that Q(s -x) = Q(x), i.e., s is orthogonal, and since the conjugate of H is Kz and
s does not change if we replace z by kz, k # 0, s depends only on H and is called the
symmetry with respect to the hyperplane H. Moreover, we have the classical following
theorem:

Theorem (Cartan-Dieudonné) Every operation of G belongs to the group G’ generated
by the symmetries with respect to the hyperplanes whose conjugates contain nonsingular
vectors. For the standard Euclidean space Vy, the following result can be written: Every
ith respect to nonisotropic hyperplanes.
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e the inversion with center B = (Bl/BO, R B"/BO) and power (Bg)_1 -(B-B)
if B # 0.

We deduce the following theorem:

2.2.1.3.3 Theorem (Definitions) The Mobius group M, consists of bijective map-
ping of V,, induced by orthogonal transformations of Y= (R"*2, ¢). M, is isomor-
phic to the classical projective group PO(n + 1, 1). The pair (Q", My) also denoted
later by M,,, is called the standard conformal geometry (of type n) or Mobius geome-
try (of type n); Q" is called the standard n-dimensional conformal space also denoted
later by M.

2.3 Standard Classical Conformal Plane Geometry??

2.3.1 Definition Let M and N be riemannian manifolds. A diffeomorphism f : M —
N is conformal if there exists a differentiable positive function @ on M such that for
allx e M,foralla,b e T, M,

B(dy f(a), dx f (D)) f(x) = a(x)B(a, b)x

(i.e., f preserves angles but not necessarily lengths). The set of conformal diffeomor-
phisms of M onto N is denoted by Conf (M, N), and in case M = N, by Conf (M).
The + superscript will mean that orientation (if any) is preserved.?*

2.3.2 Definition (Theorem) (Cf. Chapter 2.13, exercise III.) Let S = CP! be the
Riemann sphere identified with the set C U {oo}. One usually defines two classes of
mappings from CP! onto itself by

h hi az+b
omographies -

gtap ‘ cz+d

ih hi az+b
antihomographies - ——

gtap ‘ cz+d

where 7 is the classical conjugate of the complex number z. The group Conf (5?)
consists of all homographies and antihomographies. Conf™(S?) consists of all
homographies. The proof will be given later as an exercise (cf. 2.13).

23 Cf. Ricardo Benedetti, Carlo Petronio, Lectures on Hyperbolic Geometry, Springer, 1992,
pp. 7-22.

24 For a riemannian manifold M, we denote by J (M) the set of all isometric diffeomorphisms
of M onto itself, (or isometries of M). If M is supposed to be oriented, 7T (M) denotes the
set of all isometries of M preserving orientation. The differential of a mapping f in a point
x of M is denoted by dy f. The scalar product defined on the tangent space Tx M will be

denoted by B(, ). We recall that f is an isometry iff for any x € M, for any v, w € Ty M,
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2.3.3 Proposition (cf. below 2.13) If we identify CP' with R?> U {00}, the only
elements of Conf (CP) are the mappingsx — uBi(x)+w, wheren > 0,B € O(2),
and i is either the identity or an inversion and w € R?.

We recall the following classical theorem:

2.3.4 Theorem (Liouville, 1850) (cf. below 2.13 Exercises) Every conformal dit-
feomorphism between two domains of R" has the form x — puBi(x) + w, where
w >0, B € O(n), andi is either the identity or an inversion and w € R”".

2.4 Construction of Covering Groups for the Conformal Group
C.(p, q) of a Standard Pseudo-Euclidean Space E, (p, q)25

We use the same notations as in 1.4.

2.4.1 Conformal Compactification of Standard Pseudo-Euclidean Spaces
E.(p,q)

Let V be a standard pseudo-Euclidean n-dimensional space of type (p, ¢) (cf. 1.4).
We denote by (|) or B(, ) the associated pseudo-Euclidean scalar product and ¢ the
corresponding quadratic form.

We have the following results (cf. below exercises 2.13).

2.4.1.1 Theorem Let H = E>(1, 1) be the standard hyperbolic real plane provided
with an isotropic basis €, such that2(e | n) = 1 and let E,42(p + 1,q + 1) be
the direct orthogonal sum E,(p, q) ® E2(1,1) = E,(p,q) @ H =F = E,1>(p +
1,q + 1). The “isotropic” injective mapping u : y — y + q(y)e — n leads us to
identify M = P(Q(F)\{0}) (with the notation of 1.4.3.2), the projective quadric
associated with E,(p, q) with the compactified space obtained by the adjunction to
E,(p, q) of aprojective cone at infinity. M is called the Mobius space associated with
En(p,q).

M is identical to the homogeneous space PO(F)/Sim V, the quotient group of
PO(F) = O(p+1,q + 1)/Z; by the group Sim V of similarities of V. Moreover,
PO(F) is identical to the group Conf (E, (p, q)) of conformal transformations of
E,(p,q) and is generated by products of affine similarities and inversions accord-
ing to a theorem of Haantjes that extends to pseudo-Euclidean spaces, the Liouville
theorem?® (for p + g > 3).

25 (a)P. Angles, Construction de revétements du groupe conforme d’un espace vectoriel muni
d’une métrique de type (p, q), Annales de I'LH.P., section A, vol XXXIII no 1, 1980,
pp. 33-51. (b) R. Deheuvels, Groupes conformes et algebres de Clifford, Rend. Sem. Mat.
Univers. Politecn. Torino, vol. 43, 2, 1985, pp. 205-226.

26, Haantjes, Conformal representations of an n-dimensional Euclidean space with a

non-definitive fundamental form on itself, Nedel. Akad. Wetensch. Proc., 40, 1937, pp.
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2.4.2 Covering Groups of Conf (E,(p, q)) = Cn(p, )%
2.4.2.1 Notation

We use the standard notation of Chapter 1 (1.4.1). 7= denotes the principal automor-
phism of the standard Clifford algebras C, 4; 7 denotes the principal antiautomor-
phism of C), ;. We recall the following exact sequences:

1 — Zy — RO (p,q) — SO(p,q) — 1,

1 — Z> — Spin(p, q) = SO*(p,q) = 0" (p.q) — 1, ((p, @) # (1, 1)).

We put, for any g in G, the Clifford group, and for any x in E, (p, q), p(g)x =
gxg~! and for any g in G, the regular Clifford group, and for any x in E,(p, q),
V(@x =m(gxg™".
2.4.2.1.1 Definition Let f be a continuously differentiable mapping from an open
set U of E,(p,q) into E,(p,q). f is said to be conformal in U if there exists a
continuous function A from U into R* = R\{0} such that for almost all x € U and
foralla,b € E,(p,q), B(dy f(a),dy (b)) = 22(x)B(a, b) (where B is the polar
bilinear symmetric form associated with the quadratic form ¢ of type (p, ¢), and
where d, f is defined in footnote 24.)

2.4.2.1.2 Theorem (Definition) Abusively, one defines the conformal group of
E,(p,q) as the restriction of PO(p + 1,q + 1) to the projective quadric M, or
Mobius space M ; M is homeomorphic with SP x S9/Z; (ct. below exercises).

Thus, by definition, Conf (E,(p, q)) is the set of all projective transformations
that leave M invariant. We emphasize the fact that some such transformations are
defined only on open sets of E,(p, ¢). The Haantjes theorem?® allows us to express
that the only conformal transformations of E, (p, g), n > 3, are the products of affine
similarities and inversions.

2.4.2.2 Construction of a Covering Group of C, (p, q)

Let Cp 1,441 be the standard Clifford algebra of E,12(p+ 1,9 +1) = E,(p,q) ©
E>(1,1) = E, (p, q)® H.Once and for all, we consider {ey, ..., e,} an orthonormal
basis of E,(p, q) with (¢;)>=1for1 <i < pand (¢;)’= —1forp+1<i <
p + g =n, and {eo, e¢,+1} an orthonormal basis of the standard hyperbolic plane

27p, Angles, Construction de revétements du groupe conforme d’un espace vectoriel muni
d ’une métrique de type (p, q), Annales de I'.H.P,, section A, Physique théorique, vol.
XXXIII no. 1, 1980, pp. 33-51.
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H = Ey(1,1) withe} = land e | = —1.If we put xo = (g + €5+1)/2 and yo =

(eo — en+1)/2, {x0, yo} is an isotropic basis, or Witt basis, of H with 2B(xq, yo) = 1.
At other places, we will use also the notation xg« or v, instead of yg. If necessary,
the definition will be recalled. We are going to construct:

(a) aninjective mapping u from E, (p, q) into the isotropic cone Cy, 4> of E;, 12 (p+
1, g+ 1) such that any mapping f € C,(p, g) can be described by means of elements
of RO(p+1, g+1). More precisely, foralmostall x € E,(p, g) andany finC,(p, q)
there exist g in RO(p + 1, ¢ + 1) and o4 (x) in R such that

Y(g) - ux) = m(gu(x)g™ " = o (u(f(x)). A

(b) a morphism of groups ¢ with a discrete kernel, from RO(p + 1, ¢ + 1) onto
Ca(p.q): 8 = (&) = f € Cu(p. @)

2.4.2.2.1 Construction of u

We put u(x) — x = aeg + be, 41 with (a, b) € R2. Since (u(x))? is equal to zero,
we find easily that x2 = b? — 2. We can choose a = %(x2 -1 = %(q(x) — 1) and
b=3(1+x%) = 3(1 +q(x)). Thus

1 1
u(x) = E()c2 — Dep+x + 5(1 + x2)ent1s (B)
or equivalently,
ux) = x%x0 + x — yo. (B1)

We obtain again the “isotropic” injective mapping already given in Theorem 2.4.1.
2.4.2.2.2 Determination of ¢

We are going to show successively that

(a) there exists a mapping ¢ from RO(p + 1, g + 1) into the set £ of mappings
from E,(p, q) into itself g — @(g) = f such that for almost all x € E, (p, ¢g) there
exists o, (x) in R with

Y (9)u(x) = m(u(x)g™" = oy (u(G(g)(x)) = og (X)u(f(x)). A)

(b) ¢ is a morphism from the multiplicative group RO(p + 1, ¢ + 1) into (€, o),

“w 9

where “o” is the usual composition of mappings.

(©) (RO(p + 1, g + 1)) is a group that according to the Haantjes theorem, can
be identified with the conformal group C,,(p, q).
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For convenience, we will use the notation for u# given by (B) and for og (x) # 0,
we will denote (o ()1 by Ag(x).
Stepa.Forany ginRO(p+1, q+1),¢¥(g) € O(p+1,g+1).Letusputy(g) - u(x) =
X%+ X" le, 1+ X, (X0, X"t € R%, X € E,(p, q). (A) is equivalent to

la O (f*(x) = Deg+o (x)f(x)+lo W@ +1) = X%+ X + X"
778 0 8 778 = 0 n+1,

i.e., with
505 (f2(x) — 1) =X,
1o () (f2(x) + 1) = X",
og(X) f(x) = X,

i.e., with

Ug(X) — Xn+1 _ XO,
oo (X) f2(x) = X"+ X0 (A,
0o (X) f(x) = X.

o Thus, for o4 (x) # 0,to any g € RO(p + 1, g + 1), we can associate a mapping
f from E, into E,, independent of the “writing” of g in RO(p + 1,q + 1) for
o,(X)=X"1 =X #0, f(x) = X/ (X" — X9). We set ¢(g) = f.

o If ¢(g) = f exists, we note that f(x) and o, (x), also denoted by o, 7 (x), are
defined without ambiguity.

Assume that for g given in RO(p + 1, g + 1) there exist two corresponding ele-
ments, by @: f and f’. For almost all x in E,(p, ¢), with obvious notation, we have
og, r (Du(f(x)) = oy pu(f'(x)), which implies that u(f (x)) and u(f’(x)) are pro-
portional for almost all x in E,,(p, ¢). An easy computation shows that u(x) = Au(x")
with A € R* implies that x = Ax’ and x> = Ax’? and then A2x> = Ax’z,
whence A = 1 and x = x'. Then, for almost all x in E,(p,q), f(x) = f'(x),
and o, r(x) = 04 /(x) will be now denoted by o7 (x).

Stepb. Put ¢(g) = f and ¢(g’) = f’. Itis easy to verify that ¢(g’g) = f’o f. Since
V() u(x) = og(x)u(f(x)) and ¥ (g') - u(x) = oy (x)u(f'(x)), we have

Y(g'e)ux) = () (@ux)g e = () o (u(f(x)g

for almost all x in E,(p, ¢), and there, ¥ (g'g) - u(x) = o4/ (f (x))og(X)u(f’o f(x)),
whence ¢(g’g) = f' o f and

Ogg = 0 (f(X))0g(x). ©

Step c. Using step b and the fact (1.2.2.7) that RO(p + 1, ¢ + 1) is the multiplica-
tive group consisting of products of vectors x in E,12(p + 1,¢g + 1) such that
x2=41= N (x), we are led to determine ¢(v), where v = v + vy + v3 € E,42,
p.q), 00, A1) e R? and v? = £1. It
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is well known?® that

2B(u(x), v)

v, with N(v) =v> =& = 1.
N(v)

Y ().u(x) = u(x) —

We put, as in step a above, ¥ (v).u(x) = X%y + X + X”+1€n+1, X € Ey(p,q),
(XO, Xn-H) e R2.
An easy computation leads to

2 2 2
+ (1 + A0+ —229B(x, v3)}
Xt = e{(ko)zé(l +x%) + (/\"“)2%(1 +x%)
+ (v3)2%(x2 + 1)+ (1 — x2Ha0F — 20+ px, v3)}

X = s{x((ko)z — WTH2 £ 0H?) — 132B(x, vs — 201 — x?)

vZ=¢

_ )\’I’H-l(l +x2))}

Using the previous system (Aj) given in step a above, we obtain
O'g(x) — Xn-‘rl _ XO — s{xz(k"'H _ )\’0)2
+ @) = 2B, v =20 = e (e =29 —vy)?,
g (X) f(x) = efxv® — v3Q2B(x, v3) +x° (L0 — A" — A0+ ")),
oo (0) f2(x) = efvix® + 0+ A H A0 + A" —2B(x, v3))).

We consider the “hyperquadric” defined in E, (p, g) by 0,(x) = 0, ie., (x (tt —
29) —v3)? = 0. For o, (x) # 0,

xv? — 132B(x, 13) + x2(A0 — AT — (W0 4 Aty

f(x) = (x()LnJrl _ )»0) _ v3)2 (D)
0g(x) = e(x(WH —29) —wv3)2 0% = & = £1.
LAt -0 =00 =e=0]+ W02 —WTH2 =13, 0,(x) =2 = 1,
_ _ 0 n+1
Foy = ST v@Bu)) Z AT 0B ua)e) + 200 s,

&

Duadratiques et Groupes Classiques, op. cit.,



2.4 Construction of Covering Groups for the Conformal Group C, (p, q) 83

As usual, x — x — 2B(x, v3)ev3 = Uy, (x),39 where uy,; denotes the orthogonal
symmetry with respect to (v3)=*.

Since according to the classical Cartan—Dieudonné theorem?! every element u €
O(p, q) can be expressed as the product of at most n = p + g symmetries with
respect to nonisotropic hyperplanes and since ¢ is a homomorphism of groups and
2003 = yisin E,(p, ¢), we obtain the “generic element” of the classical Poincaré
group, the semidirect product of O (p, g) by the group of translations of E,.

One can verify immediately that for these elements we have o, (x) = 1. In the
special case A"T! = 19 = 0, we find that £ (x) = uy, (x) € O(p, g) with o, (x) = 1.

IL A =20 £0. 02 = ¢ = (192 — A" T1)? + v3. We have o, (x) = e((A"T! —

o) = xv?+ 0+ s wn32B(x, v3) + 220 =)
TGO 4 anthx 4 v3)2 [(A0 — anthx + v3]?
ie.,
f(x) _ [()"0)2 _ (An+1)2]x + ()\,0 + )‘n+1)v3
[(A0 — amtx + v3]?
vix — v3[2B(x, v3) + x2(A0 — A" )]
[0 — WD+ vs]?

Then,

[(A° — A" )x + v3]

(A0 — At )x + v3]?

v3 5 1

(A0 — )Ln+1))v3' [()\O _ A”“)x + un)?

v3[2B(x, v3) (A0 — AT + 120 — a2 3]

(00 = At DH2B(x, v3) (A0 — At 4 x2(A0 — a2 4 o2)

Fx) =04t

+ (x +

which is equivalent to

_ 10 n+1 1 v% 1
SO = A G S S ual T GO (0 = T+ u)
U3
- (A0 — ity
ie.,
_ 0N2 _ ynt1N2 2 1 _ v3
)= (A0 — antl) %) (A7) + v3l. [(A0 =t h)x + 3] [A0 — antl]’

30 Cf., for example, R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit.,
gebraic Theory of Spinors, op. cit., p. 19 and above,

s, op. cit., pp. 19-20.
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that is,
& 1 v3

WD+ ) (A0 — A

fx) = G (E)

This is the general form of f corresponding to a vector v € E,;p. We find
inversions with center O and power in R* (put v3 = 0). Moreover, we note that
dilations of E, correspond to elements of RO(p + 1, ¢ + 1), which can be written as
exp((1/2)nepen+1), n € R*.

Since we have shown that ¢ is a homomorphism of groups, according to the
Haantjes theorem (cf. above 2.4.1), (RO(p + 1, ¢ + 1)) can be identified with the
group denoted above by C,(p, q). p(RO(p + 1,9 + 1)) = C,(p, q).

We agree by definition to call (RO (p+1, g+ 1)) = (Cu(p, q)), the restricted
conformal group.

2.4.2.2.3 Remarks on Formula (E)

(a) If v3 = 0 we find that

| e 1
Y ()\0 _ )Ln+1)2 X

fx) = <W

We find the inversions with center O and power in R*. A9 = 1, 27t = 0) is asso-
ciated with the inversion with center O and power 1 and (A0 = 0, A"*! = 1) with the
inversion with center 0 and power —1, associated respectively with eg and e, 1.

(b) If v3 # 0 and v% =0, since (192 — A"tHZ = ¢ is equivalent to

1
)\‘O — )\'n+1 — 8()\,0 +)\‘n+1)’
we find that
1
=0 4 f! — )
S =0+ )(x(AO—A"+1)+v3 8v3>

(c) We note that the case that v3 is isotropic and (v; + v;) isotropic cannot occur:
otherwise, E,4+> would be totally isotropic.

(d) Since, for any x in E,(p, q), oy (x) = e(x (W1 — 19) — v3)? for v in E, 42, and
since 04/ (x) = 0y (f(x))og(x), we deduce that oy (x) is different from zero when
f is defined and that there exists Ag(x) = (0o (x))~LIf A" — 20 =0, g(v) = f
is defined for any x in E,(p, q). If A"*1 — 10 £ 0, ¢(v) = f is defined for any
x € En(p, )\{o3/ (" —20)).

2.4.2.2.4 Determination of A = Ker ¢

in En(p.q). m(8)-u(x)g™" = yr(g).ux)
group C,(p, g) to determine the identity
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mapping, one can easily verify that for any x in E, (p, ¢) and for any g in A = Ker ¢,
0g(x) = 0g(—x) =oq(x) =& = %1.

The successive choices of x in E,(p,q) and —x in E,(p, ¢) such that x> =
1,2 and (=x)? = 1, lead us to verify that for any g in A, ¥ (g).ent1 = €e€nt1,
v(g).x = £x.33 In the same way, the successive choice of x, (xz) = —1,and of —x
such that (—x)2 = —1 leads to v(g).ep = ceg, and ¥ (g).x = ex (V N =-1)
(Y g)(g € A). Moreover, for any x : x2 =0, we easily find that ¢ (g).x = ex. Thus,
for any z in E,t2, 7 = Aleg + A" le, i1 + x, with x in E,(p, q), A0, A"+1) € R?,
we find that ¥ (g).z = ez, where ¢ = £1. Thus, g € A & ¥ (g) = Idg,,, or
Y(g) = —ldg,,,.

Since classically Y~ HId} = {1, —1} and Y (epept1ey - - e,) = —Idg, according
to the general results of Chapter 1, we obtain that Ker ¢ = {1, —1, ey, —ey}, where
ey = epeptiey - - - ey. Als discrete. One can easily verify that if respectively e12v =1,
respectively 612\, = —1, A is isomorphic with Z, x Z, or respectively Zj.

2.4.2.3 Complements: Table of Results (see below table of results)3’

We present some results that will be proved below in exercises (2.13). We denote by
u; or u,, the following mapping:

50 = —Cn+l1 = 1,
Ue) o X —> Ue)(x) =x —2B(x,e;)&ei { & =1, 1<i<p,
& =—1, p+1l=<i=<n

32 This is possible according to the following result of Chevalley (The Algebraic Theory of
Spinors, op. cit., p. 14): Assume that B is nondegenerate and that there is an x # 0 in E
such that g(x) = 0. Then for any « in the field K (K = R or C), there is a in E such that
q(z) =a.

Btis easy to write

x:x2=l=>u(x)=x+e,,+1
—x: (=) =1=u(—x)=—x+ entl1

Y(g).(x +epq1) = o1g(¥)(x + e41)
Y (g).(—x +eyq1) = o1g(—x)(—x + €,41)

= ¥ (8)-ent1 = €epy

and ¥ (g) - x = ex, (Y g)(g € A), (Y 1) (x? = 1).
34 Remark: according to a well-known result (cf., for example, E. Artin, Algebre Géométrique,
op. cit., Théoreme 3.18, p. 126), if E is a quadratic regular space over K = R or C, if
o € O(q) leaves any isotropic line invariant, c = =£Idg. But there, ¥/ (g) belongs to
O(p+1,q+1)and u(E,(p, q)) is included into the isotropic cone Cy, 43 of E, 12(p +
1, g + 1). Our method is different.

N A

1 groupe conforme d’un espace vectoriel muni
LH.P, section A, vol. XXIII no. 1, 1980, pp.
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2.4.2.3.1 Remark In agreement with a result given above in 1.5.2.2.1, the table of
results given in 2.4.2.3 shows that the preimages g by ¢ of the elements of the
group GO(p, g) of similarities of the space E(p, g)—following the notation used
by Jean Dieudonné—satisfy the following property: there exists © € R* such that

g'g=mnl

2.4.2.4 Covering Groups of C,(p, q)

(1) We have found that algebraically, C,(p, g) is isomorphic to I%’q—“). Clas-

sically, RO(p + 1, q + 1) is provided with the structure of a Lie Group.’® Let us
denote by i the algebraic isomorphism from I%,q_ﬁ-l) onto C,(p, q). Since A is
a discrete group, we can postulate that i defines a topological isomorphism between
I&Pt{’qﬂ and Cy,(p, g). Thus C,(p, g) becomes a topological group and even a
Lie group. Since (ex)? = (epeptier - --ep)? = (—1) 19, withn = 2r orn = 2r 41,
we have obtained the following result.

2.4.2.4.1 Proposition If r and g are of the same parity (r + q even, e12v = 1)
RO(p+1, g+1) is adouble twofold covering group of the conformal group C, (p, q).

If'r and q are of opposite parity (r + q odd, ezzv =—-1),RO(p+1,g+1)isa
fourfold covering group of C,(p, q).

2.4.2.4.2 Fundamental Isomorphism
We know that v (A) >~ Z,. Using a classic theorem of isomorphism for the groups,
we obtain that

C. )NRO(p+1,q+1)Nlp(RO(p+1,q+1))~0(p+1,q+1)
= A - ¥ (A 7
~PO(p+1,qg+1).

Such aresultis in agreement with the construction made by R. Penrose of the classical
conformal group.’’

2.4.2.4.3 Corollary
B ROY(p+1,9+1) _¢(ROT(p+1,q+1)
(ROT(p+1,q+ 1) = ~
_O0T(p+1l,q+1)

~PSO(p+1,g+1).
7,
36 Cf., for example, A. Crumeyrolle, Structures spinorielles, Annales de I’.H.P,, section A,
vol. X1, no. 1, 1969, pp. 19-55.
37 Cf., for example, R. Penrose, (a) Twistor algebra, J. of Math. Physics, t. 8, 1967, pp. 345—
366; (b) Twistor quantization and curved space time, Int. J. of Th. Physics, (I), 1968. R.
Penrose, for p = 1, ¢ = 3, defines the conformal group as a group of transformations of
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=1+ %(€n+1 —ep)a,
ackEy

forx:(14+ax)?#0

gePin(p+1,g+1) F€Cu(p.q); f=9(2) og(x)
g =expb=exp (%bﬁeij) “proper rotation” € SO (p, q) :
bl = %hij chx =bx=xb | x —> t(x) = g(x)g_l;
t=exp ht=@(g) !
g =¢jj 1 €8S0(p,q):x = 1(x) =ug)ougj)(x);
l<i<j<n uluy ougjy(x)] = ugy oujyoulx) 1
g=¢l1<i<n 1€ 0(p.q)—SO(p.q):
X = 1(x) = uy(x);
u(u(y(x) = ug)W(x)) 1
g =exp (%(€n+1 + eo)) y X — x + y translation of E,, 1
=1+ 3(ent1 +0)y:
y€E,
g =exp (%neoen_,_]), x — Ax dilation of Ej;, A = exp(—n), Al
n e R* A eR*T
g=¢ X — %: inversion of center 0 and power 1: x2
u(x = u) ), forx #0
g =€t X — _71: inversion of center 0 and —x?2
power —1,
(=D u(=x"") = (1) @), for x # 0
g =exp (%(en_,_l — eo)a) x — x(1+ ax)_1 transversion of E,, N + ax)

Table of results of 2.4.2.3

Thus g(ROY(p +1,q + 1)) = (C,(p. q)), is isomorphic to the special projective

group PSO(p +1,q + 1).

2.4.2.5 Connected Components of C,,(p, q),n > 2

We denote by the connected component of identity for the topological group G.
Classically,

Cu(p,q)

_RO(p+1,9+1)

()
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according to a well-known result of algebra. Since | C,(p, q) | is connected, if an
element of RO(p + 1, ¢ 4+ 1) is mapped by ¢ into | C,,(p, q) |, the same is true for

any element in its connected component. Conversely, any element in has
its preimage in one of the connected components of the elements of Ker ¢, as it is
shown by the permissible pullback of a path of intoRO(p +1,q + 1),
since RO(p + 1, g + 1) is a covering group of C, (p, q). Therefore, the preimage by
¢ of is the set of the connected components of the elements of Ker ¢ in
RO(p+1, g+1). We use previous notations of 1.2.2.6 and 1.2.2.7. RO (p+1, g +1)
denotes RO(p + 1,q + 1) (" CT(E).

Let G denote the subgroup of elements g of RO(p + 1, g + 1) with N(g) =1
and let Gar = GoNROT(p+1,q + 1. G(J)r = Spin(p + 1,q + 1) with our
notation (cf. Chapter 1). It is well known3® that GBL is connected and of index 2
inROY(p+1,g+1).ButRO(p+1,g+1) =ROT(p+ 1,9 + 1)U C, where
Cc = Cro(p+1,g+HROT(p+1, g+ 1) withROT (p+1,g+1)NC = . C possesses
two connected components since the product of an element in RO*(p + 1, g + 1) by
a nonisotropic vector z with N (z) = 1 is a bijective mapping from RO* (p+1, g +1)
onto C.

RO(p + 1, g + 1) possesses four connected components: G(J{ ,Go — G(J{ ,CcGy
the complement in C of Go, RO (p +1,q + 1) — G . & 1 belong to G . An easy
computation shows that N (ey) = (—1)9+1.

(@) p+q=neven

(«) pg even (p and g even)
N(ew) = —1.ey € RO*(p+1,g+1) =G5 .67 ((Calp. @) |)=RO* (p+1, g+1).

It is well known that RO(p + 1,q + 1)/ROT(p+ 1,9 + 1) ~ Z2.3° C,(p, q) has
wo connected components.

(B) pq odd (p and g odd)
Neew) = 1. ey € G, 57 ([Culp.@)]) = G§. RO*(p + 1.g + /G (p +
1,q+ 1) = 7220 C,(p. q) has four connected components.

®)p+qg=nodd

(o) p even, q odd
N(en) =1,xey € Go \ Gar . Cn(p, q) possesses two connected components.

38 ¢f., for example, C. Chevalley, The Algebraic Theory of Spinors, op. cit.; A. Crumeyrolle,
Structures spinorielles, Annales de I’L.H.P,, section A, vol. VI, no. 1, 1969, pp. 19-55; R.
Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit.

39 Idem.
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(B) p odd, q even
N(eny) = —1, ey € CcGo. Cy(p, q) has two connected components.

We have obtained the following statement:

2.4.2.5.1 Proposition If pq is odd, C,(p, q) has four connected components, and if
pq is even, C,(p, q) has two connected components.

2.4.2.6 Consequences
2.4.2.6.1 Connected Component of the Identity in C,, (p, q)

Classically, in the Lie group RO(p + 1, g + 1) one can find a neighbourhood of the
identity element generated by the exponential mapping.*! According to the table given
in 2.4.2.4, we can deduce that the generic element of the connected component of the
identity element in C,,(p, ¢) is a composite of images by ¢ of elements in RO(p +
1, g + 1) such as exp (— %bjieij), exp (%(€n+1 + €0)y), y € Ep, exp (%r}eoenﬂ),
with n € R*, exp (%(enﬂ —ep)a), a € E,. We will use this remark later.

2.4.2.6.2 Topological Remarks

a) Itis known*? that O (p) x O(g) is a maximal compact subgroup of O (p, ¢) and
that every compact subgroup of O(p, ¢g) is conjugate to a subgroup of O(p) x
0(q). More precisely, O(p, q) is homeomorphic to O(p) x O(q) x RP4.43
Thus, since the Poincaré group P (p, q) is the semidirect product of the Lorentz
group O(p, q) and the group of translations of E,, that has n parameters, we have
obtained that P(p, q) is homeomorphic to O(p) x O(q) x RP4+"; since the con-
formal affine group is by definition the semidirect product of P(p, g) and of the
group of positive dilations, observing that R™ is homeomorphic to R, we obtain
that the conformal affine group is homeomorphic to O(p) x O(q) x RPI+1
(Cf. below footnote 120 in 2.9.1.3.3; see also: S. Kobayashi, Transformations
groups in differential geometry, op.cit. p. 10. The conformal affine group is the
semidirect product of CO(p, q), defined in Kobayashi, p. 10, and of the transla-
tion group of E,(p, q).)

41 Cf., for example, C. Chevalley, Theory of Lie Group, I, Princeton University Press, Princeton,
1946 (fifth printing, 1962).

27 A. Wolf, Spaces of Constant Curvature, Third edition, Publish or Perish, Inc., Boston,
Mass., 1974.

43 Such a result is in agreement with a general theorem of E. Cartan, improved by K. Iwasawa

according to which any Lie group is homeomorphic to the topological product of a compact

Lie group and a vector space (cf. S. Helgason, Differential Geometry and Symmetric Spaces,
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We will use in 2.5.1.6 the following result:
The | C, (p, q) | connected component of the identity in C,(p, g) is homeomor-

phic to x R2+1

Such a result comes from the fact that according to 2.4.2.6.1 any element of
the connected component of the whole conformal group C,, (p, g) can be written
as the product of a proper rotation belonging to , of a translation, of
proper dilation and of special conformal transformation, taking account of the
facts that the group of translations has n parameters, the Poincaré group w

parameters, the conformal affine group "("—2“) + 1 parameters, and the whole
conformal group C, (p, ¢) has ("Jrl)zﬂ parameters.

According the remarks given above in 2.4.2.6.2.a we obtain that | C,(p, q)

is homeomorphic to SO (p, ¢) x RP4+2"*+1 and homeomorphic to SO(p) x
50(q) x RP4+21+1 Moreover, C,(p, g) isomorphic to PO(p + 1,4 + 1) is
homeomorphic to O(p + 1) x O(g + 1) x RPTDE+D /7, We will use these
remarks below in 2.5.1.6.

(b) Itis easy to show that ey = E(epentier - en) & Spin(p,q) = G (p,q).4*

Since,classically,t/f_l( 0. q) )=G8L(p,q),45 the restriction of ¢ to G (. q)

is identical to the standard homomorphism v (often called twisted projection)
and to the classical homomorphism ¢.*0

2.4.3 Covering groups of the complex conformal group C,

2.4.3.1 Some classical reviews (cf. for example C. Chevalley, The algebraic
theory of spinors, op.cit., pp. 40—41 and pp. 60-61)

Let E,(p, q) be RP14, with p + ¢ = n > 2, endowed with a quadratic form Q
of signature (p, ¢) and the corresponding bilinear form B. Let E/,, denoted also by
(En)c, be the complexification of E,. E,, is an n—dimensional C-space. If {¢;}1<;<n
denotes the standard orthonormal basis for £, then {1 ® e;}1<j<, is a basis for E .
over the field C. If F denotes any n—dimensional C—space, the real space obtained

44 In any case, n even or odd, any element in RO(p, q) is classically a product of elements
v; in Ey(p, q) with N(v;) = g(v;) = £1. Since ey - - - e, is in RO(p, g) and since eq and
ent1 & En(p,q), eoeny1 ¢ RO(p, g) but epe, 1 € RO(1, 1). Thus, ey ¢ RO(p. q),
since if not, ege,+1 = ey (eq - - - en)~ ! would be in RO( P, q), a contradictory result.

43 cf. Chapter 1 or A. Crumeyrolle, Structures spinorielles, Ann. Inst. H. Poincaré, section A,
vol X1, no 1, 1969, pp. 19-55.

46 For any x in E,(p, q) and any g in Gb"(p, q), let us recall that p(x).g = gxg~

¥ (g)x = m(g).xg .

! and
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by restriction of the scalars to the field R is denoted by rF. If {e;}i<j<, is a
C-basis of F, then {e;,1¢;}1<j<, is an R-basis of g F, that is a 2n—dimensional
R-—space.

Let B’ be the bilinear form obtained from B by extension of R to the overfield
C and let Q' be the corresponding quadratic form obtained by extension of Q. It is
shown in C. Chevalley (op.cit IL5 p. 41) that C),(Q), the complexification of C,,(Q),
is isomorphic to the Clifford algebra of Q.

2.4.3.2 Definition Let f be a continuously differentiable mapping from an open set
U’ of E) into E},. Then f is said to be conformal in U’ if there exists a continuous
function A’ from U’ into C* = C \ {0} such that for almost all x € U’ and for
all a, b € E,, we have that B’ (dy f(a), d, f (b)) = A2(x) B'(a, b). The set of such
mappings constitutes a group denoted by Conf’(n) or sometimes by Cj,, if there is
not any ambiguity.

2.4.3.2 Covering group of C),

The previous route used in 2.4.2.2 can be taken again. Let {e;}1<;<, be the stan-
dard basis of E,,. Let F be E, @ E/,, where E), is a complex hyperbolic plane with
its standard orthonormal basis {eg, e, 11}, Q'(eg) = 1, Q'(eyy1) = —1. We can
construct an injective mapping u’, from E,, into the isotropic cone of F' = E, ,,
defined by

W () = 5 (Q'(0) = 1) eg+x + % (Q'() + 1) ensr, with Q'(x) = x%,

| =

and a homomorphism ¢’ with a discrete kernel A" from RO’(n + 2)—with obvious
notation the ’ are relative to the complex case—onto ¢'(RO’(n + 2) such that for
almost all x € E), and for any g € RO'(n + 2), if we set ¢'(g) = f, there exists
0g(x) € C such that we have m(eu'(x)g~! = og(X)u'(§'(g).x).

As stated previously ¢'(RO’(n = 2)) can be identified with the group generated
by inversions, similarities and translations of E}, : ¢'(RO’(n +2)) = Conf’(n). The
group @' (RO'T (n+2)) is called the restricted complex conformal group and denoted
by Conf’(n),. We can verify that

RO'(n+2)

Conf'(n) ~ T

and respectively
RO*(n+2)
A’ ’
where A" = {1, —1, ey, —epn, i, —i,iey, —iey}, with ey = {egenr1e...e,}. The
construction of the corresponding table of results is left as an exercise.

Conf'(n), ~
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2.5 Real Conformal Spinoriality Groups and Flat Real
Conformal Geometry

2.5.1 Conformal Spinoriality Groups
2.5.1.1 A Brief Review of Previous Results

LetE,(p,q) (p+q = n,n>2)be R" with a quadratic form Q of arbitrary signature
(p,q). CI(E,) denotes the Clifford algebra of E, with the quadratic form Q; 7 is
the principal automorphism of CI(E,), t the principal antiautomorphism of CI(E},).
B is the fundamental bilinear form associated with Q chosen so that for all x € R”,
B(x,x) = Q(x). We recall that the group ROQ = RO(p, q) constitutes the 2-fold
covering of the orthogonal group O(p, q). If g € Pin(p, q), we define ¢(g)x =
gxg™l.x € R", ¢(g) € O(p.q) and Y(g) = m(g)xg™ ", ¥(g) € O(p.q). We
introduce an orthonormal basis of E, (p, g) such that Q(e;) = el.2 =g (g = 1,
1<i<peg=—-1l,p+1<i<n)ln R? with a quadratic form Q» of signature
(1, 1), we consider an orthonormal basis {eq, e,+1} such that Q(eg) = (e0)? = 1,
Oent1) = ((3,,.5_1))2 = —1. Then {ey, ..., ey, €0, ey+1} is an orthonormal basis
of R"*2 = Ejo(p+1,g+1) = E(p,q) ® E2(1, 1); ep and e+ are chosen
once and for all. C,,(p, q) stands for the conformal Lie group of R” isomorphic to
PO(p+1,q9+1) = %z’qﬂ), which we agree to call the Mobius group of £, (p, q).
More precisely, we have constructed an injective mapping u from E,(p, ¢) into the
isotropic cone Cp42 of E,1o(p + 1, q + 1) defined for all x € E,(p, q) by

u(x) = %(x2 — Deo +x + %(x2 + Denti. (B)

The “projection” ¢ called “twistor projection” or “conformal spinor projection”
from RO(p + 1,q + 1) onto C,(p, q) is such that for almost all x € E,(p, q) and

forallg e RO(p+ 1,9 + 1),
T(Qu(x)g™ = Y (Qux) = og()u(p(g)x), (A)

witho, (x) € R.Wesetey = epe,yieq - - - eyithekernelof ¢: A = {1, —1, en, —en}
isomorphic to Zy x Z; if (ex)? = 1, orto Z4 if (en)*> = —1. g(ROT (p+ 1,4+ 1)),
is called the real conformal restricted group.

If we set xg = (eg + en+1)/2 and yo = (ep — en+1)/2, {x0, yo} is then a special
“real Witt basis” of C2 associated with {eg, ,1}. From (B): u(x) = x%xo +x — y,
we deduce

u(x)yo = x*xoy0 +xyo and  you(x) = x*yoxo + yox,
whence we obtain

u(x)yo + you(x) = 2B(u(x), yo) = x*.

Thus (A) is equivalent to

(x), yo)xo + yo, (Ap)
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subject to (u()c))2 = 0, since xgyo + yoxo = 2B(x0, y0) = 1 and xyp + yox =
2B(x, yo) = 0.

2.5.1.2 Fundamental Diagram

It is now possible to construct an explicit homomorphism £ from the orthogonal Lie
group O(p + 1, ¢ + 1) onto C,,(p, ¢), in order to obtain a commutative diagram.*’
i, respectively j, denotes the identity map from O (p, q) into C,(p, g), respectively
O(p+1,q9+1).

First, we construct 2. For any o belonging to O (p+1, g+1), there exists g(modulo
+1)belongingto RO(p+1, g+1) suchthatw = ¥ (g). Since according to [1] for any
g, 8 InRO(p+1,g+1)suchthatg(g) = f € Cu(p,q)and¢(g") = f' € Cu(p, q),
@(g'g) = f' o f and for almost all x € E,(p,q), 0g5(x) = og(f(x))0,(x), we
obtain that o, (x) # 0 when f(x) is defined and that (A) is equivalent to

u(f () =rg()Y(gHux) for f =¢(g), (A2)

where Ag(x) = (crg(x))’l. So with any w € O(p + 1,9 + 1) we can associate
f = @(g) € Cu(p,q) such that f(x) = Ag(x){w.u(x) — 2B(w.u(x), yo)xo} + yo
with 244 (x) B(w.u(x), xo) = —1. One obtains a map & from O(p + 1, ¢ + 1) into
Cu(p,q).

We agree toset Ay = Ay = Ay, Where w = ¥ (g) = ¥ (—g) € O(p+1,g+1),
and we can easily verify that it is possible to write

—1
fx) = Ao {w.u(x) =2B(w.u(x), yo)xo} +y0, Awp(x) = Boat). x0) ©

when f(x) is defined and that the diagram is commutative.

2.5.1.2.1 Proposition One can verity that o — h(w) = f = ¢(g) is a homomor-
phism™® from O(p + 1, g + 1) onto C,(p, q) such thati = h o j, $ = h o . Thus
we obtain an isomorphism h of Lie groups from PO(p + 1, g + 1) onto C,,(p, q) by
using quotient groups such thath = hy o h, where h is the homomorphism associated
with the classical exact sequence of groups

l—>2Z, - O(p+1,9+1)—>PO(p+1,q+1) — L

Let k; be the inverse of h. In the same way as previously, if C, stands for
the complex conformal group® and O’(n + 2) for the complex orthogonal group,

47p, Angles, (a) Géométrie spinorielle conforme orthogonale triviale et groupes de spinorialité
conformes, Report HTKK Mat A 195, pp. 1-36, Helsinki University of Technology, 1982.
(b) Real conformal spin structures on manifolds, Scientiarum Mathematicarum Hungarica,
vol. 23, pp. 115-139, Budapest, Hongary, 1988.

48 Cf. exercises below.
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. 1 h(w) = fsuch that
By Bnap FLath ] g () — 2B0nuto)

75 Yo
@ u Z l et
= - -1
Roif’:‘i‘) Ly(x) = (T,(x))

RO(p+1,¢q+1)

PN

Z, A A
1 1 1
n(gxg™ = W(guix) = CelX)(F(2) () A= {1,—1,ey.,—ey}
geERO(p + 1. g+ 1), Plg) =f € Clp.q) EN= €peyin €.y
ux) = $(x* = Deo + x + F(x% + Deye A Zo X Lyif (ep)? = |
w(x) = x*xo+ x— yo A Zy if (e =—1

Ep+a (P & l-q + 1)=E, (P,Q:'@Ez(l-])
E.(p.g)=R'(p.q)

Fig. 2.1. Fundamental diagram

RO'(n + 2) is an 8-fold covering of C),, with kernel
A, = {1’ _15 eN, —€N, i’ _i’ ieN7 _ieN}'(Z)/7

respectively ¥, denotes the “complex conformal spinor projection,” respectively the
“twisted spinor projection,” from RO’(n + 2) onto C},, respectively O’(n + 2). Thus,
one can construct a diagram analogous to the fundamental diagram in Fig. 2.1—this
is left as an exercise.

2.5.1.2.2 Remark
Let us, finally recall®® the following remark: if n = 2r, theney fr+1 = (=) 77 fr41,
where fr+1 = y1---y-yo is an (r + 1)-isotropic vector and f,ijey = (—1)’+1-
(—i)" 77 fr41 according to a result given in C. Chevalley5 I (cf. exercises below).

50 p, Angles, Les structures spinorielles conformes réelles, Thesis, op. cit., p. 41.

ors op. cit., p. 91.
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2.5.1.3 Definitions of Real Conformal Spinoriality Groups (n Even,
n=2r,r >1)

Let fr+1 = y1 -+ ¥rYo = fryo be an (r + [)-isotropic vector.

2.5.1.3.1 Definition Let H¢ be the set of elements y € ROV (p + 1, g + 1) such that
Vfr+1 = €1 fr+1, where g € A= {1, —1, ey, —en}. We agree to call, by definition,
the subgroup S¢c = ¢(Hc) of (C,,(p, q)), the real conformal group associated with

Jr+e1 = Y1 Yryo.

Following the result given above (according to which ey fr+1 = (—i)" 77 fr41),
such a definition is equivalent to the following one:

Sc = @(Hc), where Hc is the set of elements y € ROT(p + 1, g + 1) such that
if r — p=0or2 (modulo 4), yf4+1 = £ fr+1,and if r — p = 1 or 3 (modulo 4),
Vfr+1 = &fr41 withe = 1 or +i.

2.5.1.3.2 Definition Let (Hc),. be the set of elements g € RO (p + 1, ¢ + 1) such
that gfr4+1 = ufr+1, where u € C*. We agree to call by definition the enlarged real
conformal spinoriality group associated with f, | the subgroup (S¢). = @((Hc)e)

of (Cu(p,q))r-

We can observe that ey and e, being chosen once and for all, these definitions
are associated with the choice of an r-isotropic vector f,. = yj---y, of E,(p, q).

2.5.1.3.3 Remark Let us observe that these subgroups, at first glance “bigger” than
those defined by Crumeyrolle®” are subgroups of (C,,(p, ¢)), that cannot be reduced
to subgroups of SO(p, ¢) defined as real spinoriality groups.’® More precisely, one
can easily verify, for example, that any real conformal spinoriality group contains the
following elements:

() the special conformal transformation x — f(x) = x(1 +a x)~!, where,
f=o(1+ %(en-‘rl —ep)a) witha =e; + -+ + ey,

(B) the translation x — x +y, wherey =e; +---+ep, —ey_pi1--- —ey.

(y) We notice that ¢(epe,4+1) = —Idg, belongs to Sc and that the following
elements of SO(p, q): ¢(eje,—it+1) belong to S¢ foralli, 1 <i <n.

52 A. Crumeyrolle, (a) Groupes de spinorialité, Annales de I’Inst. H. Poincaré Section A (N.S.),
14,1971, pp. 309-323; (b) Dérivations, formes et opérateurs usuels sur les champs spinoriels
des variétés différentiables de dimension paire, ibid. 16, 1972, pp. 171-201; (c) Fibrations
spinorielles et twisteurs généralisés, Period. Math. Hungar., 6, 1975, pp. 143—171; (d) Spin
fibrations over manifolds and generalized twistors, Differential geometry, Proc. Sympos.
Pure Math., Vol. 27, Part 1, Stanford Univ., Stanford, Calif., 1973, Amer. Math. Soc.,
Providence, R.I., 1975, pp. 53—67.
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2.5.1.4 Description of the Enlarged Real Conformal Spinoriality Groups

The abbreviation m.t.i.s. stands for maximal totally isotropic subspace as in
C. Chevalley.>*

2.5.1.4.1 Proposition Any enlarged real conformal group of spinoriality (Sc). is the
stabilizer of the m.t.i.s. associated with the r-isotropic vector y; - - - y, for the action of
(Cun(p, q))r. If pq is even, (Sc). is connected; if pq is odd, (Sc). has two connected
components. For0 < p < r,dim(S¢). = (r + D2+ p(p+1)/2. (o), the enlarged
real group of spinoriality associated with f, as by A. Crumeyrolle® is a normal
subgroup of (Sc)e.-

Proof. The demonstration can be carried out in two steps. Let us write f; = h(w)
foroe O(p+1,q9+1).

(a) First, we suppose that u( f1(yi)) = f1(yi) — yo is well determined for all i,
1 <i <, that is, equivalently, f1(0) and f1(y;) well defined for all i, 1 <i <r.

According to a result by Crumeyrolle®®, y f, | = +uf,1 1, u € C*, is equivalent
toy fri1y ' = N(y)u? fr1. Thus, (He), is the set of elements g € ROT (p+1, g+
1) such that gf, 187" = o fr11, where 0 = N(g)u? = £u>.

One can easily notice that 7(g) f,+1¢~! = o f,+1 is equivalent to

1 1 1

m(@vig ' m(@yg - m(@yrg (@) yog T = o frit. 1))

Weset /(g) = w,w =SO(p+1,q+1),sothat m(g)yig~ ' =w(y), 1 <i <r,
and 7(g)yog ' = w(yp). So g belongs to (Hc). iff 1/ (g) = w belongs to o, the real
enlarged spinoriality group associated with fr41 = Y1 -+ ¥r)0.

According to the diagram given above, we obtain (S¢). = h(o,).

By an easy computation, taking account of the formulas (C), we obtain that (I) is
equivalent to

0w (Y1)0w(¥2) - - 06 () (=0 (O)u(f1(y1)) - - - u(f1 (v )u(f1 (o))
=0y - yryo = —ou(y) - -u(y)u0),

Since u(y1) - - - u(y,)u(0) = —yy - -- yryo, we notice that the m.t.i.s. associated re-
spectively with u(y1) - - - u(y,)u(0) and with yy - - y,yo are equal. So we have the
following relation equivalent to (I):

0o(¥1) -+ 00 ()0 (0)u(fi1(y1) - - u(f1(y)u(f1(0)) = ouyr - - - uy,u(0), (D)

S, Chevalley, The Algebraic Theory of Spinors, Columbia University Press, New York,
1954.

55 A. Crumeyrolle, Fibrations Spinorielles et Twisteurs Généralisés, op. cit.

Twisteurs Généralisés, op. cit.
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which means®’ that the vectors u(f1(v1)), ..., u(f1(yo)), u(f1(0)) belong to the
(r + 1)-m.tis. F, | associated with f,;1.

We notice that u operates on the set of isotropic subspaces as the translation of
vector u(0) = —yyp, since forany z € E(p, q), u(z) = 2Zxo+z— vo. If u(z) belongs
to the (r + 1)-m.t.i.s. Fr/+1, then z belongs to F/ = {y1, ..., yr}.

According to our assumption, o, (y;) # 0 foralli, 1 <i < r, and 0,(0) # 0.
Since, taking into account another result of Crumeyrolle®®  belongs to o, which
stabilizes the (r + 1)-m.t.i.s. {y1, ..., ¥, yo} for the action of SO(p + 1, g + 1), the
restriction of w to F/ = {yy, ..., y.} stabilizes F/. So we find that forall i, 1 <i <r,
00 (i) = 00 (0) # 0.7

(D) is equivalent to
o(y1) - 0(r)(=0(0) f1(0) + @(y1) - - 0 (¥r)ow(0)yo = oyr -+ yryo, (D)

since @ (y0) = —06,(0)(f1(0) — yo). Since w(y1), ..., w(y,) are independent in F,
according to the definition of w, and since f1(0) belongs to F/,

w(y) - o(y) f1(0) =0 1)

necessarily.60 Thus, (IIT) means that

o
(1) o(yr)yo = ) Y1 YrYos
whence we deduce®! that
o
- ey v
w(y) o) Ow(O)yl Vr Iv)

An easy computation gives the following result:

o) - o) = 0,00 [[(AG) - A0), V)

i=1

57 ¢, Chevalley, The Algebraic Theory of Spinors, op. cit.; S. Sternberg, Lectures on Differential
Geometry, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1964.

A Crumeyrolle, Fibrations Spinorielles et Twisteurs Généralisés, op. cit.

59 According to the formulas (C) of 2.5.1.2, 04y (0) = —2B(w(—y0), x9) = 2B(w(y9), x0)
and oy (y;) = =2B(w, u(y;), xo) = =2Bw(y; — yo). x0) = 2B(w(yp), xp), whence the
result.

603, Sternberg, Lectures on Differential Geometry, op. cit., p. 14 Th. 4.3.2 chapter II.

ol c, Chevalley, The algebraic theory of spinors, chapter III, p. 72, I1.1.4. According to this
result, since yg = 0, and since A = (w(yl) oo(yyr) — #(Io)yl ...yr) Yo is equal to

zero, there exists a scalar x such that A = pyg and because of the difference of degrees,

necessarily u = 0. For additional information see also P. Angles, Géométrie spinorielle
conforme orthogonale triviale et groupes de spinorialité conformes, in the bibliography to
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as w(yi) = 0w (0)(f1(yi) — f1(0)) foralli, I <i <r.
o If f1(0) = 0, we obtain that

JiD - filyr) = T Vs

o
(06, (0))*
where 0 = £ belongs to C*. So 1 such that fi(y1)--- fi(y,) = 1y1---yr is
any element of C*.

o If £1(0) # 0O, observing that

- 1
g(fl 00 = FiONf10) = () -0 () fi(0) =0,

according to (IIT") and moreover noticing that the product on the left equals f(y;) - - -
f1r) f1(0), we find that the vectors f1(y1), ..., fi(yr), f1(0) are dependent in

F/_,.5% [see IV and V]

[Tron = fio) = Yr =y v
i=1

o
(o)1

where p) is any element in C*, taking account of the dependence of the vectors

fODs -, fi(yr), f1(0), we obtain that fi(y1)--- fi(y:) = payi---yr, where
uo € C*.

(b) Letus prove now that for any f] belonging to (S¢)., itis permissible to suppose
that f1(0) is well-defined and to find zy, . . ., z, linearly independent, belonging to Fr/
such that all the fi(z;) are well-defined if some of the elements fi(y1), ..., f1(yr),
are not defined. Let us recall that classically, for x = x'e; +- - - +xPe p+x? tle il
+---+x"e, thex', 1 <i < p, are called “spatial coordinates of x € E,(p, ¢)” and
those for p + 1 < i < n the “temporal coordinates of x.” So, forany j, 1 < j <n,
we call (Sym); the mapping already called u,; or u; in 2.4.2.3. Moreover, (Sym);
denotes the space symmetry defined as the product [ ], j<p(Sym);, (Sym), denotes
the product [] pH1<j<ptq (Sym);, and (Sym);; = (Sym);(Sym);. It is well known
(see, for example Spaces of Constant Curvature by J. A. Wolf %) that

O(p+1,q+1)
(O(p+1,g+1))

~7>r x7y,

where denotes the connected component of the Lie group G, and that

[ (O(p+1,q+1) |=S0T(p+1,q+1).

62 g, Sternberg, Lectures on Differential Geometry, Th. 4.2, p. 15.

p. cit., p.341.
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(i) Let us assume that p and q are even (n = p+q is even). We know (2.4.2.6) that

[ROG+1.g+1) |=Gi(p+1.q+ 1,67 ([Culp. ) ) =RO*(p+ 1.+ 1),
C, (p, q) has two connected components, and, finally, that RO(p + 1, ¢ + 1) has four
connected components. We introduce the elements &-e,, &=, where e, = epey - - - ¢
andeg = epy1 - --eyeqq1. One may verify that ££1 belong to G(J)F(IH- L,g+1),xe,
belongto Go(p+1,g+1) =G (p+1.g+1), eg belong to CcGo(p+1,g + 1),
where C is RO(p + 1,q + D\RO"(p + 1, g + 1). So, we find again that O(p +
1,q + 1) has 4 connected components and that any element w € O(p + 1,q + 1)

can be written = w*wp, wp € |0O(p + 1,9 + 1)|and ©* = Idg, , = ¥ (£1) or

w* = (xe,) = (Sym)s (space-symmetry), or o* = (£egp) = (Sym); (time-
symmetry), or w* = —Idg, +» = ¥ (xen) = (Sym), (space-time symmetry).

Such a result is well known and used in physics forn =4, p =3, and ¢ = 1.
Moreover we observe that ep and eg belong to the same class of RO(p + 1,9 + 1)
modulo A = {1, —1, ey, —ey}, since ep(eQ)_1 = ey, as can be easily verified.
Therefore necessarily,

@(£ep) = ¢(Feg) = Inv(0, 1) o (Sym); = (Sym); o Inv(0, —1)

in the space E,(p, q), where Inv(0, 1) (resp. Inv(0, —1)) denotes the inversion of
center 0 and power 1 (resp. —1). We observe thath(|0(p + 1,9 + 1)|)C| Cu(p,q) |
and thatany element f € C,(p, ¢) canbe written f = f*o fy, where f* = h(w*) and
fo=h(o) €[Calp, @ Jand f* = (1) = p(xen) = (), or [* = G(e,) =
¢(F£eg) =Inv(0, 1) o (Sym)e = (Sym); o Inv(0, —1) in the space E,(p, q), where
Inv(0, 1), respectively Inv(0, —1), denotes the inversion of pole O and power 1,
respectively of pole O and power —1. Therefore two cases appear: f = f* o fj,

with fj belonging to , and f* = Idg, or f* = Inv(0, 1) o (Sym); =
(Sym); o Inv(0, —1). We recall that n and pq are even, and that C,(p, ¢) has two
connected components. According to [2.4.2.6] fo = Q07 oH o S, where Q2 belongs
to SO4(p,q), T is a translation of vector b € E,(p,q), H is a dilation, and S
is the special conformal transformation or transversion x — x(1 + ax)~!, where

a € E,(p,q). We remark that (Sc). C|Cn(p, q) | and that we are led to study the
case that fj belongs to|C,(p,q) |, fo= Q07 oH o S, with

0g(x) = 0Q(T o H o S(x)) o7 (H o S(x)) onS(x) o5(x) .

=1 =1 =x—1 N(l+ax)

Since 04, (x) = 04, (x) = 0 is the equation of singular points of f0,64 we find that

for any isotropic vector x, a singular point of fy, we have B(a,x) = —% since

N(1 +ax) = 1 +2B(a, x) + a’x?. Since fy = h(wo) stabilizes®® F/, we observe

64 p, Angles, Construction de revétements du groupe conforme d’un espace vectoriel muni
d’une métrique de type (p, q), Ann Inst. H. Poincaré Sect. A (N.S.), 33 (1980), 33-51.
it.
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that fo(0) is well-defined, according to the fact that fp(0) = Qo7 o H o S(0) with
S(0) = 0, H(0) = 0, and that 2 o 7 (0) belongs to F/. Thus, we can assume that
f1(0) is well-defined according to the writing of fi. We have found that the condition
B(a, x) # % is sufficient for fy(x) to be well defined. This implies that x belongs to
a dense subset of E, (p, ¢g) (cf. also Jean Dieudonne in Elements d’ Analyse, tome 3,
Gauthier Villars, 1970, pp. 161-163 about Sard’s theorem), in which we can choose
suitable z1, ..., z,, such that all the fy(z;) are well defined.
If yi, 1 <i <r,isasingular point for fy, we can find an isotropic vector

.
ar=Y dy
i=1

belonging to F, suchthatz; = y; +aj, 1 <i <r, satisfy the conditions B(a, z;) # — %,
the vectors z; being linearly independent. We note that setting a; =y; + -+ + vy,
belonging to F,’, B(a, z;) # —% foranyi, 1 <i <r,and these vectors z; translated
from the y;’s are linearly independent.

(ii) Let us now assume that p and q are odd. C,,(p, q) has 4 connected components
and (p_l( Cu(p,q) ) = G(J{(p + 1,9 + 1). We observe that =1, ey, £e,, +eg

belongto G§ (p+1,q+ D and that GJ (p+1,g+1) =y~ (|0(p + 1,4 + 1)]).
RO(p+1, g+1) has four connected components as previously. There exists epe,41 €
ROT(p+1,g+1)\ Gg(p + 1, g + 1)—even element with norm equal to —1; there
exists epe,+1e1—odd element with norm equal to —1, belonging to Cc Go(p+1, g+
1); there exists egpe;eo—odd element with norm equal 1, belonging to Go(p+ 1, g +
D\ G{ (p+ 1, ¢+ 1). Therefore any element w of O(p + 1, g + 1) can be written

w = w*wy, where wg belongs to [O(p + 1,9 + 1)|and

o =1dg,,, = ¥ (D) = ¥ (Fey) = ¥ (Lep) = Y(Fep)

or
w* = (Sym)g o (Sym),+1 = ¥ (eoen+1)
or
»* = (Sym)g o (Sym), 41 o (Sym); = ¥ (epen+1€1)
or

w* = (Sym)g o (Sym); o (Sym)r = ¥ (epejer).

Thus, any element f belonging to C,(p, ¢) can be written f = f* o fy, where fy =

h(wp) belongs to and where f* =1dg, or f* = —Idg, or f* = (—Id)g, o
(Sym); or f* =1Inv(0, 1) o (Sym); o (Sym), with obvious notations.

%6 A. Crumeyrolle, Structures Spinorielles, op. cit.; R. Deheuvels, Formes quadratiques et
he Algebraic Theory of Spinors, op.cit.
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Thus, any element f belonging to (Sc)s can be written f = (£Id)g, o fo with
Jo €| Cn(p, q) |since epe, 11 and epeq ey are odd and since —Id g, belongs to (S¢)s,

as previously said. We are thus led to the previous demonstration (i).

The results concerning the dimension come from those given®’ for the spinoriality
groups. The same method as in 2.4.2.6 leads to the determination of these groups and
to the determination of their number (cf. below exercises).

2.5.1.5 Description of the Real Conformal Groups of Spinoriality in a Strict
Sense

As for the classical spinoriality groups studied by A. Crumeyrolle®® normalization
conditions appear. We obtain the following statement (cf. exercises below):

Sc is the subgroup of (C,(p, q),) of elements f| that stabilize the m.t.i.s. associated
with the r-isotropic vector f, = y1 - - -y, and satisfy

fOD - i) =1y

In elliptic signature the group Sc has 2 connected components. dim S¢ = r>+2r. IfQ
is aneutral form (p = r), Sc has 2 connected components if r is even and 4 connected
components if r is odd. dim S¢ = r(3r + 5)/2. In signature (p,q), p < n —q, p
positive terms r > 2; if pq is even, Sc has 2 connected components and if pq is odd,
Sc has 4 connected components. dim S¢ = (r + 1)> =2+ p(p + 1)/2.

2.5.1.6 Remarkable Factorization of Elements of (S¢). and S¢ and
Topological Remarks if n = 2r

If pq is even , any element fy € (S¢). can be written in the form fy = Qo7 oHo S,
where Q € | O(p,q) | and stabilizes F. = {y1,..., -} and therefore belongs
to o,, the classical spinoriality group associated with f. (cf. below 3.10.1.5).
7T is a translation, H is dilation, and S is a special conformal transformation:
x = x(1 +ax)" L

If pq is odd, fo,belonging to (S¢), ca be written fo = (£1dg,) o Qo7 oHo S
with 2 belonging to o.

Thus, we obtain that

is homeomorphic to R>"*!, taking account of the topological remark already used
in 2.4.6.2. (The group of the translations of £, has n parameters, R is homeomorphic

67 A. Crumeyrolle, Fibrations Spinorielles et Twisteurs Généralisés, op. cit.
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to R. Finally we recall that |C,(p,q)| is homeomorphic to | O(p,q)
x R2n+l )

We will use this remark later in 2.7.2.2.

One can easily extend such a factorization to the case of the real conformal
spinoriality group S, in a strict sense.

2.5.2 Flat Conformal Spin Structures in Even Dimension
2.5.2.1 Witt Decomposition

Let R¥ be endowed with a quadratic form of signature (p, ¢): we suppose that
p <n—p,(n=2r). We introduce® a “real” “special Witt decomposition” of
Ct2 = E ;, 4 = (En+2)c, naturally associated with the previous basis of E, 17 :
{e/ ... en, €0, eng1}: (W)po = {x;, yj} with

e+ e, ep+ en—pt1 iepy1 +en—p
X1 =T,...,xp=T,xp+1 = f,...,
iey +en—r+1 ey + ent1
X=X =
ep —ep ep — ey—pti1 iepy1 —enp
y1= 2 7"‘9yp= 2 ’yp+1= 2 v
. iep — ey—r+1 €0 — €p+1
FETT o W= T

So that for all i and j, B(x;, y;) = 6;j/2 and x;y; + yjx; = 8;j = 2B(x;, yi),
0<i<r,0<j<r. We know’? that for each Witt decomposition of E’

n+2°
E,’1+2 = F + F’, we can find a basis of isotropic vectors {11, ..., n,, no} in F’ and
a basis of isotropic vectors {&1, ..., &, 0} in F such that {§;, n;} is a “real” Witt

basis of E;l 4o With the same notation as 2.5.1.1, we consider n = kj o ¢ from
RO(p +1,q + 1) onto PO(p + 1, g + 1) via the exact sequence

11— A—RO(p+1,g+1) —>PO(p+1,g+1) — 1

and " = k{ o ¢', so that we have the corresponding exact sequence

1l — A —ROm+2) L PO(n+2) — 1.

Let CI, 4 be the complexified algebra of Cly2, and let o be the classical spin
representation’! of cl 4o corresponding to the left action of Cl . o on the minimal

ideal CI/, 4o fr41 (Where fry1 = y1y2 -+ yryo is an isotropic (r + 1)-vector), called’?
“the space of conformal spinors” associated with E,, (p, q).

Op Angles, Les Structures Spinorielles Conformes Réelles, op. cit., p. 40.
70 A. Crume rolle, Fibrations Spinorielles et Twisteurs Généralisés, op. cit.
ors, op. cit.

nformes réelles, op. cit.
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2.5.2.2 General Definitions

We will use the definitions recalled in 1.2.2.8.4. In particular ¢, mentioned in 2.5.3.1,
denotes the spin representation. We consider’? the projective space P(E, 4o) and
projective Witt frames of P(E, ) associated with Witt basis of F; 4 andin particular
projective orthogonal Witt frames of P(E;l +2).

Let (S~2,,+2)1 and (Wn+2)1 be two projective orthogonal Witt frames of P (E ;/1 +2)
so that (Wn+2)1 = rl—l(fz,,+2)1, where 1'1_1 ePO(p+1,qg+1). Classically,74 we
identify the complexification of 71 with 71. Thus, we determine the action of RO (p +
1,g+1)on PO(p+1,q+1).Let g be one of the four elements of RO(p+1,qg + 1)
such that n(g) = 71 € PO(p + 1,q + 1). We observe that 71 = n(g) = n(—g) =
n(eng) =n(—eng).

If (W, 12) is a projective Witt frame of P(E, 4») associated with an orthogonal
projective frame of P(E, ) and with a “real” orthonormal basis (B),+2 of E,_,
and with a “real” orthonormal basis (B/l) of E}, (eo, en+1 being chosen once and for
all), we define,” “over” the orthonormal “real” basis (B,,) of E}, the four spinor
frames called conformal spinor frames or E,:

{e1(xigxi, -+ - xi, fr+1)},  where ey = £l or L ey, ig<iyp <---<ip,
such thatif n(g) =71 € PO(p+ 1,9 + 1) andif § € {g, —g, gen, —gen} we have

XigXiy -+ Xiy fra1 = 8 YEio&iy - &0, 8fra1 = 08 D& - Eiy8frt

This is equivalent to
Q(S)[xioxil s Xy fr+1] = 8xi0xi1 ce X fr+1 = fiofil e éih 5fr+1-

Thus, (Rp42)1 = n(8)(R,,_,)1 is equivalent to S,12 = 0(8)S,,,, where (R,42)1
and (7@; 42)1 (respectively, S,2 and A o) are projective orthogonal frames in the
projective space P(E, 42), respectively “conformal spinor frames” with Y =

n+2
Xig = Xiy, fr1 and Spq2 = §ig&iy -+ - 5if 8 fr41-

2.5.2.2.1 Definition A conformal spinor of E,, associated with a complex represen-

tation ¢ of RO(p + 1, ¢ + 1) in a space of spinors for the Clifford algebra CI, 42
is by definition an equivalence class ((7~2n+2)1, g, Xn+2), Where (7~€n+2)1 is a pro-
jective orthogonal frame of P(E;/1+1)’ g E€ERO(p+1,g+ 1), xp2 € 2" and
where ((7@; 4215 &5 Xp4p) is equivalent to ((Rns2)1, & Xns2) if and only if we have

(R )1 = 0((Rus2)1), 0 = n(y) € PO(p+1,q+ 1) withy = g’¢g”" and

X i) =" (0(¥)) ' xns2, where “(0)~! is the dual representation of ¢ and where

(Q(]/))_l is identified with an endomorphism of Cer.

73 1dem.

T4 A, Crumeyrolle, Structures Spinorielles, op. cit.
75 p A i e revétements du groupe conforme d’un espace vectoriel muni
Les structures spinorielles conformes réelles,
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We can also write (7%;4_2)1 = (Rp42)10 instead of (7@;4_2)1 = 6 (Rp42)1, which
defines a right action, and in the same way, we can use the associated projective
orthogonal Witt frames of P(E, ) : (Q2n+2)1, (€2, )1

2.5.2.2.2 Definition We agree to call by definition an equivalence class ((7~2n+2)1 , 8),
where g is in RO(p + 1,q + 1) and (2,42)1 is a projective orthogonal frame of
P(E,’1 4») aconformal spinor frame of E,, associated with the “real” orthonormal basis
(Bo)a of E},. (Rp42)1, g) is equivalent to ((R]_,)1, g) if and only if (R}, ;)1 =
(Rp42)10 and o = n(y) with g, ¢ € RO(p+ 1, + 1), and y = g'g~".

We remark that

(Raus2)15 8) ~ (Rus2)1, —8) ~ (Rus2)1, eng) ~ (Rus2)1, —eng)-

If we suppose g, g € RO'(n +2) withy = g'g~! € RO(p + 1,9 + 1), we can
consider the action of RO(p + 1, q + 1) on every spinor frame of Cl;l+2f,+1.

2.5.2.2.3 Definition With obvious notation, (Qn+2)1 and (Q; +2)1 being projective
orthogonal Witt frames of P(E;;Jrz)’ ((2742)1, g) and ((Q;Hrz)l, g') define the same
flat conformal spin structure if and only if (Q;z+2)1 =o)L, (y) =0,y =
gdg ' g, €eRO(n+2),y eRO(p+1,q+1).

(Thus ((Qn42)1.8) ~ (Qu42)1. =8) ~ (Qus2)1, en8) ~ (u12)1, —eng).) We
define’® complex conformal spin flat structures, using the mapping 1’ from Pin’(n+2)

onto PO’ (n + 2) with kernel A’.

253 Casen=2r+1,r > 1
2.5.3.1 Definitions

If in an orthonormal basis of E,, we can write ¢ (x) = (x)>+- - -4+ (x?)? — (x?T1)2 —
= (x2r )2, under the assumption that p < 2r — p, we obtain’” a Witt decomposition
of E|, = F+ F'+{e,}, where F and F’ are defined as previously for the case n = 2r.

If we consider a special Witt basis 2, = {&,n;,e,} and W,, = {x;,y;, zs}
associated with a real orthonormal basis of E),, according to the fact that ey =
epent1€1 - - - en belongs to the center of the Clifford algebra CI(E,42) (we recall that
the center of CI(E,7) is then R @ Rey; cf. Chapter 1), we can define real conformal
spinorial frames {e1S} where S = {x;,x;, - - - x;, fr41}, io < i1 < -+ < iy, with
g1 = %1 or xey for CI'N(Q1)n12) fr11."8 so that S, 12 = p(8)S),_, is equivalent to

76 p, Angles, Les structures spinorielles conformes réelles, Thesis, op. cit., cf. below, exercises.
LN Crumeyrolle, Structures Spinorielles, op. cit.

78 1f n = 2r + 1, then CIT (Ep,) is central simple. If Q is of maximal index r, CIT(E,) is
e Clifford algebra for the space F + F’, where
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(Rus2)1 = n(8) (R, ;1.8 € ROT(p+1,q+1) or 6 € ROT (n +2) with previous
notation.

We can consider ROT (p+1, g+1) or ROV (n+2) since we represent only Cl;ltz.
We can extend previous definitions, taking account of these remarks. We replace €2,
by {§,nj, en} and W, by {x;, y;, za}.

The same is done for previous orthogonal projective frames and Witt projective
frames.

2.5.3.2 Remark

Since n = 2r + 1, we now obtain that ey fr+1 = frr1exy = (—i) ~P f41 since ey
is in the center of the corresponding Clifford algebra.

2.5.3.3 Conformal Spinoriality Groups

One can easily define conformal spinoriality groups associated with C l;,—:z as pre-
viously. Since we only represent Cl;:rz, we find again that C, (p, ¢) isomorphic to
PO(p + 1,q + 1) is isomorphic to (RO (p + 1,g + 1)) = SO(p + 1,q + 1).
We recall that it is known’® that if n = 2r + 1, PO(p + 1,q + 1) is isomorphic to
SO(p+1,9+1).

2.6 Real Conformal Spin Structures on Manifolds

2.6.1 Definitions

V is a real paracompact n-dimensional pseudo-riemannian (in particular, rieman-
nian) manifold. Its fundamental tensor field is called, abusively, Q. We denote by
E(E,V,O0(p,q),m), or simply &, the principal bundle of orthonormal frames of V
(If n odd, n = 2r 4+ 1, we assume that M is orientable.)

2.6.1.1 Bundle & (V)

Leti : O(p,q) — C,(p, q) be the canonical injective homomorphism. The group
O(p, q) acts on Cy(p, q) by (w, f) € O(p,q) x Co(p,q) = i(w)f € Ca(p, q).

F + F' is such that F + F' + (&y) is a Witt decomposition of E,, with &y being nonisotropic,
and where Q; isrelated to Q by Q1(y) = —Q(0)Q(»), y € F + F’. Q1 is a neutral form
and C1(Q1) can be represented as CI(Ey) forn = 2r. CIT(Ey), forn = 2r + 1, possesses
a spinorial representation p4 which can be extended exactly in two inequivalent ways to an
irreducible representation p of CI(Ey). (Cf. chapter 1 of C. Chevalley, The algebraic theory
of spinors. op.cit.)
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Let &1(A1, V, Cy(p, q), w1) be the principal bundle with structure group C,(p, q)
over the same base V, obtained by i-extension of e E (V) =i(E(V) =&(V) =
£1(A1,V,Cu(p,q), 1) is a principal bundle with structure group C,(p, q) in the
following way: let us choose a covering (Uy’)q’ca of V with a system of local cross
sections o, and transition functions g,g'. Let us define maps g/, = iogyp . Then,
forall x € Uy NUg N U, the g(’x,ﬂ, satisfy the relation g(’x,ﬂ, (x)gl’g,y,(x) = g(’x,y,(x)
and consequently, there is a principal bundle &; with a system of local sections such
that the g/, p are the corresponding transition functions, according to a general result

of Greub and Petry.8!

2.6.1.2 Bundle P& (V)

Let us recall that C,, (p, ¢) is isomorphic to PO(p + 1, g + 1). Using, with previous
notation, the classic sequence of groups

| —Z— O(p+1.g+1) 5 PO(p+1,qg+ 1) — 1

(cf.2.5.1.2), letus define & = /10 j = kyjoi andlet P& (V) = A(§(V)) = & (V) be the
X-extension of the principal bundle §(V). P& (V) = &(V) = P&(E!,V,PO(p +
1,q + 1), my) is a principal bundle with structure group PO(p + 1, g + 1) over the
same base V. Thus, ep and e,4 being chosen once and for all, the two bundles &;
and P& are isomorphic. Subsequently, since the action of PO(p + 1, g + 1) on the
set of projective frames of P(E,+2) is simply transitive, it is suitable to retain P&;
the principal bundle, A-extension of &, with structure group PO(p + 1, ¢ + 1).

2.6.1.3 Bundle Clif (V)

Let us introduce 6 (V) the trivial bundle with typical fiber R? with a quadratic form
Q> of signature (1, 1), and let us write (V) = & @ &,+1, since a Whitney sum
of two bundles with typical fiber R and the required condition of orthogonality
for Q».

We define then T1(V) = T(V) @ 0(V) = Uyxey T1(x)(V), where T (V) is the
tangent bundle of V and 71 (x)(V) = T (x) @ (&0)x ® (£4+1)x, With obvious notation.

We denote by Clif (V, Q) or simply Clif (V), the Clifford bundle of V, and we
introduce another bundle Clif (V) in the following way. At any point x € V, let
us consider ®77(x) and the Clifford algebra (Cl,17), obtained as a quotient al-
gebra of ®T (x) by the ideal generated by X (x) ® X1(x) — Q,+2(X1(x)), where

X1(X) € T1(X) and Q42 is the quadratic form of signature (p+ 1, ¢ + 1) defined on
Rn+2‘

80 W. Greub and R. Petry, On the lifting of structure groups, Lecture Notes in Mathematics, no
676. Differential Geometrical Methods in Mathematical Physics, Proceedings, Bonn, 1977,
pp. 217-246.
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E\XRO(p+1,g+1) ——=E,
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E} X PO(p+1,g+1) 4

Fig. 2.2.

The collection of the Clifford algebras (Cl,42), is naturally a vector bundle
of typical fiber Cl,,42(p + 1, + 1), which we denote by Clif {(V) and which is
an “amplified Clifford bundle” in the same way as 77(V) is an “amplified tangent
bundle.” It is possible to define the action of the group C,(p, ¢) on such a bundle
by means of the representation K so settled. For any w belonging to Cl,12(p +
1,q + 1), for any ¢(g) € C,(p,q) we set K1p(g)w = m(g)wg™", which defines
a representation of C,(p, ¢) into Cl,42(p + 1,9 + 1). Thus, PO(p + 1,q + 1)
isomorphic to C,, (p, g) acts on Clif { (V). Clif /1 (V) denotes its complexification and
in the same way as previously, we can define the action of PO’ (n + 2) isomorphic to
C;, on this bundle.

2.6.2 Manifolds of Even Dimension Admitting a Real Conformal Spin
Structure in a Strict Sense

Let V be a real paracompact n-dimensional smooth pseudo-riemannian (in partic-
ular riemannian) manifold. In this paragraph and the next three we assume that n
is even, n = 2r. As in 1, £ stands for the bundle of orthonormal frames of V;
PE&(E], V,PO(p+1, g+1), m) is the principal bundle obtained as the J-extension
of £&. We agree to give the following definitions, which generalize those given by
A. Crumeyrolle®? for the orthogonal case to the conformal orthogonal one.

2.6.2.1 Definition V admits a real conformal spin structure in a strict sense if there
exists a principal fiber bundle S1(E1, V,RO(p + 1,q + 1), q1) and a morphism of
principal bundles 77 : S| — P& such that S| a4-fold covering of P& with the follow-
ing commutative diagram (see Figure 2.2), where the horizontal mappings correspond
to right translations. S is called the bundle of conformal spinor frames of V.

2.6.2.2 Definition According to this definition, we introduce the bundle of conformal

spinors
or+l

_(Sl(V)xC

r+1
o1 = ,V.RO(p + 1, +1,C”),
'=\ RO+ 1.9+ 1) ptlat+D

82 A. Crumeyrolle, Structures spinorielles, Ann. Inst. H. Poincaré, Section A (N.S.), 11, 1969,
pp. 19-055. A. Lichnerowicz, (a) Champs spinoriels et propagateurs en relativité générale,
Bull. Soc. Math. France, 92, 1964, pp. 11-100; (b) Champ de Dirac, champ du neutrino

et transformations C. P. T. sur un espace-temps courbe, Ann. Inst. H. Poincaré, Section A
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a complex vector bundle of dimension 2"+! with typical fiber C2"" associated with
the bundle S1(V) of “conformal spinor frames.” We write o1 = (o{, V,RO(p +
1,g + 1), s1).

Remarks. It is always possible to define the two fibrations P& and S; by means of
the same trivializing neighborhoods (U,’)c4 and local cross section z,/, Ry with
transition functions, y, g respectively n(yy p):

2p(¥) = 2w ()Y p(x),  Vup(x) €ERO(p+1,9+1),
(zp (%) = Rp (x) = iz )0 (Vo pr (X))
= R e pr (X)), n(yar.pr) € PO(p+ 1, + 1).

7~2a/ (x) and 7%,3/ (x) are “projective orthogonal frames” of P(E ,’l )

Let us consider the Clifford algebra Cl,,4» of E,42(p + 1, g + 1) and the com-
plexified algebra C1; , isomorphic to Cl,,4+2(Q"), where Q' is the complexification

of Q.83 The sequence

0<h<r,
{xigXiy = Xiy Yjo¥jr Y} 0 <o < it <ip--- =,
O<jo<ji<ja--=r,
is a basis of Cl;q 12 where {x;, y;} is the special Witt basis of cnt2, already used.

The choice of the above basis establishes a linear isomorphism . between CI), 9
on+2

and C~ .
We can observe that the spinorial bundle o associated with the bundle S is a

principal bundle with typical fiber 2™ and structure group RO(p+1, g+ 1), which

. . r+1 r+1 ., . .
acts effectively in C2 i (C? " is an irreducible C I8 )

. [ . . . . r+1
It is permissible to choose any irreducible representation of CI; 4o in Cc?" and
convenient to choose the representation corresponding to the left action of C1), 4o in
the minimal ideal of conformal spinors, CI} _, f,+1 = Cl;l 42Y1Y2 - ¥r Yo, of which
the {e1xi,x;, - - - xi, fr+1} where 1 = =1 or dzey constitute “four conformal spinor

frames” (cf. 2.6.2 and 2.5.2). By restriction of p to Cl; 42 Jr+1 we obtain a linear

-representation space).

. . . . 1
identification of CI) 4o fre1 with c,

Over an open set of V, endowed with the cross section z : x — z(x) of S] a
conformal spinor field x will be defined by a differentiable mapping x from E; into
C2™ 2 = x(2) such that® if x(2) = p), u € Cl\» fri1.(w = vfy11), then
x@y™h) = yx(@ = puyu), (Vy), (v € RO(p + 1, ¢ + 1)). We denote by x. the
restriction of x to Syy = s, ! (x) and observe that

(Xx (Z))ioilmihxioxil s Xy Sro1 = (X (Z))ioilmih ()’xioxil te xih)fr+l- @

83 P, Angles, Les structures spinorielles conformes réelles, Thesis, op. cit.

pagateurs en relativité générale, op. cit.
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2.6.3 Necessary Conditions for the Existence of a Real Conformal Spin
Structure in a Strict Sense on Manifolds of Even Dimension

Let x — zy be a local cross section over U, a trivializing open set in the bundle Sj.
We set
Zy = v(x, g(x)) = v (gx)), g(k)€RO(p+1,q+1)

according to the construction of associated bundles [z, x;, - - - X;;, fr+1], identified to
(zxy 1, V()f') fr+1], is a cross section over U in the bundle o1 which we denote by

[2x, Xy fre1] or M* (x(y fre1)- Letalso Ry = 7(zy).
Let (Uy) o e 4 be atrivializing atlas for the bundle P&;. We can always suppose that
there exists over (U,’) a cross section z,’ in S1; we take again 7~2 1(x) = n(zg (x)). If
Wy (x) is the projective “real” Witt frame associated with the projective orthogonal
frame R 1(x), we write, abusively, 1(zq(x)) = Wy (x). In the projective space
P(C"*2) the projective “real” frame

{p(x0)s ... p(x), p(YO)s -, P(Yr)s PO+ -+ X + Yo+ -+ )}

(2r+3) elements

corresponds to the “real” Witt basis {x;, y;},0 <i <r,0 < j <r of cnt2 (pis
the canonical map: E, 1, — P(E,12)). We agree to denote such a projective “real”

frame by {x;, y;}. Since the action of PO(p + 1,g + 1) on the set of projective
orthogonal frames is simply transitive, we can write

W () = (2o (x)) = O, ({1, ;)

where the @2 , admit the transition functions n(yyg) in PO(p + 1,q + 1).

If there exists over V areal conformal spin structure in a strict sense, this structure
induces in the “amplified” tangent space 77 (x) at x a flat real conformal spin structure
(in a purely algebraic way, see 2.5.2) defined by an equivalence class of (<2, gx),
gr € RO’ (n + 2), Q., a “projective Witt frame,” depending differentially on x. Let
us recall that

(Qu, g0) ~ (Qr, —82) ~ (2, engy) ~ (U, —engy)

(see 2.5.2).

We note that PO’ (n+2) acts transitively on the set of “real” or complex projective
Witt frames, and that in the above class there will always be “real” projective Witt
frames. With previous notation, at x € Uy, N Ug we must obtain two “equivalent
frames,” which necessarily determine the same flat real conformal spin structure in
the “amplified” tangent space at x: T (x),

(@ = @5 (7 (e () (31, 37120 (00}, 8 (),

ViV (), g (),
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Aar (X)), Agr(X), 8o (X), gpr(x) € RO'(n + 2), Ay, Mg defined respectively over
Uy and Up and g, gg over a neighborhood of x included in Uy N Ug with
(gﬂ/g(;/l)x € RO(p + 1,q + 1) and n(gp(x)) = n(gap (X)ga(x)) With 1(gep’)
denoting the transition functions of €27, Q’I;/, go'p With valuesin RO(p +1,q + 1),
and n(@(he)garprp') = 1Carp)-

We also set

O, (1 (O ()i, ¥ 10 () = 5 (i, v7 D).

With the notation of 2.6.2, if x(QZ,, gp (x)) = u(fr41) then X(fz;;,, gp (x)) =
u(slga_,lﬂ, (x)_lfr+1), where €1 = %1 or £ey. Since the spinor thus defined at x is
a well determined element in (Cl;l+2f,+1)x, X(fzg,, g (%)) = x(Q%,, gp (%)), we
deduce

Jre1 = 5281fr+lg;//13/(x), (¢))
where ¢9 = L1 if r is even and e> = 1 if r is odd.

As matter of fact, let us recall first that ey anticommutes with every element of

E, 12, and that for g € RO(p + 1,9 + 1), eng = £gen, and that 7(g) = +g for
g € Pin(p + 1; g + 1). Moreover, /i}, and /1’/;, satisfy the relation

() = i O (8o (X)ug gy (1)

forallu € Cl , fr+1. Consequently,

Ly (fra1) = i (6184 (0) frs1) = i (T (8arp) (X)€18115 () frr185 1y (X))
= i (17 (8arpr () 8y () fr1 8y (X)) = [ (61 fr181 15 ().

Therefore, we obtain (I), noting that via the projective space, there appears the
factor & = =£1 corresponding to the ambiguity of sign for homogeneous elements
of the Clifford algebra.®> Using the principal antiautomorphism 7 of the Clifford
algebra and observing that for all g belonging to RO(p+1,g+1),7(g) = g 'N(g),
and that

(n+1)(n+2)
Tlen) = (=) ey = (=1) ey

(for n = 2r), furthermore

r(r+1)

(frir) =CD"2 finn

and
ga/ﬂ/(x)

N(gap ()’

(g (X)) =
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we obtain
8a'p’ (x)
N(gwp (X))

Since frprey = (—1) T (=i)"P f,1 (see 2.5.1.2.1), we get, if 61 = ey,

fret(er).

e fre1 =

&2 frr1N(8ap (X)) = garpr () (—=0)" "7 fri1,

or equivalently,
8a'p (X) fr+1 = €2())" PN (8o (X)) frt1,

and then in any case,

(8o (X) fr41) = 26N (8orp (X)) frs1, (10
where

e==lifr — p = (0 or 2) (mod 4), and
e ==lor=i,ifr — p = (1 or 3) (mod 4).

Thus, g,p(x) belongs to a subgroup Hc¢ of RO (p + 1, g + 1) that is mapped
by 1 onto a subgroup of PSO(p + 1, g + 1), the special projective orthogonal group
isomorphic to a subgroup S¢ called®® “the conformal spinoriality group S¢” in a strict
sense, see 2.5.1.3, associated with the r-isotropic vector f. = y; ---y, (we observe
that ¢(Hc) = Sc C (Cn(p, q)),, the restricted conformal group,87 where ¢ is the
“projection” from RO(p + 1, + 1) onto C,(p, q)). We note that w(gy g (x)) =
o (x) since He € ROV (p + 1, + 1). Tt is known®® that

8u'p (X) fre1 = €26 N (8w pr (X)) fr+1

implies
2arp () fri180ky () = N (garpr (X))E% fr11, (I

since (N (gop(x)))? = 1 and &5 = 1, with
2 =" =(=1)"" = (en)* = (=)',

forn = p 4+ g = 2r. Therefore, we have, applying /:L)é, to fr4+1, with the following
notations,

W (fra) = fpr() and i3 (8ap (X)) = Gorpr (%),

86 p, Angles, Les structures spinorielles conformes réelles, Thesis, op. cit.

87p, Angles, Construction de revétements du groupe conforme d’un espace vectoriel muni
d’une métrique de type (p, q), op. cit.

88 A Crumeyrolle, Fibrations spinorielles et twisteurs généralisés, op. cit., p. 158. It is shown

there that for any y € RO (Q) and for any isotropic vector f, the condition yf = uf, u €
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taking account of the fact that gisinRO(p+1,q+ 1) iff g = vy - - - vk, vy, ..., V0t €
E, 4o with Q(v;) = £1,1 <i < k (cf. chapter 1),

fp () = e280p (x) for (0 «ﬂ/(X)- av)

Then applying [}, to the previous relation (III), and observing that N (8o (x)) =
N (gop(x)), we obtain

Fp () = e2(en)* N (Zorp (%)) fur (1) %)

We observe that 17(gq/p (x)) are transition functions for cross sections in the com-
plexified bundle (P&)c of P&;. The cocyle 1(y,p) that defines P& and the cocycle
1(g«'p) are cohomologous in PO’(n + 2). Thus, we have obtained the following:

2.6.3.1 Proposition If there exists on V a real conformal spin structure in a strict
sense,

(1) thereexistsoverV anisotropic (r+1)-vector pseudofield modulo a factore,, & =
+1 ifr iseven, &, = 1 if r is odd, pseudo—cross section in the bundle CIif /1 V).

(2) The group of the principal bundle P& is reducible in PO’ (n + 2) to a subgroup
isomorphic to Sc—the conformal spinoriality group in a strict sense associated
with the r-isotropic vector f, = yj --- y.—which is a subgroup of (C,,(p, q))r,
the restricted conformal group.

(3) The complexified bundle (P&;)c admits local cross sections over trivializing
open sets with transition functions 1(gqy'g'), 8a'p (X) € ROT(p+1,q+1) such
that if the mappings

fuix €Uy Ug — for (X)
define Iocally the previous (r + 1)-isotropic pseudofield, then
fg = (en)>N (8w p (%)) fur (x), modulo e,

and fﬂ/ = ga’ﬂ’(x)fa (x)g ,ﬂ,(x) modulo g5, where ¢o = +1 if r is even and
& = 11ifr is odd.

2.6.4 Sufficient Conditions for the Existence of Real Conformal Spin
Structures in a Strict Sense on Manifolds of Even Dimension

Let us consider the bundle P&;.

2.6.4.1 Proposition Let (Uy/, [Ly')a'ca be a trivializing atlas for the complexified
bundle (P&)c on V, with transition functions n(gy g (x)) € PO(p +1,q + 1). If
there exists over V an isotropic (r + 1)-vector pseudofield, modulo a factor e, = %1,
ifris even and ¢y = 1, if r is odd, determined locally by means of x € U = fa (x)
such that it x € Uy N Upg # (5 we have f,g/(x) = ga/ﬂ/(x)fa (x)g ,ﬂ,(x) modulo

2, (1 (gup (%) = Zarp (). fpr = (en)? N(g(x’ﬂ’(x))f(x '(x), modulo &3, then the
structure in a strict sense.
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All the following algebraic calculations are made modulo &, which we omit for
simplicity. We abbreviate fg(x) = f', for(x) = f, gu'p'(x) = 8. Then

fr=8f8"" —1 2 2
{ NG £ } = 8f57 = en)’N@®)f = 5f = (en) N /5.

whence we deduce since the intersection of any right minimal ideal with any left
minimal ideal is of dimension 1,39 §f = &(x) f,&(x) € C*.Then (ey)>N(8) f88~! =
&(x) £8~!; therefore we obtain

ot = @PNOF
&(x)
Applying the principal antiautomorphism 7 to f§~! we get
2N
26 e = VO gy,
£(x)
or equivalently,
b, w’NG)
NS E)

since T(871) = 8/N(8) (cf. chapter 1), and since 7(f) = (=1)rr+h/2 ¢
Thus

N%(8)
£(x)

8f =80 f = (en)? f.

which gives (8(x))% = (en)?, since (N (8))? = 1, with

(en)? = (—1)—F = 1 %fr — p = 0 (modulo 2),
—1 ifr — p =1 (modulo 2).
Then we obtain £(x) = +1ifr — pisevenand €(x) = =i if r — p is odd. So, we write
&(x) = & and then gop (x) fr+1 = €28 fr4+1, where € = £1 or +i and g, 4/ (x) € He
(with previous notation — cf. 2.5.1.3.1). ~
Ifatx € Uy NUg, i1, (y15 - YY) = for (x), we can complete the set of vec-

tors {y1, ¥, ..., yp. Yot with {x], x5, ..., x/, x(}, so that i}, {x/, y}} and ﬂ;,{x{, y}}
constitute Witt projective frames in the complexified bundle (P£&;)c, with transition
functions 1(gyp). (This is a consequence of the extension of the Witt theorem to the
projective orthogonal classical group and to projective orthogonal frames.) Therefore
we shall omit the accents and suppose that

A1y - yr¥0) = faur (X).

s, op. cit., p. 71.
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Let us consider over U, the local cross section in Clif /1 V):
x = (X)) fra Dy = g (X)) fre1)-

Since forany o’ € A, if x € Uy N Up, ga/ﬁr(x)fa/(x) = g8 fo (x), where & = +1
if r — pisevenand &€ = &£i if » — p is odd, using the principal antiautomorphism ©
of the Clifford algebra, we obtain, modulo &>,

T(for ()T @Garp () = Ep(for (1)),

or equivalently, fa/(x)g;,/ls,(x)N (up(x)) = & fa/(x) modulo e,—since 7(g) =
g !N (g)—and then

For ()8 (¥) = (en)* N Zarpr (00)) far (¥) gy ()
N Gorp ()

gy () o) (modulo &)

= (en)?

and therefore, ~ ~
Fp )8y (¥) = (en)E for(x) (modulo &),

where (en)2é = (—1)"~P&. We shall write
Fp ()85 () = € for (x) (modulo ¢2),

where ¢’ = ifr — pisevenand ¢’ = —& if r — p is odd.
Then
(i) fr1)p = €'8arp () (x(p) fr+1)y (modulo &),

where ¢’ is determined in any case [(x(;) fr+1)"§/ is known, (x;) fr+1);, is known, and
one can find an element of the kernel that gives such a relation].

We can associate differentiably with each x in V a 2"+!-dimensional subspace,
in 7 (x) the amplified tangent space at x, such that fi, (x() fr+1) = (x) fr+1);, and
the transition functions of i}, are n(gyp). Therefore we have constructed a spinorial
bundle over V, with typical fiber C¥+!.

With the frame {x(; fr+1}},, we associate the frame fi}, {x;, x;}. Then with
{gap (X)X(i) fr+1};, s associated ,EL);}/{X,' , ¥j}. We can determine Ao/ (x) € RO'(n+2)
such that with the frame {Aqx(;) f;+1} is associated the frame [ {7 (Ao ) {xi, ¥, })»;/1 1,
where i, {7 (Ao){xi, y j})»;,l} is a “real” projective Witt frame in (P&;)c. We have
obtained a real conformal spin structure in a strict sense, since the {x; f,+1}j§/ are
local cross sections of a fiber over principal bundle P&;.

2.6.4.2 Remark We can observe that the g,/g/(x) are defined modulo €14/p/ (x) = *1
or ey . According to previous results (see 2.5.1.1) any real conformal structure will
be obtained from the one associated with the choice of 14/’ such that &1,/ g determine
a cocyle with values in Zo x Zs if (ex)? = 1, respectively in Zy if (ey)? = —1.
Therefore the set of conformal spin structures is of the same cardinality as
vely as H'(V, Zy) ifr — p is odd.
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2.6.4.3 Proposition Let us assume that the structure group of the bundle P& reduces
in PO'(n + 2) to a subgroup isomorphic to a conformal spinoriality group Sc in a
strict sense; then the manifold V admits a real conformal spin structure in a strict
sense.

If we have transition functions 7(gy/g/), g/ (x) € Hc, according to gq/ g/ (x)-
fr+1 = efry1 withe = £1if r — p = 0 or 2 (modulo 4) and ¢ = %1 or £i if
r — p = 1 or 3 (modulo 4), on account of previous remarks, we get

Borp (X) for (X) = €28 fo (x)

(where e, = £1 if r iseven and e, = 1 if r is odd).
Using t the principal antiautomorphism of the Clifford algebra, since 7(g) =
g 'N(g) forall g € RO(p + 1, g + 1), we get successively

Jor ()85 (ON Zarpr (X)) = & for (x) (modulo e)

and i
7 ~—1 _ € for (X)
f(x’(-x)ga/ (x) = N—(ga/ﬂ/(x)) (modulo £).
Since
o @) = B (¥) for () 0}y (%) (modulo 62),
we obtain
o s efe@) e .
T @) = B O = NG S O o @)
2
£ ~
= m fo (x) (modulo &7).
And then
~ -1 52 ~ -1 3 ~
fﬂ’(x)ga/lg/(-x) = Wfa’(x)ga’ﬂ/(x) = Wfa’(x)

= &3 f,y(x) (modulo &»),

(since (N (8o p(x)))?> = 1), where &* = ¢ if r — p = 0 or 2 (modulo 4), and &3 = e
if r — p = 1 or 3 (modulo 4).
Starting with this result we can take up again the proof of Proposition 2.6.4.

Remark We observe that the auxiliary bundle ® (V) previously introduced does not
occur in such a statement, which is therefore intrinsic, since the conformal spinoriality
¢) and of its complexification E),.
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2.6.5 Manifolds of Even Dimension with a Real Conformal Spin Structure in a
Broad Sense

Let (C,(p, q)), be the restricted conformal group (see 2.5.1.1). Let f,+1 = y1y2- -
¥rYyo be an isotropic (r 4+ 1)-vector. The enlarged conformal group of spinoriality
(Sc)e associated with the isotropic (r + 1)-vector f;,41 is the subgroup ¢ ((Hc).) of
(Cy(p, q))r, where ((Hc), is the subgroup of the elements y ofR0+(p +1,g+1)
such that y fr+1 = wfr+1, n € C*.

In 2.5.1 we proved that (S¢). is the “stabilizer” for the action of (C,(p, ¢)),
of the m.t.i.s. associated with the isotropic r-vector y;y> - - - y.. (We recall that the
abbreviation m.t.i.s. stands for maximal totally isotropic subspace.)

2.6.5.1 Definition V admits a real conformal spin structure in a broad sense if and
only if the structural group PO(p + 1, q + 1) of the principal bundle P& —the i-
extension of the principal bundle & of orthonormal frames of V—is reducible to
a subgroup of PO’(n + 2) isomorphic to (S¢)e., the enlarged conformal group of
spinoriality associated with the isotropic r-vector y;ys - - - y;-.

According to Proposition 2.6.4.3 such a definition is a generalization of definitions
given in 2.6.2.

2.6.5.2 Proposition V admits a real conformal spin structure in a broad sense if and
only if there exists over V an (r 4+ 1)-m.t.i.s. field, that is, a subbundle of Tlc(V) such
that with the same notation as in Proposition 2.6.4.1 we have

Jor(0) = Zarpr () for ()8 (1),

modulo &5, = *1 if r is even, & = 1 if r is 0dd, gyg(x) € RO(p +1,q + 1),
o () = parp (X) for (x), porgr (x) € C*.

As in the proof of Proposition 2.6.4.1 we obtain g,g/(X) frr1 = Aarp (X) fr11,
Ao/ (x) € C*. Then, taking up again the method given in the proof of Proposition
2.6.4.1 above, we get the result.

Conversely, if it is possible to reduce the structure group PO(p + 1,g + 1) to
a subgroup isomorphic to (S¢). in PO’ (n + 2), the same method as in the proof of
Proposition 2.6.4.2 leads to the existence of an (r + 1)-m.t.i.s. field, defined locally
by means of the maps f,.

2.6.6 Manifolds of Odd Dimension Admitting a Conformal Spin Special
Structure

Let us assume that V is an orientable manifold of dimension 2r 4+ 1. We extend
the definitions given above, replacing respectively RO(p + 1,9 + 1), C,,(p, q), and
PO(p + g+ D byROT(p+ 1,9+ 1), (Ca(p,q))r, and PSO(p + 1, g + 1).

is central, simple. Cl Y (n = 2r + 1, Q' the complexification of

). We introduce the associated Witt basis
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{xi, yj, zn} and associated projective Witt frame and the representation of C l;:_z in
the space x;x;, - - - Xi, fr+1, fr+1 = Y1¥2 - - - ¥»Yo. The bundles S| and o are defined
in the same way. In the study of necessary and sufficient existence conditions, only a
few details are modified: one arrives at identical statements, the g,/ (x) belonging
to ROT(p + 1, g + 1). (Let us now recall that ey belongs to the center of Cl,, and

thatey fr41 = freren = (=)"P fry1.)

2.7 Links between Spin Structures and Conformal Spin
Structures

Letus assume thatn = p+¢g = 2r. We study here only the case of real conformal spin
structures in a strict sense. stands for the identity component of the Lie group G.

2.7.1 First Links

In the same way as in 2.6.1, we introduce the “Greub extension” &; of &, the
Jj-extension of &, and &;, the i-extension of §, and then P& = &;, the A-extension of &.

Clif 5 is the auxiliary bundle, the typical fiber of which is Cl(1, 1). Clif (V, Q)
is the Clifford bundle of (V, Q). According to the classical isomorphism (see,
for example, Chapter 1), which we denote by A; from Cl,(p,q) ® Cl(1,1)
onto Cly42(p + 1, g + 1), we still abusively denote by A; the isomorphism from
Clif (V) ® Clif , onto Clif ; (V) and from Clif | (V) ® Clif’, onto Clif"| (V).

Since ® (V) is a trivial bundle, let us recall that then there exists a RO(1, 1)-spin
structure on ® (V). ¥ denotes the “twisted projection” from RO(Q) onto O (Q). We
shall use the following two statements.””

There exists an RO(p, g)-spin structure in a strict sense on V iff:

(1) There exists on V, modulo a factor 1, an isotropic r-vector field, pseudo—
cross section in the bundle Clif (V'); the complexified pseudo-riemannian bundle &c
admits local cross sections, over a trivialization open set (U,/)q'c4 With transition
functions ¥ (gwp/), &a'p’ € RO™ (p, q) such that if x € Uy N Ug #0 — for(x)
locally define the previous r-vector field, then fg/ (x) = N (8up (X)) for (X); fp(x) =

ga’ﬂ’(x)fa/ (x)g;llg/ (x), where
Jor ) = o (f)s B () = 1 (8arpp (X)),
fr =1+ yr; i is an isomorphism well-defined®! from C1}, onto CI, (x).

(ii) The structure group of the bundle & is reducible in O’(n) to a real spinoriality
group o (p, ¢) in a strict sense.

90 A. Crumeyrolle, Fibrations Spinorielles et Twisteurs Généralisés, op. cit.
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2.7.2 Other Links

Let us denote by a C,(p, g) spin structure, respectively by an RO(p, g) spin struc-
ture, a real conformal spin structure in a strict sense, respectively a real RO(p, q)
spin structure in a strict sense, on V.

In the same way, we agree to denote by an RO(p + 1, g + 1) spin structure a
real RO(p + 1, g + 1) spin structure over the bundle &; of orthonormal frames of the
amplified tangent bundle 77 (V). We want to prove the following statement:

2.7.2.1 Proposition (1) If there exists an RO(p, q) spin structure on V, then there
exists an RO(p + 1, g + 1) spin structure on & ;.

(2) If there exists an RO(p + 1, q + 1) spin structure on &;, then there exists a
C,(p, q) spin structure on V.

(3) If there exists an C,(p, q) spin structure on V, if r and p are odd, then there
exists an RO(p + 1, q + 1) spin structure on &;.

Proof. (1) Let us assume that there exists an RO(p, ¢) spin structure on V. Let
fr = y1---y, be an isotropic r-vector. By assumption, there exists a pseudo—cross
section in the bundle Clif’(V); so we can naturally form a pseudo—cross section in
the bundle Clif'(V) ® Clif’,, determined locally by

X = W () @ 1A (o) = fu () ® f2(x) = fu(x),

where x — fo%, (x) = p,i, (y0) determines locally a cross section in the bundle Clif,
with obvious notation. Using a A1 isomorphism from Clif" (V) ® Clif, onto Clif | (V),
we obtain a pseudo—cross section in the bundle Clif"| (V) determined locally by means
of x € Uy — f 0’[, (x) =11 ( foi/ (x)) that satisfies the required conditions for the exis-
tence of an RO(p, g) spin structure on & j.92

Moreover, we observe that the reduction of O(p, ¢) to o (p, ¢) in O’(n) and that
of O(1, 1)too (1, 1) in O’(2) imply the reductionof O (p+1,g+1)too(p+1,g+1)
associated with yy, ..., y,yoin O'(n + 2).

(2) Let us assume that there exists an RO(p + 1, ¢ + 1) spin structure on V. We
observe that n = ho Y is a projection from RO(p +1,qg + 1) onto PO(p+1,g + 1)
with kernel A = {1, —1, ey, —en}.

There exists a principal bundle S; twofold covering of &; and a morphism of
principal bundles ¥ : §; — &;. So we can set i) = h o ¢’, which is a morphism
of principal bundles from S; onto P&, and S is a fourfold covering of P&;. Thus,
we have obtained the existence of a C, (p, g) spin structure on V. We can also ob-
serve®3 that the reduction of O(p+1,g+ 1) too(p+1, g+ 1) in O’ (n +2) implies
the reduction in PO'(n +2) of PO(p +1,q + 1) to fz(o(p + 1,49 + 1)), which is
isomorphic by & to Sc(p, ¢), the real conformal spinoriality group in a strict sense
associated with f, = y1,..., y,.

mes réelles, Thesis, op. cit.
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(3) Finally, let us assume that there exists a C,, (p, ¢) spin structure on V and that r
and p are odd. If r is odd, then &2 = 1. According to 2.6.3 and 2.6.4.1 above, there ex-
ists an isotropic (r + 1)-pseudo—vector field (so defined modulo £, = 1), locally deter-
mined by means of x € Uy — fa/(x), such that forany x € Uy (| Ug # ¥ we have

Jor () = Zarpr () far ()2 (x)

and y ~
fp () = (en)* N (Zarp () for (x) modulo &3 = 1.

Thus, since r is odd, since (ey)? = (—1)" "7 if p is odd, then (ex)?> = 1. So
we get the existence of an isotropic pseudo—vector field that satisfies the required
sufficient condition®* for the existence of an RO(p + 1, g + 1) spin structure on &;.

2.7.2.2 Remark Let us recall (2.5.1.6) that

is homeomorphic to R?*! and so is a solid space.”® Following corollary 12-6 in

Steenrod,”® any bundle with structure group | Sc (p, ¢) |is reducible in | Sc(p, q) |to

a bundle with structure group | o (p, g) |. If there exists a C,(p, ¢) spin structure on

V, according to 2.6.4.1| C,(p, q) |is reducible to | Sc(p, ¢) |in C),.

Moreover, the previous reduction of | Sc(p,q) |to| a(p,q) |is made in| Sc(p, q)

and not in O’(n), since S¢(p, g) is obviously “extended out” of O’(n), so that it is
not permissible to use the sufficient condition given in 2.7.1 for the existence of an
RO(p, q) spin structure on V.

2.8 Connections: A Review of General Results®’

2.8.1 General Definitions

Let £ = (P, 7, M, G) be a differentiable principal fiber bundle. (For the sake of
convenience we always assume that differentiability means that of class C*°.) The
total space P and the base M are differential manifolds and the projection 7 is a

94 A, Crumeyrolle, Fibrations Spinorielles et Twisteurs Généralisés, op. cit.

9 N. E. Steenrod, The Topology of Fiber Bundles, op. cit., p. 54. “We recall that a space Y
will be called solid if for any normal space X, closed subset A of X and map f : A — Y
there exists amap f’ : X — Y such that f/ |4= f.” (Cf. below footnote 126).

96 Idem, p. 56.
97 ox

Nomizu, Foundations of Differential Geometry,
)63; or Dale Husemoller, Fiber Bundles, 3rd
e authors use the term fiber for fiber.
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differentiable mapping. The structure group G is a Lie group and acts on P on the
right as a transformation group. On each fiber, G acts transitively without fixed points.
For elements a, x in G, P, we write R,(x) = xa.

Let p be an element in P such that 7w (p) = b and let T),(P) be the tangent space
at p and let V,, = ker(dn),, where (d) , is the tangent mapping of 7 in p. V), is the
subspace of T}, (P) tangent the fiber 771 (b) at p. Elements of V,, are called vertical
elements.

2.8.1.1 Definition A connectionI"in P isan assignment for each x in P of a subspace
Qy of Ty (P) such that the following conditions are satisfied:

(i) m(P) = Vi (P) & Qy (direct sum);

(ii) for every g in G and every x in P, Qg,(x) = (dRg)x(Qx) (i.e., the “distribu-
tion” u — Q, is equivariant under G);

(iii) the mapping x — Q is differentiable (Q, is called the horizontal subspace
of T, (P)).”8

Let I" be a connection in P. We define a 1-form w on P with values in the Lie
algebra G of G as follows.

It is known that every A € g induces a vector field A* on P, called the funda-
mental vector field corresponding to A, and that A — (A*), is a linear isomorphism
of G onto V,,, for each p € P

2.8.1.2 Definition For each X € T,(P) we define w(X) to be the unique A € G
such that (A*), is equal to the vertical component of X. Thus, w(X) = 0 if and
only if X is horizontal. The form w is called the connection form of the given
connection I".

2.8.1.3 Proposition (Definitions'?’) The connection form w of a connection satis-
fies the following conditions:

(1) w(A*) = A, forevery A € G.

98 A vector X € T, (P) is called vertical, respectively horizontal, if it lies in Vy, resp. Q.
According to (i), every vector X € Ty (P) can be uniquely written as X = Y + Z, where
Y € Vyand Z € Qy. Y, resp. Z, is called the vertical, resp. the horizontal, component of
X and denoted by V (X), resp. h(X). (iii) means that if X is a differentiable vector field on
P, soare V(X) and h(X).

99 For each A in G, the 1-parameter subgroup expt A (—oco < t < +o00) defines a one-
parameter group Rexp 4 of transformations on P and it determines A*, namely,

. A) — d

J(p-exp tA)=o

for every p in P.
100 Cf. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. 1, op. cit.,
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(i) (Rg)*w = ad(g™H.w, ie., w((dRg)X) = ad(g~").w(X) for everyg € G
and every vector field X on P, where ad denotes the adjoint representation of G inG.

Conversely, given a g-valued 1-form w on P satisfying conditions (i) and (ii)"!
there is a unique connection I' in P whose connection form is w.

The projection 7w : P — B induces a linear mapping 7 = dn : T,,(P) — T(B)
foreach p € P, where b = (p). When a connection is given, 7 maps the horizontal
subspace Q ,, isomorphically onto 7}, (M).

The lift (or horizontal lift) of a vector field X on B is a unique vector field X on
P that is horizontal and that projects onto X. The lift X is invariant by Ry, for every
g € G. Conversely, every horizontal field X on P invariant by G is the lift of a vector
field X on M.

Let (Uy)qeca be an open covering of M with a family of isomorphisms ¢, :
7' (Uy) — Uy x G and the corresponding family of transition functions 8ap -
Uy, NUg — G.Foreacha € A, let oy : Uy — P be the cross section defined by
Oy = go;l (x, e), x € Uy, where e is the identity of G.

The transition functions gqup satisfy the consistency relations gug(x)ggy (x) =
8ay (x), for x € Uy (Up (U, and og(x) = 04 (x)gap(x) for x in Uy [ Upg. We
can define the pullback w, = o (w) by oy of the 1-form w restricted to 7~ YUy,
which is a g-valued 1-form defined on U,. We have the following classical statement.

2.8.1.4 Proposition There exists a connection I with a Lie(G)-valued I-form w on
the principal fiber bundle if and only if for any «, B in A,

wp = ad(g45)Wa + 855 d8ap.

2.8.2 Parallelism

Given a connection I in a principal fiber bundle & = (P, n, M, G), the following
results concern the concept of parallel displacement of fibers along any curve y in
the base manifold M.

2.8.2.1 Definition Lety : 1t — y(t),a <t < b, be a piecewise differentiable curve
of class C! in M; a lift (or horizontal lift) of y is a horizontal curve ¢ : t — @(t),
a <t < b,such that w o ¢ = y. Here, a horizontal curve in P means a piecewise
differentiable curve of class C! whose tangent vectors are all horizontal.

Note: In what follows we will sometimes use the terms curve or path to denote a
differentiable curve of class C'.

2.8.2.2 Proposition (Definition) Lety : t — y(1),0 <t < 1, be a curve of class
C!l in M. For an arbitrary point py of P with w(po) = v(0) = by, there exists a
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We can now define the parallel displacement of fibers as follows: Lety : t — y(t),
0 <t < 1, be a differentiable curve of class C! on M. Let po be an arbitrary point
of P withm(pg) = y(0) = by. The unique lift ¢ : t — ¢(t) of y through po has the
endpoint py such that w(p1) = b1 = y(1).

By varying po in the fiber =~ (by), we obtain a mapping of the fiber w ' (bg)
onto the fiber w ~' (by), which maps py into p1. We denote this mapping by 7, and call
it the parallel displacement along the curve y. The fact that T, : Pp, = 7 (boy) —
Py, = 7~ (by) is an isomorphism comes from the following proposition.

2.8.2.3 Proposition The parallel displacement along any curve T, commutes with
the action of G on P : 1, o Ry = R, o7y, foreverya € G.

2.8.3 Curvature Form and Structure Equation

(Cf. exercises below)

2.8.3.1 Definition We call the curvature form 2 of the connection the 2-form on P
with values in G defined by Q(X, Y) = dw(h(X), h(Y)), where h(X) and h(Y) are
respectively the horizontal components of the vector fields X, respectively Y, defined
on p.101

2.8.3.2 Theorem Let w be a connection form and 2 its a curvature form. Then
1
QX,Y)=dw(X,Y)+ E[w(X), w(Y)]

for X,Y € T,(P), p € P (structure equation of Elie Cartan), which is sometimes
written, for the sake of simplicity,

1
QL=dw + E[w, w].

2.8.3.3 Theorem (Bianchi’s identity) D2 = 0, where D is the classical exterior
covariant differentiation.

2.8.3.4 Definition A connection I' is called flat if its curvature form vanishes
identically.

2.8.3.5 Theorem €2 is equal to zero if and only if the field of horizontal subspace
p — Qp is involutive, i.e., if X and Y are two horizontal vector fields on P, then
[X, Y] is a horizontal vector field.

101 gome authors, such as R. Deheuvels, Tenseurs et Spineurs, P.U.F., Paris 1993, chapitre X-6,

define 2 as follows: Q(X,Y) = dw(X,Y) + [w(X), w(Y)], for every X, Y € T,(P).
Then Q satisfies the following structure equation: Q@ = dw + [w, w] and we have
€ Tp(P).
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2.8.4 Extensions and Restrictions of Connections
2.8.4.1 Definitions

Let P=(P,m, M, G) be a principal fiber bundle and let us assume that P has a
reduced fiber bundle P’. We want to study the relation between the connections of P
and of P’. Let H be a Lie subgroup of G and let H be its Lie algebra. We will denote
by j both the injection of H into G and the injection of H into G. If there exist a differ-
entiable principal fiber bundle P’ = (P’, n’, M, H) and a differentiable embedding
fof P'into P suchthatwo f =n"and foR, = Rj)o f,foreverya € H,are sat-
isfied, then (P’, f) is said to be a reduced fiber bundle of P. Then we have df (A¥) =
j(A)?(x), forevery A € Hand x € P’ (with the previous definition of A* (cf. 2.8.1)).

Given a connection in P’, we denote the horizontal space at the point x of P’ by
Q.. Atthe point f (x) of P, we take df (Q’,) as the horizontal space and transform it by
right translations of G. Thus we obtain a connection on P. Let us denote respectively
by w and w’ the corresponding connection forms. Then we have j o w’ = f*(w) on
P (here, for a mapping /, [* denotes the “pull back” of [).

Conversely, let us assume that a connection is given in P with the connection
form w. If the induced form f*(w) on P’ has values always in j (), we can write
f*(w) = j ow', and w’ defines a connection in P’. Thus, the connection in P is
called an extension of the connection in P’, and the connection in P’ is called the
restriction of the connection in P.

2.8.4.2 Connections Associated with a Principal Connection!??

2.8.4.2.1 Definitions

Leté = (P, m, B, G) be a principal bundle. Let R, be the right actiononPof g € G.
We write R,(p) = p-g, p € P.Let F be a C*-differentiable manifold. We assume
that G acts differentiably on the left on F'. We denote by L the left action on F of
g € G and we write Ly (f) = g- f, f € F. We define aright action of G on P x F
by assuming that

(p.f)-g=(p-g.g " f), peP, feF, geG.

The quotient space E = P X F inherits a fibered structure with base B, fiber
F. Such a bundle is said to be associated with P. Let wg be the canonical projection
from E onto B. Any point p in P defines a diffeomorphism, denoted by p, of F on
nEl(b), where b = m(p): we associate with any f € F the class (p, f), which we
agree to denote again by p - f, constituted by the elements (p-g, g~ - f) of P x F.

2.8.4.2.2 Example Let V be a C* differentiable manifold of dimension n. Let R(V)
be the principal bundle of frames of V. The fiber bundle with typical fiber R”

102 Cf.. for example, Phan Mau Quan, Introduction & la Géométrie des Varietés Différentiables,
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associated with R(V) can be identified with the tangent fiber bundle of the manifold
T(V). For any p € R(V), p is then the diffeomorphism from R" onto Ty, (V)
defined by the frame P.

2.8.4.2.3 Theorem Any principal connection on & defines a unique differential sys-
temK : z — K on E such that for any point z in E, K is a complementary subspace
in T,(E) of W, the subspace of vertical vectors in z.

Let zo € E and pg € n (g (z0)). There exists a unique fy € F such that
po(fo) = zo. We put K,y = (do,)p,(Hp,) where ¢, is the mapping from P
into E defined by ¢, (p) = p(fo) = p- fo. Ky, is independent of the choice of
po € 7 Y re(20)), according to the invariance of H, for the action of G on P and
satisfies the relation 7T, (E) = W, @ K.

2.8.4.2.4 Definition K is called the connection associated with the principal connec-
tion H.

A continuously differentiable path ¥ : t — z; = ¥ (¢) in E is called horizon-
tal if z; € K, for any ¢. (Cf. footnote 110.) As previously, one defines the notion
of horizontal lift of a path y : t — b; = y(t) of B. We can give the following
result:

2.8.4.2.5 Theorem Ify :t — b, = y; is a continuously differentiable path in B, for
any zg in the fiber nEl (bg) over by, there exists a unique horizontal lift of y, with
origin 7.

Let pg bein P and fy in F such that po(fo) = zo. We define the lift by considering
the path r — z; of E, where z; = p;(fo), the path t — p, of P being the unique
horizontal lift of y in P, with origin py. Let y be a continuously differentiable path
in B with origin by and endpoint by. Let Ey,, respectively Ep,, be the fibers over by,
respectively by. We can associate with any point zo in Ep, a unique horizontal lift
of y with origin zo. Let z; be its endpoint in Ej,. We define, therefore, a mapping
‘L’f 1 Epy — Ep,.

2.8.4.2.6 Definition tf is a diffeomorphism from Ej, onto Ejp, called the parallel
displacement in E corresponding to the path y.

2.8.4.2.7 Remark Let (z;) be a horizontal lift of the continuously differentiable path
y. We have z; = p,(fo), where (p;) is a horizontal lift of (b;) in P and f the unique
element in F such that zo = po(fo), according to Theorem 2.8.4.2.5.

Therefore, we deduce that z; = p; o p, 1(z()), and then tf = propy I
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2.8.5 Cartan Connections!®3

2.8.5.1 Classical Definitions

Let M be a differentiable manifold of dimension n. Consider a homogeneous space
F = G/H of the same dimension n, where G is a Lie group and H is a closed subgroup
of G.Let B = (B, M, F, G) be a fiber bundle over M with fiber F and structure
group G and let P = (P, M, G) be the principal fiber bundle associated with B.

Suppose that there exists a cross section f over M to B. Then the structure group
of P can be reduced to H. We denote this reduced fiber bundle by P’ = (P’, M, H)
and the injection of P’ into P by ;.

2.8.5.2 Definition Let us assume that a connection I' is given in P. Its connection
form w is a differential form of degree 1 on P, with values in Lie(G), and the induced
form w’ = j*(w) is also a differential form of degree 1 on P’ with values in Lie(G).
We call the connection in P a Cartan connection on M with the fiber F = G/H if at
each point p’ of P, w;, gives an isomorphism of Tp/(P’) onto g as linear spaces.

We have the following equivalent definition:

2.8.5.3 Definition Let w’ be a 1-form on P’ with values in g satisfying the following
three conditions:

(1) w'(A*) = A, forevery A € Lie(H), Lie algebra of H;
(i) R¥(w') = ad(a~")w', for every a € H;
(iii) w; , gives an isomorphism of 7),/(P’) onto Lie(G), at each point p’ € P’.

For such w’, we can take a connection form w in P such that w’ = j*(w). w defines
a Cartan connection.

2.8.6 Soudures (Solderings)104

We use the same definitions as in 2.8.5.1.

A cross section f over M to B gives a vector bundle 7’(B) on M as follows: for
every point p of M, the projection B — M defines a mapping T'¢()(B) — T, (M).
The kernel of this mapping is denoted by V(,)(B). Then T'(B) = U,V (B)
forms a vector bundle over M and the dimension of its fibers is equal to n = dim F.

A Cartan connection in P gives a bundle isomorphism between T'(B) and the
tangent vector bundle T (M) as follows. Let p’ be an arbitrary point in P’ and let

103 5. Dieudonné, Elements d’Analyse, Tome 4, Gauthier-Villars, 1971, p. 241, or S. Kobayashi,
Transformation Groups in Differential Geometry, Springer-Verlag, New York, 1978, pp.
127-130.

104 ¢, Ehresmann, Les connections infinitésimales dans un espace fibré différentiable, Colloque
de Topologie, Brussels, 1950, pp. 29-55.
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us put g = 7w (p"). The projection w : P’ — M induces an isomorphism of T,y (P")/
V, (P") onto Ty (M). On the other hand, w;, gives anisomorphism of Ty (P")/ V ,y (P")
onto Lie(G)/Lie(H). As a point in P', p’ gives a mapping of F = G/H onto
the fiber in B over q and sends the point {H} in F to f(q). By this mapping
To(F) = Lie(G)/Lie(H) is mapped isomorphically onto V¢ 4)(B). Combining these
isomorphisms, we obtain an isomorphism between T, (M) and V ;) (B) that is inde-
pendent of the choice of p' € P’ over q.

The set of such isomorphisms for g € M defines a bundle isomorphism of T (M)
and T'(B). If a fiber bundle B over M has an isomorphism such as above through a
cross section, then B is said to have a soudure.

Conversely, if a fiber bundle B over M has a soudure with respect to a cross
section f, then, there exists a Cartan connection in P such that the soudure given by
the connection is the original one.'%

2.8.7 Ehresmann Connections

We want to present some specific results of Ehresmann. !0

Let (M, m, N) be a differentiable locally trivial bundle, with dim N = n, and
dim M = m + n. Let V(M) be the vertical subbundle of T(M) and *(T (N)) the
induced bundle of 7'(N) under 7.107

The maps (dm); : T,(M) — Ty (N) lead to the morphism of vector bundles
dm : T (M) — 7*(T(N)), corresponding to the following exact sequence of vector
bundles:

0 — V(M) — T(M) 25 25 (T(N)) —> 0.

2.8.7.1 Definition A morphism I' of vector bundles from 7*(T (N)) into T (M) is
called a horizontal morphism of the bundle (M, &, N) if it satisfies the following
condition: 3

dm ol = ldﬂ*(T(N))

105 ¢, Ehresmann, Les connections infinitesimales dans un espace fibré différentiable, op. cit.
106 R Hermann, Gauge Fields and Cartan—Ehresmann Connections, Part A, Math. Sci. Press,
Brookline, 1975; and L. Mangiarotti and M. Modugno, Graded Lie algebras and connections
on a fibered space, J. Maths. Pures et Appl., 63, 1984, pp. 111-120.
197 Some classical definitions:
(a) Leté = (E, p, B) and &’ = (E’, p/, B') two vector bundles, a morphism of vector
bundles (u, f) : & — &’ is a morphism of the underlying bundles, that is, u : E — E’,
f: B — B’ are maps such that p’u = fp, and the restriction u : p~L(b) — p ~L(f(b))
is linear for each b € B.
(b) Let u : & — n be a morphism of vector bundles over B. We define /m u to be the
subbundle of 1 with total space the subspace of E(n) consisting of all u(x), x € E(§).
(c)Leté = (E, p, B)beabundleandlet f : By — B be amap. The induced bundle of &
under f,denoted by f*(£), has as base space B, as total space E1, which is the subspace of
all (b1, x) € By x E with f(b1) = p(x), and as projection pp, the map (b1, x) — by (cf.,
for example, Dale Husemoller, Fiber Bundles, 3rd edition, Springer-Verlag, 1994, chapter 2,
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Let I be a horizontal morphism. Then we have 7. (M) = Im T, @ V. (M)'%, for
each z in M. Then Im I'; constitute the fibers of a horizontal subbundle H (M) of
T (M), that is, of a vector subbundle of T'(M) such that T(M) = H(M) ® V(M).

Conversely, given a horizontal subbundle H (M), one can define a horizontal mor-
phism of the bundle. Then the set of horizontal morphisms of the bundle is equipotent
with the set of horizontal subbundles of 7'(M).108

We have the following classical result.!%”

2.8.7.2 Proposition There always exists a horizontal subbundle of T (M).

2.8.7.3 Local Characterization

Let I" be the horizontal morphism corresponding to a horizontal subbundle H (M)
of T(M). Let z € M and let U be an open set belonging to an atlas of the bundle
(M, r, N) such that w(z) € U. There exists a diffeomorphism ¢ from 7~ (U) onto
U x F, where F is a typical fiber, such that 7 o ¢ (x, y)_1 =x,x € U,y € F.
We can assume that U is a domain of coordinates (x*) A=1,2,...,n for the manifold N.
Let W be a domain of coordinates (y);=1.2...., for the manifold F. {x*, y'}, with
A=1,2,...,n,andi = 1,2, ..., m,isasystem of coordinates on the neighbourhood
of z, g~ LU x W).

Thus we obtain the following system of local coordinates of 7' (M): {x*, y', i*,
)'/i}, with obvious notation. Let X be a vector field defined on U. X can be written
X = X*9;, where X* € C®(U) and 9) = 9/dx” such that X* = %*(X).!10

Since I is a morphism of vector bundles, we can write I'(X) = X* (Af n +A33,~),
where 3; = 3/dy’ and A’f and Ai are C* functions defined on M.

Moreover, I" satisfies the condition d7r o' = idy+(7(ay). Then we have AL = 81",
and therefore we obtain the local following characterization: In the system of local
coordinates {xl, yi, i+, )')i},

(x)\.’ yi’ ).C)\, yl) ol = (xk, yi’ ).C)L, —F;\).CA),

(Fi) functions in C*°(M). Therefore, H(M) is generated by the following vec-
tor fields: 9; — F;a,-. A horizontal piecewise differentiable curve of class C Uin
M : t — p(t) that is such that p; € H), for every ¢, locally defined by *(p@) =
x*(1), y' (p:) = y' (¢) satisfies the equation

dy' _dxt
dt dr

108 of, Greub, Halperin, Vanstone, Connections, Curvature and Cohomology, vol. 2, Academic
Press, 1972, chapter VII, sect. 6.

109 Greub, Halperin, Vaustone, Connections, Curvature and Cohomology, vol. 1, Academic
Press, 1972, Proposition VII, p. 68.

110 Each dotted letter denotes the tangent vector at that point; that is, i is the vector tangent
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2.8.7.4 Definition Let s be a cross section of the bundle (M, 7, N). The local 1-form
on N with values in the vector bundle V (M) defined by Vs = Ky o ds, where K,
denotes the projection 7' (M) — V (M)) associated with H (M), is called the covariant
derivative of s.

2.8.7.5 Local Characterization of Vs

In the previous system of local coordinates, let s be a local cross section defined on
the open set U and let X = X’fau be a vector field defined on U; ds(X) can be
calculated locally. We put s' = y' o s:

ds(X"8,) = X"8, + (9.5 )X*(3; 0 5)
= X" (3, — T}, 05(0; 08)) + X" (38" + T}, 05)(d; 09).
Therefore, according to 2.8.7.3,
Ky ods(X) = X*(us' + T}, 05)(9 05),

whence A .
Vs = (Ous' + T, 05)dx" @ (3; o).

2.8.7.6 Definition The mapping 2 : T(N)xT(N) — V(M) definedby Q(X,Y) =
—Ky(I'X), TM) =T(X,Y])—II'X), ()], X,Y € T(N), is called the cur-
vature of the horizontal subbundle H (M).

Q is a C®(N)-skew-symmetric bilinear mapping that satisfies the following
proposition.

2.8.7.7 Proposition 2 vanishes identically if and only if H(M) is involutive.

2.8.7.8 Remark Let us consider a connection with the form w on a principal bun-
dle P with structure group G—defined by a horizontal subbundle of 7 (P)—whose
curvature form (cf. Definition 2.8.3.1) satisfies the relation

QX,Y) =dwh(X), h(Y)) = —w([h(X), h(Y)]).

We find that both definitions are equivalent, since for any p in P the mapping
A — A; from the Lie algebra Lie(G) of G into the space V), of vertical elements is
an isomorphism of vector spaces.

2.8.7.9 Local Characterization

Q= Q'9; with @ = (3T}, — F{ (9;T%))dx* A dx*. Let us consider the local basis
0 =dy' +Ti dx"in P(H(M)) = {6 € Di(M):6(X) =0,V X € H(M)}. We have

(3,787 Adx*.
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D1 (M) denotes the module of the derivations of M. We recall that a derivation
of an algebra A over a field K is a K-linear transformation of A such that for any
f» g € Awehave D(fg) = D(f)g+ fD(g). Foramanifold M the set F = C°°(M)
of differentiable functions on M constitutes an algebra over R. Any derivation of F is
called by definition a vector field over M. D (M) denotes the set of such vector fields
and D (M) is amodule over F. The local expression can be obtained by computation
of d9' and according to the following theorem of Frobenius.''!

2.8.7.10 Theorem The following conditions are equivalent:

(i) H(M) is involutive.
(ii) For any zo in M, there exists a connected maximal unique submanifold N, of
M such that zo € N, and T;(N,) = H;(M) for any z in N,.
(iii) For any element 6 in P(H(M)),

m
do =" "m0,
i=1

where {0'} form a local basis of P(H(M)) and {n;} are m differential 1-forms
on M.

2.8.7.11 Definition Let H (M) be ahorizontal subbundle. Lett — ¢(¢f)andt — p(t)
be piecewise differentiable curves on N, respectively M. We say that t — p(¢) is a
horizontal lift of the curve t — q(¢) if w(p(¢)) = q(¢t) and p(t) € H,)(M) forany 1.

2.8.7.12 Definition A horizontal subbundle H (M) of T (M) is called an Ehresmann
connection if it satisfies the following condition:

For any piecewise differentiable curve ¢;, typ < t < t1, defined on N and for any
po € w1 (q(ty)), there exists a unique horizontal lift (p;), fo < t < t; such that

Pty = PO-

Let y a piecewise differentiable curve on N that starts from go and ends at g;. Let
Mg, and M, be the fibers over g, respectively ¢;. For any point po of M,,, there
exists a unique horizontal lift of y that starts from py. Let p; beits endpointin M, . We
can define the parallel displacement of fibers 7, from M, into M, along the curve y.

2.8.7.13 Definition 7, is a diffeomorphism from M,, onto M, called the parallel
displacement along the curve y.

2.8.7.14 Example (i) Any principal connection on a principal bundle P is an
Ehresmann connection.

1T ¢t for example, S. Kobayashi and K. Nomizu, Foundations of Differential Geometry,vol. 1,
op. cit., p. 10, Proposition 1.2. Phan Mau Quan, Introduction a la Géométrie des Variétés
Différentiables, Dunod, Paris, 1968, p. 102. Y. Choquet-Brubet, Géométrie Differentielle et
92 and p. 197.
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(i1) According to 2.8.4.2.3 and 2.8.4.2.5, any connection associated with a prin-
cipal connection is an Ehresmann connection. But an Ehresmann connection on a
bundle E associated with a principal bundle P is not always associated with a prin-
cipal connection on P. If the structure group of the bundle P reduces to {e}, there
exists a unique principal connection on P—the trivial one—while there can exist
many Ehresmann connections on E (cf. below, exercises).

2.8.8 Ehresmann Connection in a Differentiable Bundle with Structure
Group G, a Lie Group!!?

2.8.8.1 Definition A differentiable—locally trivialized—bundle, with structure group
G is a fiber bundle (M, 7, N) with typical fiber F such that:

(1) G acts differentially and effectively on the left on F,

(ii) there exist a trivializing atlas (Uy, ¢4 )aea of the bundle and mappings gup :
Uy, NUpg — G such that for any x in Uy, NUp : @up(x) = Lgypx)s where ¢qg denote
the transition functions of the bundle for the atlas (Uy, ¢,) and L ap (¥) the corre-
sponding diffeomorphisms from F onto F* induced by the left action of the gyg(x).
Such an atlas is called a G-trivializing atlas.

Let (M, m, N, F,G) be a bundle with structure group G, a Lie group, and
(Uy, ¢o)aca a G-trivializing atlas. For any x in N, let P, be the set of diffeomor-
phisms %, from F onto the fiber at x, M, such that if 4, and [, both are elements of
Py, then h;l ol, is the diffeomorphism induced by the action on F of g in G. Let P be

P

xeN

The mapping 7p : P — N defined by 7, (h,) = x is a surjective mapping. G acts on
the right on P by iy 0 g = hy o L. Since G acts effectively on F, such an action is a
free one. The mappings ¥ : (x,8) € (Uy X G) = ¢ux o Ly € yrp_l(Ua) are bijec-
tive mappings. The mappings ¥4p : (x, 8) € (UyNUp) x G — (wa_l oYg)(x,8) €
(Uy N'Up) x G are diffeomorphisms. From this we deduce the following theorem:

2.8.8.2 Proposition (Definition) P is a principal bundle with base space N, pro-
Jjection wp, structure group G. P is called the principal bundle associated with
(M,nm,N, F,G).

There exists the structure of a manifold on P for which P is a differentiable
bundle.'?

One can verify that P is a principal bundle and that (U, ¥4)aea 18 a trivializing
atlas for this bundle with cocycles the gqg.

112 C_Ehresmann, Les connections infinitésimales dans un espace fibré différentiable, Collogue
de Topologie, Brussels, 1950, pp. 29-55.
113 Greub, Halperin, Vanstone, Connections, Curvature and Cohomology, vol. 1, Academie
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2.8.8.3 Definition An Ehresmann connection H (M) on abundle with structure group
G,(M,n, N, F, G) is called a G-Ehresmann connection if it satisfies the following
condition: for any piecewise differential curve y of N, the parallel displacement 7,
along y, viewed as a diffeomorphism from F onto F (by identification of fibers and
typical fibers) is the diffeomorphism induced by the left action on F of anelementin G.

2.8.8.4 Proposition Let (M, n, N, F) be a bundle with structure group G, a Lie
group, and let P be its corresponding principal bundle. G -Ehresmann connections on
(M, m, N, F) are connections associated with principal connections on P.

The proof will be given in the exercises.

2.8.8.5 Proposition Let H(M) be a G-Ehresmann connection on the bundle (M, r,
N, F, G). According to Proposition 2.8.8.4, H(M) is associated with a principal
connection with form w on the principal bundle P associated with (M, , N, F, G).

Let (Uy, ¢o)aca be a G-trivializing atlas for the bundle (M, n, N, F, G). Let
t — z; be a horizontal piecewise differential curve in 7 (Uy) and (y;) the cor-
responding piecewise differential curve in P defined by vy, = o,(y;), where o, is
the local cross section in P over U, defined by 04(x) = @q x. X € Uy, and y; the
projection onto N of the curve z;. The piecewise differential curve (y;) in F defined
byy, = w,_l (z¢) satisfies the following equation: y,, = (/L(—(U(j.w)()},o)))yto , Where
w is the isomorphism of Lie algebras from g onto D' (F)''* defined by

d
(w(A))y = - (Lexpra) - Yi=0, A€, y € F.

The proof will be given below in the exercises.

We can now give the relation between the connection form w on the asso-
ciated principal bundle and local forms of the Ehresmann connection defined by
¢' = Tidx*,

2.8.8.6 Characterization

Let (Ey) be a basis for the Lie algebra Lie(G). The isomorphism . from Lie(G) onto
D(F) is defined by n(E;) = pd;, ny € C®(F). If we set w = w! Ej, with w!
1-forms defined on P, we deduce from 2.8.8.5 and 2.8.7.3 that

¢' = (o o) w',

We can deduce the relation between the curvature form €2 on the associated princi-
pal bundle P and the local forms of the curvature of the Ehresmann connection H (M).

2.8.8.7 Proposition The local components (') of the curvature  of the Ehresmann
connection H(M) are

Q = uhor.Ql.

r fields on F.
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2.8.8.8 Example Let F be a real m-dimensional vector space and let {e;}i=1... m
be a given basis of F. We consider a differentiable—locally trivialized—bundle
(M, r, N, F) with structure group GL(F)—the group of linear isomorphisms from
F onto F. We can provide this bundle with the structure of a vector bundle by us-
ing diffeomorphisms ¢, , associated with a GL(F)-trivializing atlas (Uy, @o)acA,
for the transfer of the structure of vector space of F' on the fibers. Let H(M) be a
G L(F)-Ehresmann connection on the vector-bundle (M, r, N, F).

According to Proposition 2.8.8.4, H (M) is associated with a connection with 1-
form w with values in the Lie algebra g/(F) of GL(F) on the associated principal
bundle P, called the bundle of frames.

The local expression will be studied below in the exercises.

2.8.8.9 Example Let F' be an affine space with dimension m and let {0, {¢;}} be a
given frame in F'. We consider a differentiable bundle (M, 7, N, F') with structure
group the Lie group A(F) of affine transformations of F'.

2.8.8.10 Definition We call any A(F)-Ehresmann connection on the bundle (M, 7,
N, F) an Ehresmann affine connection.

According to Proposition 2.8.8.4, H (M) is associated with a connection with form
w with values in the Lie algebra a(F) of A(F) on the principal bundle P associated
with (M, , N, F). A(F) is isomorphic to the semidirect product of GL(F) by F,
since any affine transformation on F is the composite of a linear isomorphism on the
vector space associated with F and a translation. The Lie algebra a (F) can be written
as a(F) = gl(F) @ F. The local expression of H(M), the study of the curvature Q
of the Ehresmann affine connection H (M), and the specific study of the Ehresmann
affine connection on a vector bundle will be given below in the exercises.

2.9 Conformal Ehresmann and Conformal Cartan Connections

2.9.1 Conformal Ehresmann Connections!!®

Let M,, be the Mobius space (cf. 2.4.1) associated with the standard pseudo-Euclidean
space E,(p, q). Let C,,(p, q) be the conformal group of E,(p, q) viewed as the
restriction of PO(p + 1,q + 1) = %f“) to the Mobius space M,,. Since
PO(p+1, g+ 1) acts on the projective space P(E,2), we can give two definitions.

2.9.1.1 Definition A conformal Ehresmann connection is a G-Ehresmann connection
with G = PO(p + 1, g + 1) on a fiber bundle & with typical fiber M,, and structure
group PO(p + 1,q + 1).

15 Most of the results given in Section 2.9.1 can be found in J. L. Milhorat, Sur les connections
, Toulouse, 1985.
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2.9.1.2 Definition A projective Ehresmann connection is a G-Ehresmann connection
with G = PO(p + 1,q + 1) on a fiber bundle n; with typical fiber P(E,4>) and
structure group PO(p +1,q + 1).

We want to study some properties of conformal Ehresmann connections and the
links between conformal Ehresmann connections according to Definition 2.9.1.1 and
projective Ehresmann connections according to Definition 2.9.1.2.

2.9.1.3 Local Characterization

In 2.4.2 we have defined u as the injective mapping from E, (p, ¢) into the isotropic
cone of E,jo(p+ 1,9+ 1) by u(x) = x2x0 +x — yo = q(x)x0 + x — yo with
xo = (€0 + ent1)/2 and yo = (e — ent1)/2.

For the sake of convenience we put now, once and for all, y,+1 = (eg — ey+1)/2. We
recall that 2B(xq, yy+1) = 1.

2.9.1.3.1 Lemma Letz = axo+x-+fy,4+1 beanelementof E,>(p+1, g+1), with
x € E,(p,q) and (, B) € R?. Any element of M,,, the Mobius space, is the class 7 of
an element 7 = axo+ x + By, that satisfies the condition a8 + q(x) = 0 as M,, =
P(Q(F)\{0}) with previous notation (1.4.3.2; 2.4.1), where P is the canonical projec-
tion from E, 1, = F onto its projective space and Q denotes the isotropic cone of F .

We define the open set U of M, by the set of z with § # 0 and z = (u(—x/p)) =
(—(@/B)xo — (x/B) — yat1) as @ = —q(x) and ¢(—x/B) = (1/*)q(x). One can
verify immediately that the mapping ¢, z — —x/f is a homeomorphism from U/
onto E,(p, q).

Thus, (U, @) is a local chart of M.
2.9.1.3.2 Local Characterization

Leté = (M, 7, N, M,, PO(p+1, g+1)) be a bundle with typical fiber M, and struc-
ture group PO(p+1, g +1). We put now dim N = m and we recall that dim M,, = n
and that diim M = n + m.

According to 2.8.8.4, H (M) is associated with a principal connection with form @
on the principal bundle P associated with &. Let (Uy, ¢o)aca bea PO(p+1,q+1)-
trivializing atlas for & ; we assume that the (U, )4 4 constitute an atlas with coordinates
(x")u=12,...m of N. Let {x*, y'}, witha = 1,2,...,mandi = 1,2, ..., n, be the
system of coordinates of M defined on the open set ¢, (Uy X U), Where (U, ¢) is the
above local chart (Lemma 2.9.1.3.1), by (x*, y')(ri1x) = (x*(x), €' 0 ¢ 0 ¢\ (1)),
My € My, x € Uy 10

116 4J denotes the mapping Y z/e; — 7/, and the coordinates yi (my) are the coordinates of

(yx), where u is the mapping defined above.
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Let u')%‘ be the components in the canonical basis (eg)a, £=0,1,2,...n,n+1 Of the Lie
algebra gl(E, ) of the local 1-form o} (w), where oy, is the local cross section of the
principal associated bundle Pg defined by 0y (X) = @q,x, X € Uy, 4 (W) with values
in the Lie algebra po(p + 1, ¢ + 1) isomorphic to the Lie algebrao(p + 1,g + 1).
One can verify the following results:

-0 _ =ntl _ =0 _ o

Wpt1 = w? = 0w N 28ij Wy ij=1,2 117
_O _n+ _ _n+ — .._j b b 9 9 9
Wy + W, =0 w'" =-2g;w,

Whgik + gijiwh =04, jk=1,2,....n.

If ¢' is the local 1-form on ¢y (Uy x U) defined by ¢' = I') dx", where the
(FL) are the local components of the Ehresmann connection H (M) in the system of
coordinates (x*, y'), we obtain

) o o 1 . .
¢ = = W) + 7 @Y+ 7 WG = .

Proof. Lett — m; be a horizontal piecewise differential curve in 7-YU,). Let
(¢r) be the corresponding piecewise differential curve in Pg defined by ¢; = 0 (1),
where (y;) is the projection on N of the curve (). According to 2.8.8.5, the curve
(z+) in M, defined by z; = ¢; (m,) satisfies the equation

d _ d — . _ .
E(Zt)tzto = E(CXP(Z —10)A.Z1)i=1y, With A = —a;.w (), @

where A e o(p+ 1,9+ 1).
Let (y;) be the curve in E;, defined by y; = ¢(Z;) such that u(y;) = z;. According
to (I) let us take 7 in some reduced neighborhood of 7y. We have

u(y;) = exp(t — to) A.u(yg),

and therefore

u(y)) = u(fi(yy)) with fi = hy(exp(t —19)A),

where h is the isomorphism from PO(p+1, g+1) onto C,(p, q) = Conf (E,(p, q))
defined in 2.5.1.2 (cf. below, exercises). Therefore, y; = f;(y,) with f; = hy(exp(t —
fo)A), whence y;, is a conformal infinitesimal transformation of E,(p, g). We give
now the following statement before concluding.

17 The fundamental bilinear symmetricform Bon F' = E, ;> (p+1,9+1) = Ey(p,q)®H =
En(p,q) @ E>(1, 1) is defined by B;,4»(x,y) = B(x, y) for x, y in E,(p, g), by O for
x € Eqy(p,q),y € Ex(1,1), O forx € Eo(1,1),y € Ey(p, q), and By (x, y) for any x, y
in H. (B is the standard usual scalar product on the hyperbolic plane H.) We put for any
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Table 2.1.

Elements of o(p + 1, g + 1) written in the | Associated infinitesimal conformal trans-
basis (i j. fon-t1. fi 0. fin+1) formations
fij=eij—eji = gike’]‘. - gjkef.c I<i< | E; = ? —Xj37 B - (corresponding to
j < n basis of the Lie algebra o(p, q) elements o O(P q))
2fn+10 =2(epr10—€0n+1) = e8 - e:l'ﬂ Ey=x;-= 3 - (corresponding to dilations)
2fio=2(ejg—epi) = — n+1 + 2glkeo E; = W (corresponding to translations)
2fnt1i =2(epq1i —€int1) = el. - F; = x2% - 2x,~xka—ik- (corresponding to
2gik ek_H transversions or special conformal transla-

" tions)

2.9.1.3.3 Table of Infinitesimal Conformal Transformations of E,(p, q)

(Infinitesimal version of the table given in 2.4.2.4) The isomorphism % given in
2.5.1.2 from E,(p, q) onto C,,(p, q) leads to an isomorphism H; from the Lie alge-
bra po(p + 1, g + 1) onto the Lie algebra of conformal infinitesimal transformations
of E,(p, q) classically defined as the Lie algebra of vectors fields X on E,(p, q)
such that Lyq = uxq, itxq being a scalar, where Ly denotes the Lie derivative by
the vector field X and ¢ the fundamental quadratic form on E, (p, ¢).!1®

Let {(fi j, fon+1, fio, fin+1)1<i<j<n} be the basis of the Lie algebra of o(p +
L,g+ 1) with fop = eqp —ega; 0, 8 =0,1,2,...,n,n+ 1, where e = ga},eg
and where eg is the canonical basis of the Lie algebra g/ (E,+2).

We can easily obtain Table 2.1 (cf. below exercises).

The (n + 1)(n + 2)/2 elements (E;;, Eo, E;, F;) constitute a basis'!? of the Lie
algebra of infinitesimal conformal transformations of E, (p, ¢). One can easily verify
that

[Eij, Ex] = gjkEil + gl Ejx — gjiEik — gix E ji (table of the Lie algebra o(p, q)),
[Ei, Fj] =2E;; — 2gi; Eo,

L8 1 et us recall the following fact (cf., for example, Yvette Kosmann, C.R. Acad. Sc. Paris, t.
280, 27 Janvier 1975, serie A, pp. 229-232). Let G be the Lie algebra of infinitesimal con-
formal transformations of V},, an n-dimensional riemannian or pseudo-riemannian manifold
Vi, whose tensor metric is denoted by g. G is the Lie algebra of infinitesimal conformal
transformations of V,,, that is, of vector fields X on V}, such that £L(X)g = —2(6X/n)g,
where §(X) is the divergence of the vector field X and £(X) the Lie derivative by X.
dimG < (n+1)(n+2)/2 and dimG = (n + 1)(n +2)/2 if V}; is a pseudo-Euclidean
or Euclidean vector space or a sphere. If V), is the flat standard Minkowski space dim,
G = 15. For a standard pseudo-Euclidean space of type (p, ¢), E,(p, ¢) G is isomorphic
toso(p+1,g+ 1) ~o(p+1,q9g+1).

119 Such a classical result is given, for example, in A. Crumeyrolle, Fibrations spinorielles et

irica, vol. 6.2, 1975, pp. 143-171.
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[Ei, Ej]=[F;, F;j] =0,

[E;, Eo] = E;,
[Fi7 EO] = _Fi7
[Eij, Eol =0,

[Eij, Ex] = —gikEj + gjrEi,
[Eij, Frl = —gik Fj + gji Fi.
Thus, the Lie algebra po(p + 1,q + 1) is isomorphic to the Lie algebra
R" & co(p,q) ® (R")*, where co(p, q) denotes the Lie algebra associated with
the classical group CO(p, q) of similarities of E, (p, g).'*°
One can easily verify this result in the following way: the Lie subalgebra gen-
erated by (E;;, Eo) is identified with o(p, g) @ R; the Lie subalgebra generated by
(E;) is identified with R", by identifying E; and ¢;; the Lie subalgebra generated by
(F") is identified with (R")* by identifying
) 1 . .\ 0 i
Fi=(=x?¢"7 —x'x/ )| — withe'.
2 dax/
2.9.1.3.4 Remark Since the action of PO(p + 1, g + 1) on the M&bius space M, is
transitive, all the groups of isotropy are isomorphic one to the other.

We will use this result later.
Now we can achieve the proof of 2.9.1.3.2.
According to the table, given 2.9.1.3.3, we can write
d yi
dt
whence we can deduce the result given above, since the coordinates y’ (112,) of the hor-

izontal curve (rht)‘ satisfy the equations givenin 2.8.7.3,dy’ /dt = —Fi (p)(dx*/dt)
and since ¢' = I') dx".

= Wy () = D500y =BGy + 07T GGy’ = y7yh),

120 We recall that the “generalized” Lorentz group O(p, q) has "("2_ D) parameters, the group of

translations 7,, has n parameters, the Poincaré group P (p, ¢) semidirect product of O (p, q)
and C, has w parameters. The group CO(p, q) of similarities of E;, (p,q) if p # ¢q
is the direct product of O(p, ¢) and R, the group of positive dilatations (or dilations). If
p = ¢ and then E,, is of even dimension, CO™" (p, ¢) is normal and of index 2 in CO(p, q)
and COT(p, ¢) the group of positive (or direct) similarities is the direct product of O (p, q)
and RT. If p # ¢, CO(p, q) has "("—EI) + 1 parameters and if p = ¢, COV(p, g) has

@ + 1 parameters. The group of conformal affine transformations of £ has w +1
parameters.

Conf (En(p,q)) = Cn(p, q) has w parameters. Its Lie algebra Lie(Cy (p, q))
is isomorphic with po(p + 1,q + 1).

The notation CO(p, g) is used by S. Kobayashi, Transformations groups in differential
geometry, op.cit., p. 10, for example, to denote the group of similarities. The corresponding
notation used by J. Dieudonné, La géometrie des groupes classiques, op. cit., for the same
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2.9.1.3.5 Remark If we decompose an element A in po(p+1, g+ 1), identified with
o(p+1,q + 1) and defined in the canonical basis (eg)a,,gzo,l,z,m’n,nﬂ of gl(E,+2)

as A = A¢ ﬁea, we can write

A=B'e;+ Biel + Ble; with B' = —Al_ | B} = A + AQs', BY = — AT,

The local 1-form o} (w) can be written as 0¥ (W) = w'e; + w;e{ + w?ei with
?u" = —zI)le, w' = u'); +@86§, wl(.) = —u')l’.’+1. Therefore the preceding result given
in 2.9.1.3.2 can now be written

o' =) + 7 Why +7* (wo)( yiglt —yi y)

We give now three propositions (see exercises below).!?!

29.14 Pr(_)position Let H (M) be a conformal Ehresmann connection on a fiber bun-
dle§ = (M, 7, N, My, PO(p+1, g +1)). With the same notation as above, the local
1-forms of the Ehresmann connection ¢' = F’ dx’ satisfies the relation

¢ =) + 7 (wh)y! +ﬂ*(w°)( vl - yjyi)
with {w', w wO} bemg (n + 1)(n 4+ 2)/2 local 1-forms on N such that w'. L8k +
gjiwk = (2/11) Zk wkgjk-

2.9.1.5 Proposition Let H(M)) be a projective Ehresmann connection on a fiber
bundle n = (My, my, N, P(E,12), PO(p + 1, q + 1)). With the same notation as
above, the local 1-forms ¢° = Tdx*, ¢' = ['idx*, where (I'), T'}) are the local
components of the Ehresmann connection H (M), satisty the relations

¢i — n:(cri) —I—n;(cr]’:)zj +7T;;(Gj(‘)) ( Jig 0 177 z)
- 2 i
# = 5 Dm0 = 2z )) = m (o)t

k

where the (o', aj’:, aj(.)) are (n + 1)(n 4+ 2)/2 local 1-forms on N such that U;gik +
gjio}l = 2/n) Y, ok gk

2.9.1.6 Proposition Let P be a principal bundle with base space N and structure
group PO(p 4+ 1,q + 1) and let H(P) be a principal connection on P. Let 1,

121 These results are due to J. L. Milhorat, Sur les connections conformes, Thesis, Université
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respectively &, be the corresponding fiber bundle with typical fiber P(E,»), re-
spectively M,,, and with the same structure group PO(p + 1, g + 1) as defined above.
Let H(M,), respectively H (M), be the connection on 1, respectively &, associated
with the principal connection H (P). Let j denote the identical mapping from M into
M, (Iocally the inclusion M,, C P(E,2)). Then j is an embedding and satisfies the
relation j*(H(M)) = j*(T(M)) N H(M,).

2.9.2 Cartan Conformal Connections

2.9.2.1 Classic Cartan Conformal Connections!??

2.9.2.1.1 Jets and r-Frames

Let M be a manifold of dimension 7.

2.9.2.1.2 Definition Let M be amanifold of dimensionn > 3.Let) be the set of open
neighborhoods of 0 in R”. Let f and g be respectively two mappings, f : U — M,
g:V — M,where U,V € V. f and g are said to define the same r-jet at O if
f(0) = g(0) and if there exists a local chart (€2, h) of M ata = f(0) = g(0) such
that the mappings ho f : U — R" and ho g : V — R”" have the same partial
derivatives up to order r at 0.

The same is true for any other chart (€', h’) at a. Thus the relation “f and g
define the same r-jet at 0 is an equivalence relation on the set of mappings such that
f:U — M, withU € V. Any equivalence class is denoted by j;(f) and called an
r-jetat 0. If f : U — M is a diffeomorphism from an open neighborhood of 0 onto
an open subset of M, the r-jet jj(f) is called an r-frame at @ = f(0) Then (f(U),
£~ is alocal chart of M at a.

2.9.2.1.3 Proposition The set of r-frames of M, denoted by P" (M), is a principal
bundle over M with projection p : P" (M) — M, the natural projection defined by
(o (f)) = f(0) that sends any r-frame onto its origin.

The structure group G" (n) is the set of r-frames jj (¢) whereg : U — R", U €V,
is a diffeomorphism such that ¢ (0) = 0, provided with the following composition of
Jjets, namely

(o @ Jg @) = ji (¢ o).
G" (n) acts on P" (M) on the right by

Jo(N)-Jo(@) = jo(f o) forjo(f) € P (M) and jy(¢) € G"(n).

122 Most of the following results can be found on pp. 127-149 in the following book of reference:
S. Kobayashi, Transformations Groups in Differential Geometry, Springer-Verlag, 1972;
and in the following thesis: A. Toure, Divers aspects des connections conformes, Thesis,
Université de Paris VI, 1981. Cf. also R. Hermann, Vector Bundles in Mathematical Physics,
0, chapter II.
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The proof'?? is straightforward. The Lie algebra of G”(n) will be denoted
by g"(n).

2.9.2.1.4 Examples

1. P'(M) is the bundle of linear frames over M with structure group G!(n) =
GL(n,R).

2. PY(R") can be identified with the group A(n, R) of affine bijections of R”
whose Lie algebra is R" & gl(n, R). PYR") is a principal bundle with base
R" and structure group GL(n, R). The neutral element of A(n, R) will be
denoted by e.

In the same way as above, one can consider for U, a given open set of R”, the mapping
Hy : P"(U) — R" x G"(n) defined by Hy (jo (/) = (f(0), jo(f — f(0).

It is a bijective mapping that provides P"(U) with the structure of a product
of manifolds. The result is true for U = R”". P"(U) is an open set of P"(R").
If f: U — M is a diffeomorphism, the mapping fr o PT(U) - P'(fU)),
Jo (@) = jo(f op) satisfies fr (e) = jj(f) and is a bijective mapping that allows the
transfer of the structure of product of manifolds onto P”(f(U)). Thus, by varying
the chart (f(U), f~!) we can obtain the structure of a fiber bundle of P (M). Then,
f, appears as an isomorphism from the bundle P"(U) = p~!(U), which is an open
set of P"(R™)-onto P"(f(U)) = p~'(f(U)), which is an open set of P"(M).

2.9.2.1.5 Study of P2(M)

2.9.2.1.5.1 Local Coordinates Let (¢;)i=12,.. ., be the natural basis for R” and
(x', ..., x™) the natural system of coordinates in R”. Any element u = j02(g0) of
P2(R™) is defined by the polynomial representation

i

J J

where ‘
X = Zx’ei
i
i i

and u Sk = U

2.9.2.1.5.2 Definitions (ui, u;, u’j ) are called the natural canonical coordinates of
u = jg(qo), and we write simply j§(<p) = @, u;, u;k). By restriction, G2(n) is
constituted of elements (0, aj., aj. ) simply written a = (aj., aj. ). The right action
123 1t is sufficient to remark that the right action defined above is simply transitive on any

of the fibers p_l(a), where a € M, sinceif f : U — Mand g : V — M are two
diffeomorphisms such that £(0) = g(0) = a, then ¢ = f —lo g is a diffeomorphism such
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of G%(n) onto P2(R") is defined by the mapping P2(R") x G%(n) — P%(R") that
sends (j3 (¢), @) = (u, a) into j3 (¢ o @) if we seta = ji (), ie.,

i i i i i _
(”’”jv”jk)*("j’“jk)—( Z”r rZ”r“ﬂcJFZ”rs a;a )

2.9.2.1.5.3 Canonical Form on P2(M ): Definition We want to define a 1-form
with values in the Lie algebra of A(n, R), namely R" & gl (n, R) which will be
described. Let X be a tangent vector to P2(M) at a point u = = J5 2(f). Let X’ be its
image via the canonical projection PX(M) — P'(M) that sends ]g (g) into ]0 (g). X'
is a tangent vector to P L(M) at j(} (f). From the results given above, we can deduce

that f induces an isomorphism f1 from an open set P! (U) of P!(R") onto the open
set P1(f (U )) of P1(M); here, U denotes the set of definition for f. We know that
f1 (e = Jy Y(f). There exists a unique tangent vector Y to P'(R") at e such that

f1 (e).Y = X'. Since the tangent space to PL(R") = A(n, R) at e can be identified
with the Lie algebra of A(n, R), Y takes its values in R"” & gl(n, R).

By definition we put 0(X) =Y, and thus define a 1-form 6, and the value of 0 at u
depends only on j; 2(f) = u.

On the other hand, if & : P>(M) — P%(M) is a morphism of fiber bundles and
if @ and 6 denote respectively the canonical forms of P?(M), respectively P2(M),
we have

h*(6) = 6.

In particular, if f : U — M is a diffeomorphism that defines local coordinates and
f2: P2U) — PZ(M ) is the corresponding morphism of fiber bundles associated
with f, we have f2 (0) = 6, where 6 denotes the canonical form of P2(R").

Such a form 6 = fz*(Q) will be called an expression of 0 in the system of local
coordinates defined by f on P2(M). In order to determine such an expression, it is
sufficient to calculate the form 0, denoted here by 0, in the case M = R".

With the same notation as above, let u = j&( f) be an element of P%(R").
We put u = (ui,uj., u;k) with ' = f1(0), u; = (3f%/9x7)(0), and uj.k =
(3% f7/9x79x5)(0). If y = j) () = (37, yj.) is an element of P! (R"), we have

A =js(foey=(r'o....0" Zii(y1 Yy
0 ) 5 - Byk g e ey j .

124 We note that the multiplication in G2(n) is given by

(v by D@ aj ) = | Dbyl Z‘ﬁ it Zbrs%ak)




2.9 Conformal Ehresmann and Conformal Cartan Connections 141

Thus by differentiation at y = e = (0, 5;),

, of kN 0%
file)dy = Zm@)dy ,ijaykayjm) Z (O)d

k
= (; ut dyk, ;u}'{jdyk + ;%dﬁ) .

Letus denote by E; = 9/dy', E{ =9/ By; the canonical basis of R” @ gl (n, R)—the
Lie algebra of G*(n).

Any tangent vector X to P2(R") at u = jg( f) can be written in the system of
coordinates (!, u;, u;k):

X = Z—X’+Z—X’ +Z

]kl

The image of X by the canonical projection: P2(M) — P'(M) is then given by
’r_ i i
X'= Z WX + Z —X

Solving these equations in Y, YJ’? , we obtain, from the definition,

) =Y =) x5 0ix) =Y =) vixk =" viuy v x!
k k

k,h,l

where (v,i) denotes the inverse matrix of (u};). We write simply

— igk pi _ i
= kadu 0= kadu Z vkuh]vl

k.hl
whence we deduce
i k
= 6inok,
p ik i 1. h ik h ook
since d(u}cvj) =0= u}cdvj = —du}cvj =—) v du}cvj,
= Zdv,i Aduf = — Z v;;dufv,l( Aduf = —Zviduf’ INCAR
k k,h,l
On the other hand,
Z vkuhjvhdu INZE Z Uk“h] NG =0,
k.l k.hl

taking account that u* = =uk hj . Then,

dot = — v;ldu;’ AOL = —29_;/_\9_1.
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We have obtained the following result:

2.9.2.1.5.4 Proposition'? Let0 = (07, 9]".) be the canonical form on P*(M). Then
dot = -0} nok.

2.9.2.1.5.5 Fundamental Vector Fields We know that G" (n) acts on the right on
P" (M) according to the following law: P"(M) x G"(n) — P"(M) defined by
(u,g) — Rg(u). With any element L in the Lie algebra g"(n) of G"(n) we can
associate a fundamental vector field L* on P" (M) defined in 2.8.1.1.

For any a € G"(n), the vector field R L* is the field X defined on P" (M) by
X (Ry(u)) = dRy(u)-L*(u) (often denoted R),(u) - L*(u)). Since (Rexpsr)ieR 1S
the 1-parameter group generated by L*, we can deduce that the 1-parameter group
generated by X = R¥L* is (R, exp(tL),)1€R- Since a~'exp(tL)a = exp(tM) with
M = ad(a=")L, we find that R*L* = (ad(a~")L)*.

The fundamental vector fields are vertical, i.e., tangent to the fiber. Moreover, if
X is a fundamental vector field on P%(M), namely X = L*, with L € g%(n), the
fundamental form 6 satisfies 0(X (1)) = L’ for any u € P>(M), where L’ stands
for the canonical projection of L onto g'(n) = gl(n, R) that can be identified with
Hom(R"), the space of morphisms from R” to R”".

2.9.2.2 G-Structures and Conformal Structure
Let M be a n-dimensional differentiable paracompact manifold.
2.9.2.2.1 Introductory Notes

2.9.2.2.1.1 Definition Let H be a closed subgroup of G" (n). Areduction to H of the
structure group G” (n) of P"(M) is a principal subbundle of P"(M) with structure
group H. Simply, we say that such a bundle is an H-reduction of P"(M). It is given
by the datum of an open covering (Uy)yeca of M and a family (S, )qe4 of local cross
sections such that:

(i) S¢ : Uy — P"(M) defined by x — jj(S;) where the function Sy satisfies
S5 (0) = x such that for any (o, B, x) with x € U, N Up there exists an element agﬁ
in H such that

(ii) Sg(x) = S (x)agﬁ. (The group H acts on the right on P"(M).)

The reduced bundle is then defined by the morphisms h, : Uy, x H — P"(M)
that send (x, 1) into S/, with transition functions agﬁ. Two families (Uy, Sq)acA,
U;, S;)iea of local cross sections define the same H -reduction if their union satisfies
(ii) above.

125 This result is given in the following book: S. Kobayashi, Transformations Groups in Dif-
erential Geometry, Springer, 1972, p. 141, Proposition 5.2.
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Since H acts on the right on P" (M), the quotient space P"(M)/H is a bundle
associated with P" (M), with typical fiber G" (n)/H (right-quotient), and condition
(ii) is equivalent to Sy (x) and Sg(x) belong the same equivalence class modulo H,
namely Sy (x) = S‘ﬂ (x). The datum of local cross section S, satisfying (ii) is equiv-
alent to the datum of a cross section o : x — 6, (x) of the bundle P"(M)/H. Since
M is a paracompact manifold, a sufficient condition for the existence of such a cross
section is that G" (n)/H be homeomorphic to a standard Euclidean space R? that is
a solid space.!?¢

2.9.2.2.1.2 Proposition Extension of a Reduction Ler G, H be two closed sub-
groups of G"(n) such that G C H and let G(M) be a G-reduction of P"(M).
There exists an H-reduction canonically associated with G (M) such that G(M) is an
H-reduction.

Let assume that G (M) is defined by the cross sectiono : M — P"(M)/G and let
7 denote the canonical projection from P (M)/G onto P” (M) / H thatsends any class
modulo G onto the class modulo H that contains it. Thenw oo : M — P"(M)/H
is a cross section that defines an H-reduction determined by the datum of G (M),
namely H (M).

We need to notice that the datum of H(M) does not determine G(M). More
precisely, with the above notation, we have the following result.

2.9.2.2.1.3 Proposition Tiwvo G-reductions of P" (M) respectively defined by the sec-
tions o and o' of P" (M) /G determine the same H-reduction H(M) if and only if for
any x € M, o(x) and o'(x) are in the same class modulo H.

The proof is left as an exercise.

126 We recall the following definition and properties (N. Steenrod, The Topology of Fiber Bun-
dles, Princeton University Press, 1951, pp. 54-56.) A space Y will be called solid if for
any normal space X, a closed subset A of X, and map f : A — Y, there exists a map
f' X — Y suchthat f'|A = f.

Examples: R”, a Euclidean n-space is a solid space. Let X be a normal space with the
property that every covering of X by open sets is reducible to a countable covering (e.g., X
is compact, or has a countable basis). Let A be closed in X. Let G be a Lie group and H a
closed subgroup such that G/H is solid. Then any (G, H)-bundle over (X, A) is (G, H)-
equivalent to an (H, H) bundle.

Corollary: With the same assumptions, any bundle over X with group G is equivalent in
G to a bundle with group H.

A normal space is a topological space that is a separated space that satisfies the following
property: any pair of closed subsets F, F/, with FNF’ = ( possesses a pair of neighborhoods
V, for F, V', for F’, such that VNV’ = (. A separated space is normal if each pair of disjoint
closed sets have disjoint neighborhoods.
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If we suppose that o and ¢’ are respectively defined by families of local cross
sections Uy, Sa), (Z/{;B, S/’B) of P"(M), the result means that for any «, 8, x such that

x €Uy N U;}, there exists bzﬁ in H such that SI’3 (x) = Sa(x)bgﬁ.

2.9.2.2.1.4 Definition Let P! (M) be the principal bundle of 1-frames of M, with
structure group GL(n, R), and let G be a subgroup of GL(n, R). A G-structure on
M is a subbundle of P!(M) with structure group G, namely a restriction to G of the
structure group of P! (M).

2.9.2.2.1.5 Proposition Sucha G-structure exists if and only if the associated bundle
with PY(M) with typical fiber GL(n, R)/G admits a section. Since we assume that
M is paracompact, such a section exists if the quotient GL(n, R)/ G is diffeomorphic
to a Euclidean space RP.

2.9.2.2.1.6 Examples—Definitions A riemannian structure on M is an O(n)-
structure. A pseudo-riemannian structure on M is an O(p, g)-structure. A confor-
mal structure on M is a CO(n)-structure, where

CO(m) ={A e GL(n,R): "AgA = pg, p € RT},
with Lie algebra
con) ={Aecgln,R): "Ag+ gA = pg, p € R}.

A generalized conformal structure on M is a CO(p, g)-structure, where CO(p, q)
stands for the group of similarities of E,,(p, g), CO(p, q) = O(p, g) x R™*, and the
Lie algebra po(p + 1, g + 1) is isomorphic R"” & co(p, q) ® (R")* where co(p, q)
denotes the Lie algebra of CO(p, q). (Cf. above, 2.9.1.3.2 and footnote 128.)

According to 2.9.2.1.2.2, the datum of a riemannian, respectively a pseudo-
riemannian, structure implies that of a conformal, respectively generalized conformal,
structure. Conversely, since COO(E:;) , respectively Coo(g;’;]q)) ,is diffeomorphic to R™ and
then to R, any conformal structure, respectively generalized conformal structure, is
reducible to a riemannian structure, respectively a pseudo-riemannian structure. But
such a reduction is not unique (cf. 2.9.2.2.1.5).

2.9.2.2.1.7 Equivalent Definitions We consider only the case of the usual Mobius
group (2.2), M (n). Since the Mdbius classical group acts transitively on the Mdbius
space M,,, all the groups of isotropy are isomorphic one to the other. Let M(n) denote
the group of isotropy of the origin for the standard Mobius group M(n).

One can easily identify'?7 My (n) with the closed subgroup of G2(n) consisting of
jets jg((p) such that ¢ (0) = 0 and ¢’ (x) € CO(n), for x in some neighborhood of 0.

Let us consider M| (n), the subgroup of Mo(n) consisting of jets such that ¢’(0) = Id.

.13, Exercise XV.1.)
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One can see that M (n) is a normal subgroup of Mo(n) (isomorphic to the group
Mo
My (n) _
Thus if P is a subbundle of P2(M) with structure group Mo(n), the homogeneous
space P/ Mi(n) is a principal bundle with typical fiber CO(n) and thus defines a
conformal structure on M.

Conversely, let Q(M) be a subbundle of PY(M) with typical fiber CO(n) that
defines a conformal structure M. According to the general theory of prolongations of
G-structures,'?® one can associate with it a subbundle of P?(M) with typical fiber
Mo(n): its first prolongation Q1(M). Thus, an equivalent definition of a conformal
structure on M is the following:

of the translations of the standard space E;) and that is isomorphic to CO(n).

A conformal structure on M is the datum of a subbundle P (M) of PZ(M) with struc-
ture group Mo(n).

2.9.2.2.1.8 Notation Let (ui, ui., u;k) be the 2-jet of amap ¢ : U — R", where
U €V the set of open neighborhoods of 0 in R” (cf. 2.9.2.1.1). Let

Z(u’ +ufjx! + EM’J X xRye;

1

be the polynomial representation of jg (¢), where (e;) is the natural basis of R"” and
X = in e; and u’J P = u}c joas above. One can verify, since R” is provided129
with ‘the classical scalar product, that the elements of M 1(n) are the jets of the form
(0, 8;., djka; — djiax — Sxiaj) with (ay, ..., a,) € R", and that the first prolongation

of the Lie algebra co(n) is the Lie algebra i1 (n) of M (n) and thus consisting of jets
(a;. ) such that

aék = §jxa; — 8jiax — Okia;.
Finally, the Lie algebra mq(n) is equal to co(n) @ my(n).

2.9.2.2.2 Conformal Classical Connections

According to the results given in 2.8.5, we make the following definition:

2.9.2.2.2.1 Def~inition A conformal classical connection is a Cartan connection for
the case G = M (n), the classical Mobius group, and H = M (n).

Since the Lie algebra of M(n): Lie(M (n)) = (n) is R" @ co(n) & (R™)*, a

conformal connection w on P is defined by its components: (wi, wl] ,wj), where!?Y

a)l] € co(n).

128 g, Kobayashi, Transformations Groups in Differential Geometry, Springer, 1972, chapter 1,
section 5, pp. 19-23.
129 R" is provided with its canonical standard Euclidean scalar product such that g; j =9d;jand
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The classical Maurer—Cartan structure equations of M (n) are as follows:!30
do' = — Zw}c A a)k,
k

dw;-=—Zw,iAw';—wi/\a)j—a)i/\wj—i—(S,i{wk/\a)k, (D)

k
dw; ——Zw A oF
J = k J*
k

If w denotes a conforma} connection on the fiber P with structure group H = Moy(n),
the curvature forms (Q’j, Q;) and the torsion form (227)!3! of the connection w are
defined by

do' = —Zw,iAwk+Qi,

130 This result is given in S. Kobayashi, Transformations Groups in Differential Geometry, op.
cit., p. 135. The Maurer—Cartan form o can be written w = Y 'e; + Y. w; eij +X wjel,
where (w;) is co(n)-valued.
Notes: We consider P, the bundle of linear frames over M, dim M = n. G = GL(n,R).
7 denotes the projection P — M. The canonical form 6 of P is the R”-valued 1-form on P
defined by (0(X) = u! (r(X)) for X € T,,(P), where u is considered as a linear mapping
of R" onto Try(M) [If u = (Xy, ..., Xp) is a linear frame at x = 7 (u), u can be given
as a linear mapping u : R" — Ty (M) such that ue; = X;, where {ey, ..., e, } is the natural
basis for R, ey = (1,0,...,0),...,e, = (0,...,0,1),fori = 1,2,...,n. The action of
GL(n,R) on P can be interpreted as follows:

Consider a = (ai.) € GL(n,R) as a linear transformation of R” that maps e j into

131

> az. e;. Then ua : R — Ty (M) is the composite of the following two mappings:
R" S R" & 1. (M).

A connection in the bundle P of linear frames over M is called a linear connection of M.
The torsion form © of a linear connection I" is defined as ® = D@, the exterior covariant
differential of 6, the canonical form of P.

In the same way, a generalized affine connection of M is defined as a connection in the
bundle A(M) of affine frames over M. Now we recall briefly that the torsion tensor field—or
simply torsion—7" and the curvature tensor field—or simply curvature R—such as 7 is a
tensor field of type (1, 2) and R is a tensor field of type (1, 3) can be expressed in terms of
covariant differentiation as follows:

T(X,Y) = VyY — Vy X — [X, Y]

and
R(X,Y)Z =[Vx,VylZ - Vx v1Z,
where X, Y, and Z are vector fields on H.
All these classical results can be found, for example, in the book by S. Kobayashi and
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da);=—Za),’;/\a)’;—wi/\a)j—a),/\w]+8’Za)k/\a) + QL 2)
da)j = —Za)k Awl; + Qj.

The Lie algebra mo(n) of H = Mo(n) is the Lie subalgebra of M (n) defined by
o =0(<i<n).

Since w(A*) = A for any fundamental vector field generated by an element A of
the Lie algebra of H, the restrictions of the forms @' vanish on the fibers of P, and
the forms (w;) and (w;) generate the cotangent space to these fibers. The restrictions
of the forms (a)i.) and (w;) to the fibers can be identified with the Maurer—Cartan

forms of My (n) and satisfy the system (1) above with o = Ofor1 <i < n. Thus
the relations @ = 0 (1 < i < n) imply that @' = 0,Q/ = 0,Q; = 0. Then
there exist functions Kik, K;kh, K i on P such that Q' = %K;ka)j A o, Q’j =

1 i _ h
Kkha) Aol , 2 _—K]kha) A

2.9.2.2.2.2 Definition A conformal connection on P is called a normal connection
if it is without torsion, i.e., ' = 0, forany i = 1, 2, ..., n, and if its curvature tensor
satisfies the following relation:

S ki, =o0. 3)

We are going to show that a normal connection is uniquely determined by the da-
tum of the principal bundle P with structure group Mo (n) and of the forms (o', a)z.)
and that it satisfies the relation

Y al=o0.
1

2.9.2.2.2.3 Theorem Let P be a subbundle of P2(M) that defines a conformal struc-
ture. Let (@', w’j) be a system of n + n? differential forms on P such that

(i) o' (A*) = 0 and a)’J (A*) = A;. for any fundamental vector field A* generated
by an element (A"j, A;) of the Lie algebra of Mo(n); according to the structure
ofthis Lig algebra Mo(n) givqn in 2.9.2.2.1.8.~

(i) R}, o)) =ad(a ") (o', o) for any a € Mo(n).

(iii) The vertical vectors (i.e., tangent to the fibers) are those that satisfy o' (X) =
1<i<n. .

(iv) do' = =) w; A ok

Then there exists a unique system of forms (w1, . . ., w,) on P that (&', w;, w;) define

a normal connection on P.

Proof. (a) First, let us show that the relations
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imply that
>ai=o
i

ie.,

ZK,_O )

By using exterior differentiation, we get from (iv)

i k i k j_
Zda)k/\a) +Za)k/\a)j/\a) =0.
k k,j

Then, using the second relation of the system (2) above, which defines QL and writing

that the terms that do not contain the forms w;, a)lj vanish, we obtain

Y Qi not=o0. )

Writing explicitly, we get K’ it K ket Ki j = = 0, whence if k = i, according to the

relation (4);
Z Kl =0,

and taking account of the skew symmetry of K kil relative to j, [, we get
Z Kij = Z K = D Kiyj =
i

(b) Now we are going to prove that the required connection is unique. Let us as-
sume that there exist two systems of forms (w; ), (@;) that define normal connections.
Taking account of (i), we have @; (A*) — w; (A*) = 0, for any fundamental vector
field, and then @;(X) — w;(X) = 0 for any vertical vector X, which implies that
@; — w; is a linear combination of the forms w'. We put

Vi — W = ZA,kw

Let us denote by Q , ;, the curvature forms of the connectlon (o', a) a),) and by

Q , Q;, the curvature forms of the connection (w;, a) , @;). Taking account of the
system (2) above, we have

Q- Qf =w"/\(@,~—w,~)+(@i—wi)Awf—S{Z(@k—wk)Awk,

whence we obtain that

=-n ZAkiwi A .
i
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Thus, the conditions ) S_Zi =Y Qi = 0 imply the symmetry Az; = Ajr. We

have now

Q- =0 A@) —w) + (@ — o) Aol = Z(Ajkwi Ao + Aok A wl).
k

Looking after the skew-symmetric coefficient of w* A ! in Q’] — Q;, we get that

Ky — Ky = —8iAji+ 8L A + 8] Au — 8] Ay 6)
and
Z(K]ll Kip) = ~Aji+nAj+8] ZAii —Aji=n—-2A;+8 ZAii =0,

whence we find that Aj; = 0if j # [ and
D Ai=Q2-mAj
i

forany j = 1,2,...,n, which implies that n ) A;; = (2 — n) Y_ A;;. Therefore,
> A;i = 0and, finally, A;; = 0 for any ;. Finally, the relations (3) and (4) imply
that A j; = 0 for any j, /.

(c) Now we prove the existence. Let (Uy, hy) be an atlas of M such that (Uy) is
a locally finite open covering of M and let ( f,,) be a partition of unity subordinate to
(Uy). Since p~ ! Uy)"3? is diffeomorphic to the product I, x Mo (n), one can build a
cross section oy over Uy, that is a mapping oy : Uy — P such that p o 0y = Id. For
any z € p~!(U,) there exists a unique a € Mo(n) such that R,-1(2) € 0o (Uy), and
any vector Y tangent to P at z can be uniquely written ¥ = R (X) + W, X being
tangent to o (Uy) at R,-1(z) and W being a vertical vector, since the tangent space
to oy (Uy) is a complementary of the tangent space to the fiber.

The vertical vector W is the value at z of a fundamental vector field A*, where
A belongs to mg(n). Now let us put w,(X) = (@' (X), a)z-(X), 0) and wy(Y) =
ad(a="wy(X) + A. Then the form w defined on P by @(Y) = > fowe(Y) leads
to a conformal connection of the form (', w;, wj). In order to obtain a normal
connection, it is sufficient to replace the forms w; by the forms

~ k
w;j =a)j+ZAjka)
k

with 1
k
h = S S D

if we denote by K i 1 the curvature tensor of the connection (o', a) , ;). This fact is

a consequence of the relations (3) above with the assumption K i =0.
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2.9.2.2.2.4 Properties of Normal Connections

2.9.2.2.2.4.1 Theorem Let (wi, a);, wj) be a normal connection on the fiber bundle
P. Then the curvature forms 2;, Qlj satisfy the following relations:

iy szj Aw! =0, thatis Ky + K}, + Kj;; = 0.

(i) Y o' AQ; =0, thatis K jiy + Kyj + Kijk = 0.

Proof. The relations (i) have already being given (formula (5) above). The formula

(i) can be obtained by exterior differentiation of the last formula of the system (2)
taking account of ) Q! = 0.

We can therefore deduce the following statement:

2.9.2.2.2.4.2 Theorem Let P(M) be a conformal structure on M and let (6", 9;) be

the restriction to P(M) of the canonical form of P*(M). Then there exists a unique
conformal normal connection (o', a)’j, w;j) on P(M) such that ' = 6" and a)’] = 9}.
Such a connection satisfies the following relations:

Y ai=0

and
ZK;'.” =0.
i

The theorem is an immediate consequence of the fact that the forms (67, 9;.) sat-
isfy the assumptions of the previous theorem.

2.9.2.2.2.4.3 Extension of the Connection to PZ(M) In order to extend to P2(M)
a co~nformal normal connection w, we need to keep in mind thatAthe‘ Lie algebra
of My(n) is the Lie subalgebra of G%(n) consisting of elements (ozlj, a;. &) such that

(oz;.) € co(n) and (ai.k) are given by
(x,{ =§jra; — 8;~ak — 3;;61]‘, @)

where (a1, ...,a,) € R". The extension to P2(M) of the connection w, will be a
form 7 with values in R” @ g2(n) with components (7, n;, n; ) in the canonical
basis of R" @ g2(n) such that

(i) the restriction of 7 to P(M) is of the form (o', wj., djkwi — 6;wk — 8,iwj),

(i) forany a € G*(n), R¥m = ad(a=")r.

The links between conformal connections and riemannian connections will be studied
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2.9.2.2.3 Conformal Cartan Connections'33
Let Gn+1 be the isotropy subgroup of P(y,+1) € M = M,, with notation of 1.4 or
2.4, the generalized Mobius space, where P denotes the projection to the projective
space, as usual. Since the Mobius group PO(p + 1, g + 1) acts transitively on the
Mobius space M,, and since all the isotropy subgroups are isomorphic one to the
other, M, = PO(p + 1,9 + 1)/Gpy1.

We assume that dim N = dim M, i.e., m = n with notation of 2.9.1.3.2.

2.9.2.2.3.1 Definition Let P be a principal bundle with base N and structure group
G,,+1 By definition, a Cartan connection on P with values in the Lie algebra
LPO(p+1,q+1)=po(p+1,q+1)iscalled a conformal (generalized) Cartan
connection.

We can now give the following results. The proof will be given in the exercises.

2.9.2.2.3.2 Proposition (i) If there exists a conformal Cartan (generalized) connec-
tion on a fiber bundle (P, 7, N, Gy41), then there exists a conformal Ehresmann
connection on the bundle

¢ =Pxg  My=M7,N, My, PO(p+1,g+1)

such that if V denotes the covariant associated derivative and oy the canonical
section of M, Vo is a soudure between N and M.

(i) Conversely, if there exists a conformal Ehresmann connection on a bundle
¢ = (M, 7, N) with typical fiber M, and structure group G,H_] such that (Vo)
defines a soudure, where V stands for the covariant derivative subordinate to the
Ehresmann connection and o ; the canonical section of M, then there exists a Cartan
connection on the principal bundle associated with M.

2.9.2.23.3 PropOSItlon Let P be a principal bundle with base N and structure group
Gn+1 and let { = (M, 7, N) be the bundle with typical fiber M,,, associated with P.

(i) If there exists a soudure between N and M, then there exists a reduction with
structure group CO(p, q) of the bundle of frames R(N) of the manifold N. Such a
bundle is called a CO(p, q) structure on N.

(ii) Conversely, if there exists a CO(p, q) structure Q(N) on N, then there exists
a soudure between N and the bundle Q(N) X co(p,q) Mn, once CO(p, q) has been

identified with a subgroup of G, 1.

133 Most of the results given here have been revealed by J. L. Milhorat, op. cit., starting from
the following works: S. Kobayashi, Transformations Groups in Differential Geometry,
op. cit.; K. Oguie, Theory of conformal connections, Kodai Math., Sem. Rep. 19, 1967,
pp- 193-224; N. Tanaka, Conformal connections and conformal transformations, Trans.
Amer. Math. Soc., 92, 1959 . 168-190; A. Toure, Divers aspects des connections
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2.9.2.2.3.4 Corollary (i) If there exists a conformal Cartan connection on the prin-
cipal bundle (P, 7w, N, G41), then there exists a CO(p, q) structure on N.

(i) If there exists a CO(p, q) structure Q(N) on a paracompact manifold N,
then there exists a conformal Cartan connection on the principal bundle Q(N) =
O(N) Xco(p.q) Gn1-

2.10 Conformal Geodesics

2.10.1 Cross Sections and Moving Frames: A Review of Previous Results
2.10.1.1 Classical Results

Let P (M) be a principal bundle with base space M and structure group G. A connec-
tion form w on P (M) is a differential form w of degree 1 given on P (M) with values
in the Lie algebra £(G) of G such that:

(i) Foranyz € P(M),thetangent vectorsto P (M) thatsatisfy w(X) = Oconstitute a
subspace H; of T, (P (M)) complementary to V, the tangent space to the fiber at z.
(i) For any @ € G, if we denote by R, the right action of @ on P(M), we have
Riw = ad(@ Hw.
(iii) If we denote by A* the fundamental vector field generated by an element A of
G, we have w(A}) = A, forany z € P(M).

The datum of a connection form on P(M) is equivalent to what follows: for any
z € P(M) there is a distinguished subspace H, of T,(P(M)), called horizontal,
transversal to the fibers, such that for any a € G, H,, = RiH,.'3*

2.10.1.2 Induced Connection in a Local Cross Section

Let U be an open set of M and s : U — P (M) a local cross section. We define the
pullback of the form w by s or induced connection associated with w by s as the
1-form defined by

s*w = w(s' (x)dx).

134 The proof is straightforward. First let w be a connection form on P (M). We get a distribution
‘H; that satisfies the required conditions. Conversely, if the distribution H satisfies these
conditions, any vector X tangent to P (M) at z can be uniquely written X = X, + Xy, with
X, € H; and Xy € V;, the tangent space to the fiber at z. Since the action of G is simply
transitive on the fibers, there exists a unique element A € £(G) such that A} = Xy . We
put w(X) = A, which defines the connection form w. (£(G) is identified with the space of

left-invariant vector fields on G.) For any A € £(G), we denote by aA the value ata € G of

the field generated by A. Then, if da is a tangent vector to G at a, we can denote by a 'da
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Let (E ;) be a basis of £L(G). We define the forms a)’] such that
ij
Let (0;)1<i<n be the basis of the corresponding cotangent space to M. We put
* 0 i nk
sTw; = Z r jk9 .
k

The functions ' ¢ are the coefficients of the connection in the local cross section s
and the corresponding basis.

2.10.1.3 Passage from One Section to Another

First, we remark that any local section s : U — P (M) defines a diffeomorphism /&
from U x G onto p~'(U) such that for any (x, g) € U x G, h(x, g) = s(x)g. Any
other section o above U issuchthato : U — P(M),x — s(x)a(x),wherea : U — G
is a differentiable mapping. The differential of o is the sum of two terms:

* the first one obtained by differentiation of the first term above as if a(x) were
fixed, which gives Rz(x)ds, if we denote by R, the right translation z— za.

* the second one, obtained by differentiation of the second term, is the image of
da(x), the tangent vector to G at a(x) by the mapping G — P (M) : a — az with
z=o0(x).

Then it is the value at z = o (x) of the fundamental vector field A* with A = a~1da,
whence we get

o*w =w(do) = w(R}ds) + a'da = ad(a “Hs*w +a"da,
since w(R}ds) = (Riw)ds = ad(a="Yo (ds), that is,

o*w =ad@ Hs*o +a 'da. (1

2.10.1.4 Associated Bundles

Let F be a manifold. We assume that G acts differentiablely on F, on the left. We
define a right action of G on P(M) x F by the following law:

(z,y)a = (za,a_ly) foranyz € P(M), ye F, a € G.

The quotient space E = P(M) x F/G is a bundle with base M typical fiber F,
structure group G. Such a bundle is said to be associated with P(M). We denote by
pE the canonical projection from E onto M. Any point z of P (M) defines a bijective
mapping from F' onto p_l(x), where x = p(z). We associate with any y € F the
y)of P(M) x F.
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2.10.1.5 Parallel Displacement

Horizontal curves of P(M) are curves I" such that for any z € I, the correspond-
ing tangent line lies in the horizontal space H;. Such curves are those r — z(¢)
(t € 1,z(t) € P(M), with I an interval of R) that satisfy

w(Z @t)dt) =70 = 0.

Horizontal curves of the corresponding associated bundle are curves ¢t — z(?)y,
where y is fixed in F and where t — z(¢) is a horizontal path of P(M). We recall
the following classical result.

2.10.1.5.1 Theorem Any differentiable curve t — x(t) witht € [0, 1] admits a
unique horizontal lift in P(M), respectively in E, whose starting point is a given
point of p~1(x(0)), respectively a given point of pgl (x(0)).

2.10.1.6 Moving Frames

Let us assume that the structure group G be a subgroup of a linear group GL(m, R)
for a value m not necessarily equal to n = dim M.

2.10.1.6.1 Definition Anya € G can be identified with the image by a of the canoni-
cal basis of R™. Local sections s : U — P (M) are called moving frames and denoted
by s :x — (e;(x)i<i<m-

The corresponding local bundle homomorphism associated with s is then
UxG— PM): (x,a) = s(x)a= (Za;‘ek> .
k I<i<m

Let us denote by a)i- the components of the connection form in the canonical basis

of the Lie algebra of GL(m,R). The relation s*a); = J)’J can be also written as
ds = s(x)w or

dej =Y ey )
k

Let o : x — s(x)a(x) be another local section. Such a formalism allows us to find
again formula (1) above (2.10.1.3). Put o (x) = (el’- (x)). We have

ej(x) =Y af (x)ex(x).

k=1
whence by differentiation,

de; = Zdafek + Zaf‘dek = Z (daf + Zaf@f) ek
k k k r
= Z (dal{C + Zalrd)f) b,{e;-,
k r
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‘ . , .
where b} stands for the inverse matrix of a; . Then, the new forms ®,) = o*w] satisfy

d)i.j => (dalk + Za,’cbf) b]. 3
k r
We find again formula (1) as

> bldaf = (a”da)]
k

and
Zai’d)fb,{ = (ad(a_l)s*w){.
"

The relations (3) can be used to extend the definition of the connection form to the
bundle with structure group G L (m, R), obtained by embedding of the structure group.

The parallel displacement of the moving frame (e;) is defined by the differential
system

del._zcz)l’fekzo (1 <i<m). (C))
k

Let E be the associated bundle with typical fiber F = R"™. The action of P(M) on
F can be denoted by P(M) x F — E, (z,y) = 2V,

m
(ei, y') — Zy’e,-.
i=1

The parallel displacement of the point zy = > y'e; is then defined by the differential
system d(y'e;) = 0, that is,

> (dy" + Z@;;yk) e =0,
i k
that is

dyi+25);;yk=0 1<i<m). 5)

k

2.10.2 Conformal Moving Frames

Let P(M) be a conformal structure on M, that is an Mo(n) reduction'® of the
bundle P2(M ); see 2.9.2.2.1.7. Let (6*, 9}) be the components of the restriction

to P(M) of the canonical form and 60 = (67, 9;-, 6;) the normal connection form;

135 We recall that Mg(n) is the isotrop of the origin for the standard Mobius group
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see 2.9.2.2.2.4.2—that satisfies 6’;'. = —Gl-j if j # i and 011 =---=0](cf.2922.1.7

and 2.9.2.2.1.8).13¢ But such a conformal connection is not a connection on P (M),
since 6 does not take values in the Lie algebra mig(n). But nevertheless, we can
consider 6 as a connection on the bundle P (M) obtained by embedding the
structure group Mo(n) into the group M (n), whose elements are said to be “affine
2-frames.”

We consider M (n) as the subgroup of GL(n + 2, R) consisting of elements that
leave the quadratic form ¢ such that

n
i=1

invariant. The connection form 6 will be represented by the matrix with values in the
Lie algebra m(n),

T 0 j 0
i gi i p.

0! 0; —.7:6]- 0 |,

0o o/ T
where T = 011 = ... =0). Any local section s : U — P (M) will be represented by
an orthonormal moving frame consisting of (n + 2) analytic spheres of the Mobius
space obtained by “completing” the tangent space Ty M, thatis, (Ao, A1, ..., Ay+1)
such that (cf. 2.2.1.1)

n+1

dA, =) whA,
=0

with a)g = s*éPQ with the following conventions:

T B
0'=0""=0"and 0 =0, =0,
6/ =0/ ifi# jandd! =0,

h0 _ _pn+l _ i
69 =~ = el

By assumption, we have

AJ=A2, =0, AgAn=-1, AgAj=Au1.Ai =0, AjAj= 8,
(D
forl <i,j<n.If
n+1

A= "yrA,
=0

136 This result comes from the fact that with the standard canonical scalar product the Lie

j) suchthataij—l—aé. =0if j #iandthatal’-' is

algebra co(n) consists of matrices (a:
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is a point of the corresponding bundle, we put

n
AA = Zylz —2y0yntt,
i=l1

2.10.2.1 Cartan’s Theory!?’

E. Cartan introduces a moving frame A, such that the relations (1) are satisfied. Then,
he defines

n+1
dA, =) whA,
=0

opt' =) =0 o)+ T =0; 0y =T 0 =0 0l +0) =0 (2)
(formulas obtained by differentiation of previous formulas (1)). E. Cartan assumes
that M is endowed with a riemannian metric g, and introduces a moving co—frame
o' such that the metric Z(w")2 is conformal to g, that is that the dual frame e; con-
sists of vectors of the same norm, orthogonal to each other. He assumes then that
dAg = )}, ;i A, whence a)g = a)zﬂ = 0 and a)f) = o', which permits him to
identify the sphere-point Ao with the origin of the affine moving frame (x, e;(x)).

Then, he assumes that the connection (a){ ) is without torsion, that is,

P _ q q
dwo = Zwo A wp.
q

Za)j /\a)é =0,
J

And then for p =0,

and for p =i,
n

do' = Za)] /\w’j.
j=1

The formulas w’] + wl] =0and
. n . .
do' = Za)] A a)ij
j=1

show that the forms a)’J are equal to the forms of the riemannian connection associated
with the quadratic form Z(a)i)z. Moreover, the relations

J Jo_
Za) ANwy =0
J

37 g, Cartan, Les espaces a connexions conformes, Annales de la Société polonaise de Maths.,

2, 1923, pp. 171-221. E. Cartan used the quadratic form ¢’ such that ¢’(X) = Y (X%)% +
n+1-

S
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show that if we put

wj —a) Zn]ka)

we have 7, = my;.
Finally, E. Cartan shows that one can determine the symmetric coefficients 7

in order that the curvature tensor K?;, defined by Q] Ko Ao,

i _ i p i k i
da)j _—Za)p/\wj +6j2wk/\w +Qj
k

satisfies

ZKl]h -

Then he shows that such a condition determines uniquely the 7 ;. This connection is
called a normal connection. It is the connection defined in 2.9.2.2.2.2. The consistency
of E. Cartan’s presentation with the previous one will be studied in the exercises.

2.10.3 The Theory of Yano

K. Yano starts from conformal moving frames not necessarily orthonormal, associ-
ated with the standard frame (8/dx’) subordinate to a system of coordinates. The
tangent space T, (M) is completed by a point at infinity not fixed beforehand and
becomes a Mdbius space. The “A),” are the “analytic spheres” of such a space such
that Ag(x) stands for the “point-sphere” x. The fundamental quadratic form is now
gii X' X/ — 2X°X"+1 with the following conditions:!*8

AT =A% =0, Ag- Axo = 1,
A;-Aj =gy, where g;; denotes the “metric tensor” (D
of the riemannian manifold M.

By differentiation of these relations and putting dA, = ) wf, Ay, one obtains

=2 8ijwp, =2 gz,woo,
oy =0, 0 =0, w0+w°°—0, 2
dgij = Yk p gike + ghjw]-

Then one assumes that a)f) = dx' and then

n
dAg = w)Ag+ Y Aidx',
i=1

138 K Yano, Sur les circonférences généralisées dans les espaces a connexion conforme, Proc.
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The moving frames that satisfy such conditions are called seminatural moving
frames.

Conditions (2) imply that d(in\/Jg])= Y !, where g denotes the classical
g = det(g;;). We can thus deduce that there exists a conformal change of the metric
tensor g, g — e>*g, such that the components 6)1’ corresponding to the new met-
ric tensor g, subordinate to the same moving frame A, satisfy Zi c?); =0. We can
effectively determine the connection by the following assumptions:

(i) The connection is without torsion, that is, satisfying
Z oF A a);C =0,
k
which is equivalent to F,ih = FZ « if we put

a),’c = Z F,ihdxh.

(i) The conformal curvature tensor defined by Qlj = Kl.j}(hdxk A dx" with Qlj =
do] + Y wp Ao =8 3 ox Ao satisfies 3 K/, = 0.

2.10.4 Conformal Normal Frames Associated with a Curve

Subsequently, we assume that the manifold M is endowed with a class (C) of rieman-
nian conformal metric tensors. Let y : I — M, t — x(t) be a curve in M, where [
denotes an interval of R. Alift of y in P(M) is a mapping o : I — P (M) such that
poo(t) =x(t)foranytin I, where p : P(M) — M denotes the standard canonical
projection.

The mapping o can be represented by a conformal moving frame (B),) in the
same way as the local sections of P(M) (see 2.10.2 above and the exercises be-
low). Such a frame will be called a normal moving frame subordinate to y if it

satisfies
n
Z %0, =0,
i=1

and then 0*91-" = O forany i. Let s = (A,) be a normal moving frame defined on an
open set U of M containing y. One obtains such a frame (B5)) by putting

By(t) = Ap(x(1)). (1

Conversely, if the interval / is compact, and if the curve y is a regular simple one and
if (B)p) is a normal frame subordinate to y, one can prove that there exists a normal
moving frame (A ,) defined over an open set U of M containing y that satisfies the
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Any normal frame o = (B),) subordinate to y satisfies the following differential sys-
tem:

dBy <~ _; dBy+1 -
7=ZTF B;, T=Zﬂi3i,
i=1 i=1
(2)
dB; . ,
d_tl =m; By + Zn’ikBk + 7' Byt 1,
k=1
where we put 0*0' = midt,0*6; = mdt,a*@ik = nmkdt, that is, also 7' =

0l (o’ (1)), m; = ;(c”(t)), and 7Tl-k = Gf(o’(t)). The study of the changes of frames
will be made below in the exercises.

2.10.5 Conformal Geodesics
2.10.5.1 Basic Fields

Let us consider 6 = (67, 9;, 0;) the normal connection form on the bundle P (M).
For any & € R”, there exists a unique vector field B(¢) : z — B,(¢) on P(M) such
that

() 0'(B(&)) =&, foranyi =1,2,...,n,
(ii) 9;1(3(5)) =6;(B()) =0, fori,j=1,2,...,n.

Condition (ii) means that B(&) is horizontal.

2.10.5.1.1 Definition (I) The fields B(&) that satisfy the conditions (i) and (ii) above
with & # 0 are called standard horizontal fields or basic fields.

(IT) The conformal geodesics of M are the projections on M of integral curves of
basic fields.

It is convenient to start from the above definition in order to identify conformal
geodesics according to such a definition with the conformal circles of E. Cartan and
K. Yano and with the “conformal null curves” of A. Fialkow!3® without comparing
the differential equations of the curves as made by K. Oguie.'*?

139 (a) E. Cartan, Les espaces a connexions conformes, Annales de la Société polonaise de
Maths., 2, 1923, pp. 171-221. (b) K. Yano, «) Sur la théorie des espaces a connexion
conformes, Journal of Faculty of Sciences, Imperial University of Tokyo, vol. 4, 1939, pp.
40-57. (B) Sur les circonférences généralisées dans les espaces a connexion conforme,
Proc. Imp. Acad. Tokyo, 14, 1938, pp. 329-332. () see also: The theory of Lie derivatives

and its applications, North-Holland, 1957, Chapter VII, pp. 158-160. (c) A. Fialkow, The

conformal theory of curves, Ann. Math. Soc. Trans., 51, 1942, pp. 435-501.

odai. Maths. Sem. Rep., 19,1967, pp. 193-224.
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2.10.5.2 Conformal Moving Frames Associated with a Conformal Geodesic

Lety : I — M beaconformal geodesic of M. According to the above definition, there
existsaliftof y in P(M),o : t — o (¢t) suchthato*9' = &' = c,a*G} =0,0%9; = 0.
In terms of moving frames, one can give the equivalent following statement:

There exists a normal frame associated with y, o : t — (Bo(?), ..., By+1(2)) such
that
dBy <~ dB; dByi1
_— = B', _— = lB . = O 1
dt ;_O é i dt f;' n+1 dt ( )

The corresponding lift of y in the bundle P'(M) satisfies the following differential
system:

n

; de; .

x'(t) = ‘§ 1:5’el-, —dt’ =0, 1<i<n. 2)
1=

Therefore, we can deduce that y is a geodesic for a riemannian structure of the class
C. The fact that the forms o*0; = 0;(x'(¢)dr) vanish shows that x’(¢) is an eigen-
vector of the corresponding Ricci tensor (cf. exercises below). Therefore, conformal
geodesics are Fialkow conformal null curves (cf. footnote 139c). The converse will
be studied later.

2.10.5.3 Generalized Yano Circles

Let us start from a normal frame (B),) that satisfies condition (1) above. We put

2
Co=By—t E lei'f‘? E & Bn+1,
Ci=B;—t E E By, Cur1 = Buy1.

We obtain a normal frame associated with y such that dC,/dt = 0 for any
p=0,1,...,n+1.

One can give the following interpretation of conditions (1): the frame (B)(¢)) is
deduced from a fixed frame (C}) by the translation

. t2
Bo=Co+1) &Ci+ 525,.20,,“, 5

B = C; +t&/Cyy1, Byy1 =Cuyr.
The relative trajectory of the point By(f) in the frame (C,) is defined by the first

relation of the system (3). Its canonical projection on the Mobius space is a circle or
geodesics of R” are circles or lines.
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In the general case, it appears that conformal geodesics are generalized Yano
circles."*! The converse results from the following theorem, which will be proved
below in the exercises.

2.10.5.3.1 Theorem Lety : I — M be acurve and (A ) a normal frame subordinate
toy. Then y is a conformal geodesic of M if and only if there exists a function p that
does not vanish on I and such that (d3/dt3)(pAo) =0.

According to this theorem there is identity between the notions of conformal
geodesic and of generalized circle as already proved by K. Ogiue!*? by comparing
the corresponding differential equations of these curves.

2.10.5.3.1 The Elie Cartan’s definition

First, we notice that the relations (1) above can be simplified by the choice of a fixed
. . ; oL

orthogonal matrix @] such thata! = %, for any j, where £ = (}_(£7)%)? and by the

consideration of the normal frame B p subordinate to y defined by By = %Bo, B, =

» aij Bj, Byu41 = £B,41. This frame satisfies the following relations:

%:Bl,%z&,“, and %:O, for p > 2. )

Moreover, we can notice that a nonlinear change of variable cannot in general
conserve the conditions (1) and the property of y to be a conformal geodesic.

We are now going to transform the relations (4) by a change of parameter and a
change of frame not necessarily normal and we will get a characterization of confor-
mal geodesics in any parametrization.

By a change of the parameter t = ¢ (u) such that 5—; = 7, the system (4) above

can be written: _ _ _
dBy - dB; — dB,11
— =nB|, — =nB,41, =0. 5
du T du 7 Entl du )

Then we use the following change of orthonormal conformal frame:

Ao = pBo, Ay = By + paBy, A; = B; for 2 <i <n, (6)

1 - _ 1
Apt1 = ;Bn+1 +aB + 5,00230,

with p = % and where « is any function. We obtain:

dAn+l
du

141 K Yano, Sur les circonférences généralisées dans les espaces a connexion conforme, Proc.
Imp. Acad. Tokyo, 14, 1938, pp. 329-332.

=moAo + Al % =mAo+ Anyr

T AL — moApg1 and L =0if 2 <i <n.

U
=

(N

odai. Maths. Sem. Rep., 19,1967, pp. 193-224.
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with
/ / a2

(7 bis)my = L —a,m a2 o -Z.
P o 2

That is the moving nonnormal frame considered by E. Cartan.'43

Conversely, if A}, is a moving conformal orthonormal frame which satisfies a dif-
ferential system of the form (7), one can determine two functions a, p which satisfy the
differential system (7 bis). The relations (6) determine, then, a moving orthonormal
frame (B)) which satisfy (5). Then, we have obtained:

2.10.5.4 Theorem There exists a change of parameter that allows us to transform a
curve y into a conformal geodesic if and only if we can subordinate to it a moving
conformal frame (A ) that satisfies a differential system of the form (7).

Then there is identity between the notion of conformal geodesic in any parametriza-
tion and that of E. Cartan’s “conformal circles.”

2.10.5.5 Fialkow’s Definition!44

Theorem 2.10.5.4 allows us to study the identification of the conformal null curves
(cf. 2.10.5.2 above).

2.10.5.5.1 Theorem There exists a change of parameter that allows the transtorma-
tion of a curve y into a conformal geodesic if and only if y is a Fialkow’s “conformal
null curve,” that is to say, if and only if there exists a “riemannian metric” of the class
C such that y is a corresponding geodesic and that the tangent vector to y is at any

point an eigenvector of the Ricci tensor.

The proof will be given below in the exercises.

2.11 Generalized Conformal Connections!4®

2.11.1 Conformal Development

2.11.1.1 Definition Let (M, r, N) be a fiber bundle and let H (M) be an Ehresmann
connection on M. Lett — z; be a differentiable curveon M and y : t — y; = 7w (z;)
its projection onto N. The differentiable curve (u;) defined in the fiber a1 (¥1y) over
a point y;, of (y;) by u; = T, (z,), where 7, is the parallel displacement of a1 Y1)
onto 7~ !(y;) subordinate to y, is called the development of the curve z; in the fiber
T -1 (yto ) .

143 E_ Cartan, Les espaces a connexions conformes, Annales de la Société polonaise de Maths.,
2, 1923, pp. 171-221.

144 A Fialkow, The conformal theory of curves, Ann. Math. Soc. Trans., 51,1942, pp. 435-501.

145 These results are due to J. L. Milhorat, Sur les connections conformes, Thesis, 1985,
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2.11.1.2 Special Case

Let (M, , N, F, G) be a fiber bundle with typical fiber F and structure group G and
let H (M) be an Ehresmann G-connection on this bundle. We consider a differentiable
curve t — z; of M and y : t — 1y its projection on N and (u,) the development of
z; in the fiber 7! (1,) over a point y;, of (y;). We have z;, = 7, (4,), where 1, is the
parallel displacement in M subordinate to y.

If we denote by (p;) the horizontal lift of y in the principal bundle P associated
with M, with origin po, a point belonging to the fiber over y;,, according to 2.8.8.4,
we have

w=1,"z) = poop; (@) (a)

We can notice that p, ! allows us to identify the development of (z;) and the curve
y; of F defined by

v = p; Nz) (b)

(but such a curve (y;) obviously depends of the choice of py).

2.11.1.3 Definition Let P be a principal bundle with base N, structure group H,
where H is a closed subgroup of a Lie Group G such that dim G/H = dim N, and
let w be a Cartan connection on P. According to 2.8.5 and 2.8.6 above, w defines
an Ehresmann connection on the fiber bundle X with typical fiber G/H subordinate
to P. Let ox be the canonical section of this bundle X and let y : t — y; be a
differentiable curve in N. The development in the fiber of X over a point of (y;) of
the differentiable curve (ox o X) of X is called by definition the development of the
differentiable curve y of N in the fiber of X over a point of (y;).!4¢

2.11.1.4 Study of the Conformal Case

Let P be a principal bundle on an n-dimensional manifold N with n > 2. We denote
by 7 the projection and the structure group by G, |, where according to 2.9.1.3,
Gy 1 is the isotropy subgroup of the point of the Mdbius space M, : P(ypi1) =
P((eo — eps1)/2)'*7 with the notation of 2.9.1.3 and 2.9.2.2.3. Let & be a Cartan
conformal connection on P. According to 2.9.2.2.3.2, we know that w defines an
Ehresmann conformal connection H (M) on the fiber bundle ¢ = (M, 7, N) with
typical fiber the Mdbius space M = M,,, subordinate to P.
More precisely, let us consider the principal bundle

P =P Xg4pp PO(p+1,9+1),

¢ can be identified with the fiber bundle with typical fiber M, subordinate to P, and
H (M) is the connection on ¢ associated with the principal connection with form w on

146 J_ Dieudonné, Elements d’Analyse, tome 4, Gauthier-Villars, Paris, 1971.
147 p denotes the projection from Ej(p. g) onto P(E, (p, q)), the corresponding projective




2.11 Generalized Conformal Connections 165

P such that ifw = w, where i1 denotes the injective morphism of the principal bundle
from P into P defined by i1 (p) = (p, e), where e = P(Id(E,H_g(p + 1,9 + 1)))
and (p, e) denotes the class of (5, e). Abusively, for any j € P, respectively p € P,
that are projected onto x € N, we will denote by the same letter, p, respectively p,
the diffeomorphism of M,, on the fiber of ¢ over x defined by p(z) = p e Z, respec-
tively p(z) = p e z, for any_ z € M,,, where p e 7, respectively p e 7, denotes the
corresponding class modulo Gn+1 of (p,z) € P x M, respectively (p, Z) € P x M,,.

The canonical section oy; of the bundle ¢, according to 2.9.2.2.3, is defined by
o0y = POUnt1) = pey,r1 forx € N, p € Py, and where y,41 = P(Yut1) =
P((eo — en+1)/2) with the above notation.

2.11.1.4.1 Definition Let y : + — 3, be a differentiable curve of N. According to
Definition 2.11.1.3 above, the development of the path (o,; o y) in the fiber over a
point of (y;) is called the conformal development of the path y of N.

Lety :t — y; be apath of N. Let po be an element of the fiber of P over a point
V1, and let (p;) be the horizontal lift of the path y in P with origin p. There exists
apathin PO(p + 1, g + 1) such that

pre g =i1(pr), (©)

where (p;) is a path in P. According to 2.11.1.2 (formula (a)), the conformal devel-
opment (u;) of the path y in the fiber MVtO satisfies

iy = poo p; (o)) = poo g o (1(5)) " (1 (B) Fu+1)),
where abusively p;(y,+1) is identified with i1 (p;) (¥n+1)- Thus
ur = po(gr @ ynt1)- (c1)
Using the derivative of (c), we obtain that
Pr g+ br e g = (i)«(Pr),

(We recall that given a mapping f of a manifold M into another manifold M’, the
differential at p of f is the linear mapping f of T,(M) into Ty () (M) defined as fol-
lows. For each X € T,(M), choose a path x(¢) in M, such that X is tangent to x (¢) at
p = x(tp). Then f,(X) is the vector tangent to the path f(x(¢)) at f(p) = f(x(t)).
Cf. for example, S. Kobayashi and K. Nomizu, Foundations of Differential Geometry,
vol. 1, op. cit., p. 8.)

Whence

= B ((1)+(p1) = D)),
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and therefore,

¢ e g = w(py). (d)

2.11.1.4.2 Definition Let a be an element of R". We call by definition the basic field
on P the vector field H, on P defined by w(H,) = a.

The existence and uniqueness of the vector field H, come from the fact that by
definition, w 5 is a bijective map from 7'5 (P) onto the Lie algebra LPO(p+1, g+1) =
po(p+1, g+1) isomorphic to the Lie algebra R" @ co(p, ¢) ® (R")*, forany p € P.
Thus H,,, with (e;) a basis of R”, and A* with A in the Lie algebra (R")* @ co(p, g).
define a parallelism on P.

In the paper given in foomotes 140 and 142 in section 2.10.5, as a reference,
K. Oguie calls the projections onto N of the integral curves of basic fields on P
conformal geodesics of N.

Let 7 — y; be a conformal geodesic on N. By definition, there exists a path t — ¢;
in P such that

(1) = i,
w(g;) =a,a € R".

Let (p;) be the horizontal lift of the path (y;) in P with origin i1(¢y,). There exists a
path (g;) in PO(p + 1, g + 1) such that p; e g; = i;(¢;) and g; = e (Where e denotes
the identity element in PO(p + 1, g + 1)).

According to 2.11.1.4.1, formulas (c) and (d), the conformal development of the
conformal geodesic (y;) in the fiber Myt(, is the path (u,) defined by

ur = po(gr ® Yn+1), (e)
with
g e = (@) =a, (f)

where there, a € R" is identified with an element of the Lie algebra

LPO(p+1,9+1)=po(p+1,q+1).

2.11.1.4.3 Definition («) By definition we call a “conformal circle” of the M&bius
space M, any subset M, : M, N P(H), where P is the classical projection from
the space onto its projective associated space and where H = P @ Vect{a}, with
Py a hyperbolic plane in E,42(p + 1,4 + 1) and a a nonisotropic element in
Epi2(p+1,g+1),a¢ Pr.

(B) Then by definition, we call the projective subspace P (F), where F is a totally
‘minimal line” in M,,.
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2.11.1.5 Study of a “Conformal Circle”

LetC = M,, N P(H) be a “conformal circle,” with H = P; & Vect{a}, where a? #0
in E,42(p+1, g+ 1). We can assume that a®? =¢e =+1.Let {€0, €n+1} be a standard
basis of P; with (g9)% = 1, (en+1)2 = —1.Asusual, one can construct an orthonormal
basis {¢;},i = 1,2,...,n,of Pll such that ¢; = a.

2.11.1.5.1 Lemma Let P be the classical projection from Ey, onto P(Ey,42), its
projective associated space. Then C = P((S” x S7) N H).

First, we note that according to a classical result, 48 PSSty = P(E,+>), where
§"+1 is the unit sphere in E, ;5. Then M, is homeomorphic to %. We consider
E,.2(p+1, g+1) as the product of the Euclidean spaces R”! and R?*!. The corre-
sponding quadratic form ¢ defined on E, ;> can be written as ¢ (x, y) = [|x||> — |||,
for any x € RP*! any y € R9*!. Then M, appears as the image by P of the set of
(x,y) € RPH xR4T\ {(0, 0} such that ||x||>—||y[|> = Oand ||x|>+||y||> = 1, and,
then of the product of the corresponding spheres with radius \1[ of RP*+! and Rq+1

Moreover, if P((x,y)) = P((x’,’)), then x’ = kx and y’ = ky with |x'|| =
1Vl = lIxll = Iyl = 1/+/2, thenk = £1. Then P((S” xST)NH) = P((SPxSq)ﬂ
(H*)) where H, = H \ {0}, whence we find that C = P((S? x $7) N H). If a*
81 = 1,thenC = P(Cx{— e,,+1, en+1}), where C isthecirclein E, 15 definedas C =
SPNVect{eg, £1}.Ifa? = 81 = —1,thenC = P({—&0, g9} xC"), where C' is the circle
in E,, 15 defined as C’ = S9N Vect{ey, €,+1}. When E,, is an Euclidean space, M), can
be identified with S”, and the corresponding circles are the usual “big circles” of S”.

2.11.1.5.2 Equivalence of Such a Definition of a Conformal Circle with
the Analytic Definition Given in the Euclidean Case by E. Cartan'*’

Proof. First we prove that the previous definition implies that of Elie Cartan. Put
= (&0 + €n+1)/2 and y,/lJrl = (€0 — &n+1)/2. We can consider the conformal cir-

cle C as the path (z,) in M), defined as z, = (8r2x(’) + re; ).150 et us consider

the following vectors:

~ Y+t

Fo(r) = A(er’x) +rey — y) ) where A denotes a nonzero function
with valuesin R,

Fi(r) = £ (A7 Fy) + Bi Fy,

Fop1(r)=—-A" xo — —BlFl + EBZFO, where B; denotes any function from

RintoR.

148 0, Berger, (a) Géométrie, vol. 1, Cedic Nathan, Paris, 1977, p. 121; or (b) Géométrie
différentielle, A. Colin, Paris, 1972, pp. 79-82.

149 giie Cartan, Les espaces a connection conforme, Annals of the Polish Math. Soc., 2, 1923,
pp- 171-221.

150 We recall that any element in the Mbius space is the class Z of an element 7 = Axg+a+

such that A + a?=0.
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The plane generated by Fy and Fj,; is a hyperbolic plane and one can find (n — 1)
vectors F;, i = 2,3,...,n, in E,yp such that {F((r), F>(r),..., F,(r)} is an
orthonormal basis of (Vect{Fy, F,11})* (the subspace of vectors orthogonal to
Vect{ Fy, F,+1}), the hyperbolic plane generated by Fy and F, 1. Then

zr = Fo(r), (o)

with the following fundamental relations:

dFy
— = AoFy+ A Fy,
i ofo+ A1F
dF,
7 = Aol —28A 1 Fyqq, (h)
dFyi &
——— = —AoFu+1 — A2 F,
dt 0L n+1 ) 211
where we put
d A
0=— <d—A_1 - ABI) ,
dt \ dr
dr
Al =A—, i
1 7 @
a4 (4B, pdA AB?
2T ar \ar Vdr 2 )

First, Elie Cartan has given such relations in the given reference p. 206, in order to
define what he has called “conformal circles in M,,.”

Conversely, let us assume that there exists a path (z,) in M,, and a basis {Fy(u),
Fi(u), Fup1(u)} fori = 1,2,...,nin E,4», where {Fy, F;,+1} defines a Witt ba-
sis of Vect{Fy, F,,;1} and {F;(¢)} is an orthonormal basis of (Vect{Fy, Fy,4+1})", the
orthogonal of Vect{Fy, Fj,+1}, such that Fo(u) = z, and equations of type (h) above
are satisfied with A; # 0. Then we can find numerical functions A, B, and r that
satisfy the relations (i) above.

Now, we have (d°/dr’)(A™'Fy) = 0, that is A™'Fy = (r?/2)A’ +rB’ + C’
where A’, B/, C' are fixed vectors in E,15 such that A?=C?=0,BA,B) =
B(B’, C’) = 0, where B is the fundamental bilinear symmetric form associated with
the quadratic form defined on E,4». Moreover B(A’, C') + B = 0 and B2 # 0 as
(d/dr)(A~"Fy) is non isotropic. Thus

o p
= Fo(u) = (%A’ +rB + C’)

is the conformal circle

M, N P(Vect{A’, C'} & Vect B').
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2.11.1.6 Study of a Conformal Line

Let P(F) be a projective subspace, where F' = Vect{a, b} is a totally isotropic sub-
space of E, . Puty, 41 = —b. We can find a vector X in E, 42 such that (x(’))2 =0,
B(x(/), a) =0, ZB(x(/), y,’lH) = 1 and construct an orthonormal basis {1, 2, ..., &,}
of (Vect{xg, y, . 1+, the subspace of vectors orthogonal to Vect{x, y/ 41} such that
(81)2 =g, (82)2 = —¢g,withe = £l anda = &1 + &5.
2.11.1.6.1 Equivalence of Such a Definition with That Given by

E. Cartan in the Euclidean Case

First, we prove that the previous definition implies that of Elie Cartan. P(F) can
be viewed as the path (z,) in M,, defined by z, = (ra — y; Jrl). Let us consider the
following vectors:

Go(r) =A(ra — y,’, 4 1), Where A is nonzero numerical function defined on R;

Gi(r)= 28rx6 + &1 4+ B1 Gy, where Bj is any numerical function;

Go(r) = Zsrx(’) — & + B>Gy, where B, is any numerical function.

One can find G,41(r) € (Vect{G1, G2})* such that 2B(Gg, G,41) = 1 and (n — 2)
orthonormal vectors G;(r) € (Vect{Go, G,+1, G1, Gz})L. Then we have

zr = Go(r), )
and the following relations:

dGy
ke DoGo + D1(G1 — G2),

d
E(Gl — G2) = D2Go + D3(G1 — G3), where ¢t is any parameter, (k)

with
dr (dA
=—(—A"'"—AB - By,
0= <dr (Bq 2))
D =A%
dt

d

D; = E(Bl — By) + (B1 — B2) Dy,

Dy = AB, — By )
3= A(B1— By).

First, Elie Cartan has given in the above reference (see 2.11.1.5.2), p. 204, the analytic
definition—in the case that E,, is a Euclidean space—of what he has called “minimal
lines” in M,,.

Conversely, let us assume that there exists a path (z,) in M, and a basis
{Gou), Gi(u), Gy+1(w)}, i =1,2,...,n,in E, 4o, where the set {Go, G,+1} defines
a Witt basis of Vect{Go, G,+1} and {G;(u)}, i = 1,2,...,n, is an orthonormal
o(u) = z, and equations of type (k)
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above. One can find numerical functions A, By, B>, and r satisfying the relations
(1) above. Then, we have (d2/dr?)(A~'Gg) = 0, that is, A~'Go = ra’ + b’ with
(@)?* = (')? = B(d',b') = 0.z, = Go(u) = (ra’ + b’) is then the “minimal line”
P(Vect{a’, b'}). Then we find the previous definition.

2.11.1.7 Definition Let P be a principal fiber bundle on a n-dimensional manifold
N, with structure group G and let i be a conformal Cartan connection on P. Let M
be the fiber bundle with typical fiber M,, associated with P. Apath y : t — yp(¢) in
N is called a “conformal circle,” respectively a “minimal line,” if its development
in the fiber in N over a point of y; — the fiber that can be identified with M,,—is a
“conformal circle,” respectively a “minimal line.”

Such a definition is intrinsic, as the image by an element of PO(p 4+ 1,q + 1) of
a “conformal circle” is a “conformal circle,” respectively a “minimal line.”

2.11.1.8 Proposition Oguie conformal geodesics are “conformal circles” or “mini-
mal lines.”

Let us consider again the equations (e) and (f) above in 2.11.1.4.2. The equation (f)
admits the unique solution g, = exp((t —fp)a), where exp is the classical exponential
mapping defined on po(p + 1,9 + 1) = LPO(p + 1,q + 1). Here, a is identified
with an element of this Lie algebra. From results given above in 2.4.2.3, g, appears as
the equivalence class modulo *Idg, ,, of the element of O(p + 1, g + 1) defined by

z— (14 (t = to)xoa)z(1 + (t — t9)axp)

such that the path y, = g; e y,+1 in M,, satisfies

Vi = 8t ® Yny1 = (1 — 10)%a’x0 + (1 — t0)a — ypt1.

We recognize the “conformal circle” (M, N P(Vect{xo, yn+1} @ Vect{a}) if a? #0
or the “minimal line" P (Vect{a, y, 11} if a> = 0, whence the result appears.

2.11.1.9 Proposition (i) If a path (z;) in N is a “conformal circle” or a “minimal
line,” it is a conformal geodesic up to a change of parameter.

(i) Any path that can be deduced from a conformal geodesic by a change of
parameter is a “conformal circle"” or a “minimal line.”

Proof. (i) Let z; be a “conformal circle” or a “minimal line” in N. Let (p;) be
the horizontal lift of (z;) in P with origin py € P)’to' There exists a path (g;) in
PO(p +1,q + 1) such that (p; e g;) is the image by i;—defined in 2.11.1.4—of a
path (¢;) in P.The development of (z;) in the fiber M,,to is then the path defined by

ur = po(grey,+1) with g,—l.gt = w(¢y) (see2.11.1.4.1 above, formulas (c{) and (d)).

By assumption, the path defined by y; = g; e y,41 is a “conformal circle” or
a “minimal line” in M,. By using the remarks made after Definition 2.11.1.4.3,
,...,n,where {9, &,4+1} is a Witt basis of
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Vect{eo, €,+1} and {g;} is an orthonormal basis of (Vect{ey, sn+1})J-, such that

y(t) = r(t)2ae0 +r(t)a’ — epy1,

where a’ is a vector in E, 47 and r a numerical function.
Let us consider ko € O(p + 1,9 + 1) that sends the basis {xo, e;, yn+1}
(i=1,2,...,n) onto the basis {eg, &;, en4+1} (i = 1,2,...,n). Then we have

yi = ko e r(t)2a2xo + r(t)a — ypi1,

where a = k; L (a’) € E,. Moreover, we have

r(t)?a?xo +r(t)a — ypp1 = exp(r(t) - a)ynt1,

where exp is the exponential mapping defined on LPO(p + 1, + 1) = po(p + 1,
q + 1); (r(t) - a is identified with an element of that Lie algebra . Then we have

yi = ko @ exp(r(t) - @)¥nt1,
Vi =8 ® Ynt1.

Thus, there exists a path (/;) in G such that

g @ hy = ko e exp(r(1)a). (m)

Let (;) be the path in P defined by ¥, = ¢; e h,. It is a lift of the path (z;) in P that
satisfies

D) = (¢ @ hy + @ 0 hy) = adh; " e (@) +h; ' ey
=adh; ' (g7 e g) +h; ' e iy =1 (1)a,
by (m). It is the integral curve of a basic field on P, up to a change of parameter,
whence the result.

(ii) Let z : t — z; be an Oguie conformal geodesic. There exists alift ¢ : t — ¢,
of z in P such that w(¢:) = a, a being a fixed vector in R”. Let A be a numerical
functionandlety = y ol and ¢ = g oA. Let (p;) be the horizontal lift of Z in P with
origin i1 (¢y,); there exists a path g; in PO(p+1, g+ 1) such that p, e g; = i1(¢;). By
using formula (cq) in 2.11.1.4.1 above, the development of 7 in the fiber M. N is the

path (u;) defined by u; = i1(¢1,)(8: ® yn+1), Where the path (g;) satisfies gt_1 0g =
w(@) = A (t)a. Since g, = e (the unit element in PO(p + 1, g + 1)), we have

& = exp((A; — Agy)a),
where exp is the classical exponential mapping defined on
LPO(p+1,g+1)=po(p+1,q+1).

The path y, = g; e y,41 satisfies the relation

vi = — Ato)2a2xo + (A — )»to)a — Yn+1,

imal line,” whence the result.
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2.11.2 Generalized Conformal Connections

We want to present the construction made by J. L. Milhorat in his thesis.!>! Milhorat
finds again the conformal connections found by R. Hermann'2 by an intrinsic method
using Greub extensions of structures. As already seen in Section 2.4, E, can be
identified with an open set of the Mobius space M,,, and the action of an element of
the Mobius group PO(p+1, g+ 1) on M,, induces a conformal transformation of E,.

Let £ = (M, m, N) be a pseudo-riemannian bundle with typical fiber E,; J. L.
Milhorat constructs a bundle ¢ with typical fiber M), such that £ can be identified with a
subbundle of ¢. A conformal Ehresmann connection on the bundle ¢ defines a horizon-
tal subbundle of the bundle &, called a “generalized conformal connection.” Such gen-
eralized conformal connections are effectively the Hermann conformal connections.

2.11.2.1 Preliminary Definitions
2.11.2.1.1 Definitions

e Leté = (M, m, N)be abundle with typical fiber E, over a manifold N of dimen-
sion n. We assume that this bundle is pseudo-riemannian, i.e., that there exists a
vector field g : x — g, that assigns a nondegenerate symmetric bilinear form of
type (p,q), 8x : 77 (x) x n_l(x) — RtoanyxinN.(p+qg =n,n > 2).
Therefore, there exists a trivializing atlas (Uy, ¢ )aca 0f & suchthat @y , @ E,;, —
M, belong to the classical pseudoorthogonal group O (p, ¢q) that is the Lie struc-
ture group of &. The corresponding transition functions are gug : Uy N Ug —
O(p, ).

e Let& = (My, 1, N) be the bundle Whitney sum of the bundle & and the trivial
bundle & = (N x Ej, w2, N), where E; is the standard hyperbolic plane Ej ;
provided with a bilinear symmetric form g, of type (1, 1). & is a bundle with typi-
cal fiber E,, 4> and a pseudo-riemannian bundle corresponding to the fundamental
bilinear symmetric form of type (p + 1, g + 1) g1 defined by

gx(z, w), foranyz, w e My,

0, forany z € M,, w € {x} x E3,

g1(x;z, w) =
0, forany z € {x} x E2, w € My,

g2(z,w), foranyz,w € {x} x Er >~ E».

The mappings Yo x @ Eny2 — (M1)x, Yax € O(p + 1,9 + 1) such that
Yo, x = Pa,x 0N E, and Yy » = Idg, on E; define a trivializing atlas (Uy, Yo)aea
of &1 with transition functions j o g4, where j denotes the classical injective map-
ping from O(p, q) into O(p + 1, ¢4 + 1).

ISty L. Milhorat, Sur les connections conformes, Thesis, Université Paul Sabatier, Toulouse,
1985.
152 R. Hermann, Gauge Fields and Cartan—Ehresmann Connections, Part A, Math. Sci. Press,
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e Let P be the principal fiber bundle of the frames associated with &, the (g4g) are
the cocycles of P for the trivializing atlas (Uy)qe4—and let P; be the j-extension
of P, i.e., the bundle with typical fiber O(p + 1, g + 1) associated with P, where
O(p, q) acts on the left on O(p + 1, g + 1) via the morphism of Lie groups j.
Py, principal bundle with cocycles the (j o gup), is by definition the principal
bundle of frames associated with &£;. We agree to denote by the same letter j the
morphism from P into P; defined by

j(P)=(p,1dg,,,), foranyp e P.

Following the diagram given above in 2.5.1.2, we denote by / the canonical map-
ping from O(p+1, g+1) onto PO(p+1, g +1) and denote by _ P the h-extension
of the bundle Pj. P is the principal bundle with cocycles the (hojo 8ap) for the
trivializing atlas (Uy)qca. We agree to denote by h the morphism from P; into
P defined by

h(p1) = (p1, e),

where e denotes the identity element in PO(p + 1, g + 1).

 Letus consider a = /1 o j, which is a canonical injective mapping from O (p, q)
into PO(p+1, g+1). The a-extension of P has for cocycles the aogqs = ﬁoj 08up
and is isomorphic to the principal bundle P. If we agree to denote by a the prin-
cipal morphism from P into P defined by a(p) = (p, €), we have the following
commutative diagram:

P

e Let M denote the set M = UrenN M., where the M, are the Mobius spaces asso-
ciated with the fibers (M), of &;.

+ Let 77 be the mapping from M onto N defined by 77 (Z) = x, for any 7, € M,.
Then we have the following result.

2.11.2.1.2 Theorem M is endowed with the structure of a differentiable bundle with
projection  and typical fiber M,,, the Mobius n-dimensional space.

in the exercises.
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2.11.2.2 Generalized Conformal Connections on a Pseudo-Riemannian Bundle

We use the terminology of Greub, Halperin, and Vanstone!>? (chapter VII, §6). Let
a be the isomorphism of vectorial bundles o« : VM — M xy M, where M Xy M is
the fiber product of M with itself and V M, defined in 2.8.7 is the vertical subbundle
of T M (« identifies the space tangent to the fiber M, at z € M, with M,) given in the
exercise associated with section 2.8.8.8 and ¢ is the morphism of differential bundles
given in the exercise associated with 2.11.2.1.2.15%

2.11.2.2.1 Definition Let n = (M, w, N) be a vectorial bundle and let H(M) be a
horizontal subbundle of 7 (M) and let Ky, : T(M) — V(M) be the corresponding
projection. The mapping D from the module I"(1) of sections of n into the module
of 1-forms on N with values in 1, defined by Dg = @ o Ky ods, s € ['(n), is called
by definition a generalized connection on 7 associated with H (M).

Such a definition is a generalization of the definition of a linear connection of the
vector bundle 1. Moreover, we do not assume any hypothesis of Ehresmann type on
the horizontal subbundle H (M).

2.11.2.2.2 Definition Let & = (M, m, N) be a pseudo-riemaniann vectorial bundle
and let ¢ = (M, @, N) be the bundle, the fibers of which M,, x € N, are the Mdbius
spaces associated with the (M, @ E3). Since the morphism ¢ defined in 2.11.2.1.2
from & into ¢ is a local diffeomorphism, any horizontal subbundle H (M) of T(M)
“induces” a horizontal subbundle H (M) of T (M) and therefore a generalized con-
nection on &. In particular, if H (M) is a conformal Ehresmann connection, then by
definition, the generalized connection associated with H (M) is called conformal.

153 Greub, Halperin, Vanstone, Connections, Curvature and Cohomology, vol. 2, Academic
Press, 1972.

e ¢ is the isomorphism of vector bundles « : V(M) — M induced by the identification
between the fiber M, at a point x of N and the tangent space 77 (My) to M at a point z of
My ; we can define the covariant derivative V associated with H (M) (cf. Definition 2.8.4)
as a mapping from the module I" (M) of sections of the vector bundle (M, 7, N, F) into the
module of 1-forms on N with values in the vector bundle M, by putting Vs = oo Kp; ods,
s € ['(M), where K j; denotes the projection T (M) — V(M) associated with H (M).

e ¢ is the following morphism of differentiable fibrations from & into ¢. Let (U, ¢) be the
local chart introduced in 2.9.1.3.1 above. For any y € E;, we put é_l(y) = u(y), where
u is defined by u(y) = y2x0 + Y —Ypt+1.-Let yy € My e p € Py and y € E; such that
p(y) = yx. Weput o(yx) = i(p)(m(y));i(p) can be considered an element of the principal
bundle associated with ¢, that is, as a diffeomorphism from M,, onto M,.

Such a definition is intrinsic, since if p’ € Py and y’ € Ej, are such that p’(y") = p(y),
then there exists g € O(p, ¢) such that p’ = p e gand g’ = g~ 1(y). According t0 2.4.2.2,
2.9.1.3.1and2.9.1.3.3 above, we have u(y') = u(g Lo y) = j(g ) ou(y) (cf.2.11.2.1.1),
whencei(pu(y') = i(p)oi(g)[fzoj(g_l)oTy)] = i(p)oWy), asi = fzoj,withprevious
notation. Thus, the mapping ¢ : M — M that sends fiber into fiber is an N-morphism of
differentiable fibrations from & into ¢. Since ¢ is locally the mapping (ﬁ_l : E;, — My, the

154
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We recall that u from E, (p, ¢g) into the isotropic cone of E,12(p + 1, + 1) is
such that u(z) = z%x0 4+ z — Vnt1-
Let us define uy; as the mapping from M into Mj, by (1) (cf. 2.11.2.1.1
Definitions),
up(yx) = j(p)ouop '(y).y € My, p € Py. (1

Such a definition is intrinsic since if p and p’ belong to the fiber at x € N of the prin-
cipal bundle P of frames, there exists g in O(p, g) such that p’ = p.g (cf. 2.11.2.2
and the corresponding exercise) and

uop 'y =jg Houop Ty,

whence we find that

J(pouop v = j(p)j@lie)ouop~ (vl = j(puo p~ (yo).

The mapping uy; : M — M, which maps a fiber into a fiber, is therefore by definition
an N-morphism of differential bundles from & into &;. We have the following result.

2.11.2.2.3 Proposition Let & = (M, 7, N) be a vector pseudo-riemannian bundle.
We can bijectively associate with any generalized conformal connection D corre-
sponding to a horizontal subbundle H (M) of T (M) a linear pseudo-riemannian con-
nection V on the bundle &, = & & & = (M, m, N) associated with a horizontal
subbundle H (M1) of T (M) such that

e if(z;) is a horizontal path of M, relative to H(M), there exists a path (1;) of R*
such that the path (,;up(z;) of My is horizontal relative to H(M7).

e Conversely, if (z;) is a path of M that satisfies the condition there exists a path
(As) of R* such that the path (A;up(z;)) of My is horizontal relative to H(My),
then the path (z;) is horizontal, relative to H(M).

Proof. Let H(M) be a horizontal subbundle of 7' (M) that defines a conformal gen-
eralized connection. By definition, H (M) is induced by a conformal Ehresmann
connection H (M ) on the bundle { = (M , 7, N), the fibers of which are the Mobius
spaces associated with the fibers of &;.

According to 2.8.8.4, the connection H (M) is associated with a principal con-
nection with form w on the principal fiber bundle associated with ¢, isomorphic, as
already seen, to P, the h-extension of the principal fiber bundle of frames associated
with &;. We need now the following lemma:

2.11.2.2.4 Lemma We can bijectively associate with any principal connection with
form w on P a principal connection with form o on the principal bundle Py such that

o = (dh)," .h* (W),

where

Fnsa- 2
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Proof.

 If w is the form corresponding to a principal connection on P, then the 1-form o
defined by (2) is the form corresponding to a principal connection on P;.

e Conversely, if o is the form of a principal connection on Py, there exists a principal
connection with form w on P such that w satisfies the relation (2).!%

*  We can now come back to the proof of Proposition 2.11.2.2.3. The principal con-
nection with form w, which defines the conformal Ehresmann connection H (M)
on £, is associated, according to Lemma 2.11.2.2.4, with a unique principal con-
nection H(P;) on Pj. According to a classical result,’>® H(P;) defines on &; a
linear pseudo-riemannian connection V.

e Conversely, any linear pseudo-riemannian connection V on & is induced by a
unique principal connection H (P;) on P;. Let H(P) be the principal connection
bijectively associated with H (P) according to Lemma 2.11.2.2.4. H (P) induces
a conformal Ehresmann connection on & and then a generalized conformal con-
nection D on .

2.11.2.2.5 Characterization

e Let(y;) beahorizontal pzlth of M relative to H (M). By definition, the path (¢(y;))
is a horizontal path of M for the conformal Ehresmann connection, where ¢ is
the morphism of differential bundles defined by

@(yx) =1(p)u(y)), yx € My, p € Py, and y € E, such that p(yx) = yx

(cf. the exercise associated with 2.11.2.1.2).
e Letybeafixed element in E,. There exists a path (¢;) in P such that y; = ¢;(y).
We have

o) = i(g) (). A3)

e Let (y4 = 7 (y;)) be the projection of the path (y;) onto N and let () be the
horizontal lift of the path (y;) in P; with origin (), a point in the fiber of P,
over y;, (for the connection with form o on Py). According to (2), (h(y;)) is the
horizontal lift of (y,) in P with origin ﬁ(wto) for the connection with form @ on P.

Since the path (¢(y;)) is a horizontal path in M, we have
o) = fy-@(yto),

where 7, is the parallel displacement in M associated with the path (y;) corre-
sponding to the conformal Ehresmann connection H (M). According to the previous

155 Kobayashi S. and Nomizu K., Foundations of Differential Geometry, vol. 1, Interscience
Publishers, New York, 1963, Proposition 6.1, p. 79.
156 Pham Mau Quan, Introduction & la Géométrie des Variétés Différentiables, Dunod, Paris,
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Remark 2.8.4.2.7, we have

) = h(Wr) o h(Yry) ™" @ Gy,

i.e., according to (3),

i () () = h(Wr) 0 h(Yy) ™ i (1) (V). )

Therefore, y being a fixed element of E, and (¢;) being the path in P such that

v = @:(y), the proposition “(y;) is a horizontal path of M, relative to H(M)” is

equivalent to (4). Moreover, there exists a path (g;) in O(p + 1, ¢ + 1) such that
J@) = Vi - g1 ®)

Since / o Jj =i, (4)is equivalent to

h(ge) e u(y) = h(gy) e u(y),

which is also equivalent to the following proposition: “There exists a path (A;) of R*
such that

Argrou(y) = g ou(y).” (6)

Moreover, (A;g; e u(y) = gz, ® u(y)) is equivalent, according to (5), to

hj (@) e u(y) = v o [ () @ u()],

i.e., according to the definition of the morphism u, of differential fiber bundles, (1),

Mtps (9) = Wi 0 Y O e (). (7

According to Remark 2.8.4.2.7, (7) is equivalent to the proposition, “the path
(Mup(yr)) of My is horizontal, relative to H(My).”

Thus, (6) is equivalent to the proposition, “There exists a path (A;) of R* such
that the path (Aup(y:)) of My is horizontal.”

We have obtained the following characterization:

The following propositions are equivalent:

(1) The path (y;) in M is horizontal, relative to H(M).
(ii) There exists a path (A;) in R* such that the path (A;up(y;)) of My is horizontal,
relative to H(M).

2.11.2.2.6 Corollary Let D be a generalized conformal connection on the pseudo-
riemannian fiber bundle ¢ = (M, , N) and let V be the linear pseudo-riemannian
connection on the associated fiber bundle §&; = & @ &, (Proposition 2.11.2.2.3). The
two following propositions are equivalent:

(i) Forany s inT' (§), Dy = 0.

(ii) There exists a nonzero C® function Ay on N such that

®)
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Lets € T'(§), X € T(N). Dx(s) = 0 is equivalent to the condition, “The path
s(x;) is horizontal, y : t — x; being an integral curve of X,” which is equivalent
to, “there exists a path (A;) of R* such that the path (A;up o s(x;)) is horizontal”
according to Proposition 2.11.2.2.3, which is equivalent to, “There exists a nonzero
C® function on N such that VxAs-up os = 0.” (For the necessary condition we
assume that y is defined on a compact 7 of R and that y is simple and regular.)
Therefore, there exists a function g on N such that A;(x;) = A;, forany ¢t € 7.

2.11.2.2.7 Local Expression of a Generalized Conformal Connection D on a
Pseudo-Riemannian Fiber Bundle

Let (fi),i = 1,2, ..., n,beamoving frame, not necessarily orthonormal in the bun-
dle £. The basis of local sections {x¢, fi, yn+1},7 = 1,2, ..., n, constitutes a moving
frame of the bundle &1 = £ @ &;.

Let (ag), o,8=0,1,2,...,n,n+ 1, be the components in the moving frame
{x0, fi, yn+1} of the connection form associated with the pseudo-riemannian connec-
tion V on &;. Since Vg, = 0, these components satisfy the conditions

0 _ _n+l _ 0 _ ok
Opnt1 =% = 0 o, = _281k0n+1 } k=12 "
O n+1 _ n+1 . ) k £ - E) EER ) 9
oy o, = 0 o/ =—-2gi0, 9

UJ’:gik +gjiof =dgp: i, j.k=1,2,....,n (gij = g(fi. ).

with obvious notation. Let s be a local section of £ defined by s = s’ f; and such that
Dy =0.Sinceuy os = s2x0 + 5 — Ynt1, with s2 = g(s, s), according to (8), there
exists a nonzero C° function Ay on N such that

Vas(s2x0 + 5 — yut1) = 0.

Explicitly, we obtain

dhgs® + As(ds® + 520 + GJQsj) =0, (a)
dhrss' +hs(s’0f — o) +ds' +0lal) =0, (b)
dhs + A5 (o + 01 Hs)) = 0. ©

Equation (c) gives As_ldk s- From (a) and (c), we can deduce, taking account of rela-
tions (9),

ds' —o, +0J’.sj +08s’ —a,?_H (—g”s2 —s’s’) =0. (10)

2

Thus we have obtained the expression of (D)’ in the left part of the equality (10).
Equation (a) is always verified if we have (b) and (c), since (b) and (c) give

ds® + 2s208 + oj(?sj + szcj'.’+1sj =0, (11)
equality is always satisfied: from Vg, = 0, we can deduce that
0= Vg (s,5) =d[g(s,s)] —2g1(Vs,s) = ds? —2g1(Vs, s).

ount of (10), we obtain (11). Thus we have
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2.11.2.2.7.1 Proposition Let D be a generalized conformal connection on a pseudo-
riemannian fiber bundle ¢ = (M, , N). Let { f;},i = 1,2, ..., n, be amoving frame
of the bundle &. We can write

Ds = (ds’ +w' +whs/ + wos' + w? <§g”s2 —s/s’>> fi, s=s'fi, (12)

where the (w', wi., wo, w?) are (n + 1)(n + 2)/2 local 1-forms on N such that

w'gik + gjiw; = dgjk, where gji = g(fi. fi). 13)

These local 1-forms are called the local 1-forms in the moving frame { f;} of the
generalized connection D.

2.11.2.2.8 Proposition Let D be a generalized conformal connection on a pseudo-
riemannian fiber bundle ¢ = (M, m, N). Let { f;} and {f/} be moving frames of &

such that on the intersection U of their domains of definition we have f! = Alj fis
where the (Al! ) are C*° functions on U, the matrix with coefficients (Ai. (x)) being

an element of GL(n) forany x inU. Let {w', wi., wo, w‘]?} and {w', w/j", wy, w;p} be
respectively the local 1-forms of the generalized conformal connection in the moving

frames { f;} and { fi’ } respectively. We have

w' =@ Nw wl =@ hiwkAl +(AT)id A wh = wo, w) = wg?A;(.M)
Conversely, it we consider a covering (Uy) of N, where (Uy) is the domaiq of defini-
tion of a moving frame of ¢ and on each U,, if we consider 1-forms {w', w;., wo, w?}
that satisfy the relations (13) and relations (14) on the intersections Uy, N Ug, we

define a generalized conformal connection on &.
The proof will be given in the exercises.
2.11.2.2.9 Fundamental Remarks

According to Propositions 2.11.2.2.7 and 2.11.2.2.8, we can define a generalized con-
formal connection on a pseudo-riemannian fiber bundle by considering a mapping D
locally defined by the relations (12) with local 1-forms {w’, w’., wo, w(}} that satisfy
the relations (13) and transformation formulas such as (14) by changing the mov-
ing frame. But such generalized conformal connections are not generally Ehresmann
connections. In order that a generalized conformal connection be an Ehresmann con-
nection, we need to find, for any path (x;) in N defined on an interval / of R, a
horizontal lift (y;) of (x;) in M, defined on 1.

If we consider local coordinates {yi },i = 1,2,...,n,on M associated with a
moving orthonormal frame {e;} of &, the horizontal lift (y;) of (x;) needs to satisfy
the equations
dy'

/

{(x)y! — wolx

. . 1 . ..
= —w/ (x}) —wi(x Dy = wh)) (Eg”yzy’y’> (15)
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Locally, we are led to the search of the integral curve, defined on all /, of an
infinitesimal conformal transformation on E, (See 2.9.1.3.3.). Now, some of those
infinitesimal conformal transformations, for example those that correspond to confor-
mal special transformations (or transversions), generate only a local parameter group.
We cannot generally prove that there exists a solution of (15) defined on all /.

2.11.2.3 Curvature of a Generalized Conformal Connection

2.11.2.3.1 Definition Let D be a generalized conformal connection on a pseudo-
riemannian fiber bundle & = (M, r, N). Let H(M) be the horizontal subbundle of
T (M) associated with D. According to Definition 2.8.7.6, the curvature associated
with the subbundle H (M) is the mapping (15),

Q:T(N)xT(N) - V(M) :(X,Y) > QX,Y)=T(X,Y) — [['(X), "' (Y)],
where I is the horizontal morphism associated with H (M).
2.11.2.3.2 Characterization

Let us consider the local coordinates {yi},i =1,2,...,n, of M associated with
a moving frame { f;} of £. According to the results of Section 2.8.7 above, we can
give the local expression of € in such a moving frame by using the 2-forms d6’,
where the

0" =dy' +w' +wiy +woy' +w] <§y2g” - y’y’>

constitute a local basis of P(H (M)). We apply an integrality condition.
We find that

Q= {Qf + @yl + Qoy' + 0 (%gl”'y2 —yfy")} % (16)

with
Q' =dw' + W' + wod}) A w, (17)
Q' = dw' + wj Awh +w' Awh +wh Awj, (18)
Qo=dwo—w2/\wk, (19)
Q(j)- = dw? + w,? A (w]; + wo(Sf). (20)

2.11.2.3.3 Remark Let V be the pseudo-riemannian connection on & = & @ &
bijectively associated with D according to Proposition 2.11.2.2.3. According to (10),
the local 1-forms {w', w’j, wo, w?} of the generalized connection D in the mov-

frame {f;} of £ are the components {—Jr’;H,a]’:,ar?H, —aj'.‘“} of the form
oving frame {xq, fi, yn+1} of &;. It results
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from equations (17), (18), (19), (20) that the {Q', Q’J Qo, sz(;} are the compo-

nents {—Efl " E;, E,?_H, —Z?H} of the curvature form of V in the moving frame
{x0, fi» Yut1) of &1. For example,
Q' = dw' + W} +wod)) Aw! = —do, . +of Aoy o Aoy
==,

2.11.2.3.4 Study of the Peculiar Case of a Pseudo-Riemannian Manifold N
with a Scalar Product of Signature (p, q)

This study will be given in the exercises below.
2.11.2.3.5 Applications

Two examples will be given in the exercises. The first one corresponds to the study of
aconservative dynamical system with holonomic complete constraints with n degrees
of freedom, satisfying the hypothesis of Painlevé. The second one concerns the equa-
tions of a charged particle in an electromagnetic field in classical general relativity.

2.12 Vahlen Matrices!>’

2.12.1 Historical Background!s8

In 1902, K. Theodor Vahlen initiated the study of Mabius transformations of vec-
tors in R” by 2 x 2 matrices with entries in the Clifford algebra Cy ,,. Such a study was
reinitiated by L.V. Ahlfors.!®® A more precise study has been given by J. G. Maks. %!
Such matrices are used by J. Ryan'®? in Clifford analysis.

157 See, for example, chapter 19 of the excellent book by the late Pertti Lounesto, Clifford
Algebras and Spinors second edition, Cambridge University Press, London Mathematical
Society, Lecture Notes Series, 286, 2001.

158 ¢f., Appendix: A history of Clifford algebras in the previous book of P. Lounesto.

159 Viahlen K. Th., Uber Bewegungen und complexen Zahlen, Math. Ann., 55, pp. 585-593,
1902.

160, v Ahlfors, (a) Old and new in M&bius groups, Ann. Acad. Sci. Fenn., serie A.1 Math.,
9, pp. 93-105, 1984. (b) Mobius transformations and Clifford numbers, pp. 65-73 in 1.
Chavel and M. M. Farkas (eds.), Differential Geometry and Complex Analysis, Springer,
Berlin, 1985. (c) Mobius transformations in R” expressed through 2 x 2 matrices of Clifford
numbers, Complex Variables Theory Appl., 5, pp. 215-224.

161 . G. Maks, Modulo (1, 1) periodicity of Clifford algebras and the generalized (anti-) Mobius
transformations, Thesis, Technische Universiteit, Delft., 1989.

162y, Ryan, (a) Conformal Clifford manifolds arising in Clifford analysis, Proc. R. Irish Acad.,

Section A.85, pp. 1-23, 1985. (b) Clifford matrices, Cauchy—Kowalewski extension and

1l Aust. Natl. Univ., 16, pp. 284-299, 1988.



182 2 Real Conformal Spin Structures
2.12.2 Study of Classical Mébius Transformations of R”

The concerned space is there the compactified R” U {oco} of R". Some authors such
as P. Lounesto use the following classical terminology.

2.12.2.1 Definition A Mobius transformation is called sense-preserving if
det(df) > 0, and sense-reserving if det(df) < O.

As already seen, the Mobius group of R” U {oo} has two components, the identity
component being the sense-preserving Mobius group. We have already noticed that
the full Mobius group of R U {oo} is generated by translations, reflections, and the
inversions x — x 1 = ;—2, or equivalently, by reflections in affine hyperplanes and
inversions in spheres not necessarily centered at the origin. We have already noticed
that the sense-preserving Mobius group is classically generated by the following four
types of transformations: rotations, translations, positive dilatations, and transversions

(or conformal special transformations). Transversions can be written

X +x2c
X —
1 4+ 2B(x, c) + x2¢2

with ¢ € R” or in the equivalent forms x — x'+o)tandx — x(ex + )7L As
emphasized by Pertti Lounesto, %3

This might suggest the following: Let a, b, ¢, d in the Clifford algebra C,.
If (ax + b)(cx +d)~" is in R" for almost all x € R" and if the range of
g(x) = (ax + b)(cx + d)~" is dense in R", then g is a Mébius transforma-
tion of R". Although this is true, the group so obtained is too large to be a
practical covering group of the full Mobius group.

Using Lounesto’s notation for any a in C,,, we put 7 (@) = a, where 7 is the main
automorphism of the considered Clifford algebra t(a) =  andforv = wot = tom,
v(a) = a.'%* 7 is called by Pertti Lounesto the grade involution,  is called the rever-
sion, and v the Clifford conjugation. One can easily verify that with previous notation
for u belonging to the space called the space of p-vectors, we have (1) = (—1)Pu
and t(u) = (—1)1/2rP=ly,

The following definition has been given by H. Maass'% and L. V. Ahlfors.'®® We
denote there by I',, the Clifford group—also called the Lipschitz group.

163 p, Lounesto, Clifford Algebras and Spinors, op. cit., p. 246.

164 p L ounesto, op. cit., p. 29 and p. 56.

165 1, Maass, Automorphe Funktionen von mehreren Veranderlichen und Dirichletsche Reihen,
Abh. Math. Sem. Univ. Hamburg, 16, pp., 1949.

166 1, V. Ahlfors, Old and new in Mdbius groups, Ann. Acad. Sci. Fenn., serie A.1 Math., 9,

pp. 93-105, 1984.
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2.12.2.2 Definition The matrix (‘g Z) € My (C,) (the set of 2 x 2 matrices with
entries in the Clifford algebra C,) satisfying the conditions

(a) a,~b,~c, d eI, U{0},
(b) alz, bd,dc,ca € R",
(¢c)ad — bc € R\ {0},

is called a Vahlen matrix of the Mobius transformation g of R” given by g(x) =
(ax +b)(ex +d)~ L.

2.12.2.3 Some Results'”

The Vahlen matrices form a group under matrix multiplication: the Vahlen group.
The Vahlen group has a normalized subgroup in which condition (c) is replaced by
(¢') ad — bé = +1. The normalized Vahlen group is a fourfold, or rather double
twofold, covering group of the full Mobius group of R”. The kernel of the covering
homomorphism consists of

10 €12...n 0
+ (0 1)’ :t( 0 —512---n>’

where ejs..,, denotes the product of elements of the chosen basis of E,. The
sense-preserving Mobius group has a nontrivial twofold covering group formed by
normalized Vahlen matrices with even diagonal (and odd off-diagonal) and pseudo-
determinant ad — bé equal to 1. The full Mobius group has a nontrivial twofold cover-
ing group with two components. The nonidentity component consists of normalized
Vahlen matrices with odd diagonal (and even off-diagonal) and pseudodeterminant
ad — bé equal to —1.

2.12.3 Study of the Anti-Euclidean Case E,,_1(0,n — 1)

We consider a (n — 1)-dimensional anti-Euclidean space. For x € E,_;(0,n — 1),
q(x) = —()cl2 + -+ x,_1)2, where ¢ denotes the quadratic form.

2.12.3.1 Definition By definition,'®® the sums of scalars and vectors are called
paravectors. Paravectors span the linear space R @ E,_1(0,n — 1), denoted by
$R" = R® E,_1(0,n — 1). As an extension of the Lipschitz group, 1. R. Porte-

ous'® introduced the group of products of invertible paravectors $T°,,.

167 4, Maass, Automorphe Funktionen von mehreren Verdnderlichen und Dirichletsche Reihen,
Abh. Math. Sem. Univ. Hamburg, 16, pp. 72—-100, 1949.

168 p Lounesto, op. cit., p. 247.

169 1 R. Porteous, Topological Geomet.

S

, Op. cit.




184 2 Real Conformal Spin Structures

2.12.3.2 Proposition $R” is isometric to the Euclidean space R".

Letx =xg+x € RPE,_1(0,n—1),withxg e Randx € E,,_1(0,n — 1). Let
us introduce the quadratic form

@) =xX=x5 —qx) =xF+xi 4+ +x2,

from which the result can be deduced. K. Th. Vahlen!”® originally introduced the
sense-preserving Mobius group of the paravector space $R”.

2.12.3.3 Definition The matrix (‘Z Z) € M (Cp ,—1) satisfying the conditions

(@)a,b,c,d €SI, U{0},
(b)ab, bd, dc, ca € $R",
(c)ad —bc =1,

is a Vahlen matrix with pseudodeterminant ad — bé = 1 of the sense-preserving
Mobius transformation g of $R” given by g(x) = (ax + b)(cx + a1

These Vahlen matrices with pseudodeterminant equal to 1 constitute a group that
is a nontrivial twofold covering of the sense-preserving group of $R”.

2.12.4 Study of Indefinite Quadratic Spaces

In addition to the above literature, we can give the following works: Elstrodt,
Grunewald and Mennicke,!”? Fillmore and Springer,'’® Gilbert and Murray,!”*
Hestenes and Sobczyk,!” Lounesto and Springer.!’® As already shown, the full
Mobius group of the compactification of E, (p, g) has two components (if either
p or q is even), or four components (if both p and g are odd). With Lounesto’s
notation, I', , stands for the Lipschitz (or Clifford) group and!”’

Spin, (p,q) ={s € Tp 4N c;q|s§ =1}

170 g Th. Vahlen, op. cit.

171 g Th. Vahlen, op. cit.

172 3 Elstrodt, F. Grunewald, and J. Mennicke, Vahlen’s groups of Clifford matrices and spin
groups, Math. Z., 196, pp. 369-390, 1987.

173 j. P, Fillmore and A. Springer, Mobius groups over general fields using Clifford algebras
associated with spheres, Internat. J. Theoret. Phys., 29, pp. 225-246, 1990.

174 j. Gilbert and M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis,
Cambridge Studies in Advanced Mathematics, Cambridge University Press, 34-38 and
278-296, 1991.

175 D Hestenes and G. Sobczyk, Clifford Algebras to Geometric Calculus, D. Reidel, Dordrecht,
the Netherlands, 1984, 1987.

176 p Lounesto and A. Springer, Mobius transformations and Clifford algebras of Euclidean
and anti-Euclidean spaces, in Deformations of Mathematical Structures, J. lawrynowicz,
ed., Kluwer Academic, Dordrecht, pp. 79-90, 1989.

77T, g ={s € Cp.g: (VxcEn(p,q))sx§~" € Ex(p,q)}, Pin(p,q) ={s € Tpg/s§ = £ 1},

esto’s notations (cf. P. Lounesto, op. cit., p. 220).
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Any Mobius transformation x — (ax +b)(cx + d)~Vof E,(p, q),wherea,b,c,d €
Cp.q» can be represented by a Vahlen matrix (‘; Z) in M2(Cp 4). More precisely,
the entries a, b, ¢, d of (¢ 4) are products of vectors and if invertible belong to the

group I', 4.

2.12.4.1 Proposition The identity component of the Mobius group is generated by
the rotations, translations, dilatations, and transversions, which are represented re-
spectively as follows:

axa™", a € Spin, (p, q), 82>,
x+b, b e Euy(p,q), (1)11])
x4, § >0, ?i>,
x +x%c 10 .
(728, t 22 (S <61>'

The corresponding Vahlen matrices are given on the right.

2.12.4.2 Theorem (J. G. Maks!73) Let us consider four Vahlen matrices, which rep-
resent one rotation, one translation, one dilation, and one transversion. A product of
these four matrices, in any order, has always an invertible entry in its diagonal (there
are 4! = 24 such products).

Proof. For instance, in the product

(ao)(lb) (JS 0 )<1o)= (aﬁaj“—jg 7%)
the lower right-hand diagonal element a/+/3 is invertible. To complete the proof of the
fact that a product of rotation, a dilatation, and a transversion, in any order, is such

that the Vahlen matrix representing it has always an invertible entry in its diagonal;
one can verify the result in all the remaining 23 cases.

2.12.4.3 The Counterexample of J. G. Maks

In the general case (p # 0, g # 0), J. G. Maks!”® gave an example of a Vahlen matrix
none of whose entries is invertible and all of which are nonzero. This example will be
given in the exercises and proves that condition (a) has to be modified in the definition
of a Vahlen matrix. Thus, P. Lounesto'8 introduces the closure 7, 4 of ' 4, 7p 4
being the set of products of vectors, possibly isotropic of E, (p, ¢).

179 3. G. Maks, op. cit., p. 41.
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2.12.4.3.1 Definition The matrix (‘C‘ Z) € M3(C,,4) satistying the conditions

@a,b,c,d empy,
(b)ab, bd, dc, ca € Ey(p, q),
(¢)ad — bc € R\ {0},

is a Vahlen matrix of the Mobius transformation g of E,(p, ¢) given by g(x) =
(ax + b)(cx +d)~ 1181

The Vahlen matrices here introduced form a group under matrix multiplication.
The normalized Vahlen matrices, with pseudodeterminant satisfying ad — bé = %1,
form a fourfold, possibly trivial, covering group of the full Mébius group of E, (p, q).
When both p and g are odd, the normalized Vahlen group is a nontrivial fourfold cov-
ering group of the full Mobius group of E,(p, g). When either p or g is even, one
can find a nontrivial twofold covering group of the full Mobius group, consisting
of the identity component of the normalized Vahlen group, that is, of normalized
Vahlen matrices with even diagonal and pseudodeterminant equal to 1 and another
component not containing the (nontrivial) preimages of the identity

€12...n 0
+ A .
( 0 epn )

The identity component of the normalized Vahlen group is a twofold (either p or g
is even) or fourfold (both p and ¢ are odd) covering group of the sense-preserving
Mobius group.

2.12.4.3.2 The Counterexample of J. Cnops'8?

This counterexample will be given in the exercises.

2.13 Exercises

(I) Show Proposition 2.2.1.1.1. Hints: Take into account the definition of the angle 6
between two intersecting real hypersphere, defined as the angle between hyperplanes
tangent to hyperspheres at a common point.

(IT) Show Proposition 2.2.1.1.2. Hints: Use an homogeneous equation of 7 (Y).

(III) (We follow the method given by Ricardo Benedetti and Carlo Petronio in
their book: Lectures on hyperbolic geometry, op. cit, pp. 10-22.) Show Proposi-
tion 2.3.3.

181 5P, Fillmore and A. Springer, op. cit.
1825, Cnops, Vahlen matrices for non-definite matrices, pp. 155-164 in R. Ablamowicz, P.
Lounesto, J. M. Parra (eds. j gebras with Numeric and Symbolic Computations,
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(1) First case n = 2

(a) Show that if M and N are connected oriented riemannian surfaces (naturally
endowed with complex structures), the set of all conformal diffeomorphisms of M
onto N is the set of all holomorphisms and all antiholomorphisms of M onto N.

(b) Show that the group Conf T (5?) consists of all homographies and the group
Conf(S?) consists of all homographies and antihomorgraphies, where $2=cCPlis
naturally identified with the set C U {oo} (where oo = 0~!) and a homography is a
mapping of CP! into itself such as z — (az + b)/(cz + d), and an antihomography
is a mapping of CP! into itself such as z — (aZ + b)/(cZ + d), where (¢} varies
in GL(2, C).

(c) Then, prove Theorem 2.3.3 for n = 2.

(2) Second case n > 2. U and V are domains in R" and f : U — V is assumed
to be a conformal diffeomorphism. We say that f : x — LAi(x) + b is of type (a) if
i is the identity, and of type (b) if i is the inversion with respect to a sphere.

(A) (a) Show that f is of type (a) if and only if p s is constant (Where p = (1 f)_l)
with || Dy f()|| = pr)|v|l, forany x € U, v € R".

(b) Show that f is of type (b) if and only if there exist xo € R” and n € R\ {0}
such that p¢(x) = nllx — xoll%.

(B) Show that there exist 7, r € R,z € R" suchthat ps(x) = n|lx I+ B(x, z)+r.

(C) Show that if in the case (B), n # 0, then for some xo € R”, we have
pr(x) =nllx — xoll?

(D) Show that in the case (B), it cannot occur that » = 0 and z # 0. According
to (B), we will say that f is of type («) if n = 0 and z = 0 or of type (B) if n = 0
and z # 0, of type (y) if n # 0. By (A), if f is of type (@), then it is of type (a) and
(C) and (D) can be respectively be written as follows: If f is of type (y) then it is of
type (b). f cannot be of type (8).

(3) Prove the following Corollary: Conf(S™) consists of all and only all the map-
pings of the form x — wBi(x) 4+ w, where u > 0, B € O(n), i is either the identity
or the inversion with respect to a sphere and w € R”.

(IV) Prove Theorem 2.4.1.1. Let (g, 1) be an isotropic base of H, the standard hyper-
bolic plane E»(1, 1) with2B(e, n) = 1. Let E = E, (p, q).

(1) (a) Show that any element z in F = E, (p, q) ® H, z = x + e + 1 belongs
to Q(F), the isotropic cone of F, if and only if 8 = —¢g(x), where ¢ is the quadratic
formon E, (p, g),and that a vector u = ae+x+ 1 belongs to the hyperplane tangent
to Q(F) along the generator line Rzq, with zg = age + x + Bon, if and only if «By +
aoB+2B(x, xg) = 0. We introduce the mapping p : x € E — p(x) = e+x—q(x)n.

(b) Let Vy be the intersection of Q (F') with the affine hyperplane ¢ + (E ®Rn) and
V = P(Vp) where P is the classical projection from F onto its associated projective
space P(F).

Show that M = P(Q(F)\{0}) can be identified with the compactified space obtained
by the adjunction to E, (p, g) of a projective cone at infinity.

(2) (a) Show that PO(F) = O(F)/(; -y acts on P(F) and conserves M =
called the conformal group of E.
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(b) Show that by passing to the projective space, O (E) can be identified with a
subgroup of PO(F') of conformal automorphisms of M.

(c) Show that if a belongs to E, there exists ¢, € O (F) such that for any x in E,
t.(p(x)) = p(x +a) and that 7, leaves Vj globally invariant and satisfies the relation
tytp =ty otp, foranya,bin E.

(d) Let A be in R}.. Show that we can associate with any positive dilation of E of
coefficient A an operator f;,, € O(F) such that 1, (p(x)) = % p(Ax).

(e) Since the group of similarities S(E) of the affine space E is the product of three
subgroups of GL(E): 7 (E) the group of translations, H(E) the group of positive
dilatations, and O(FE); show that we can associate with any s € S(E), t; in O(F),
ty = titag, With g € O(F) such that g.e = e and g.n = n, withi e R}, a € E. Let
T be the orthogonal symmetry relative to the unit vector € 4 7. Show that te = —p
and Ty = —e, and that t leaves E invariant.

(f) Show that s — ¢ is an isomorphism from S(E) onto the subgroup of ele-
ments of O(F) which let the generator line Ry of Q(F) invariant together with an
orientation of it, and that s — P ot is an isomorphism from S(E) onto the isotropy
subgroup Sj of the “point at infinity” 7, in the group PO(F).

(g) Conclude that M can be identified with PO(F)/S(E).

(h) Show that 7 is the orthogonal symmetry relative to the unit vector & + 7.
Show that te = —n and tn = —e. Show that 7, the image of t in PO(F), cor-
responds in E to the classical inversion with center 0 and power 1. Using a the-
orem of J. Haantjes183 that extends the theorem of Liouville (exercise III, above)
to pseudo-Euclidean standard spaces E,(p, g), according to which the only con-
formal transformations of E,(p, q), p + g > 3, are products of affine similarities
and inversions, conclude that PO(F) is the group of all conformal diffeomorphisms
of M.

(V) Prove Proposition2.5.1.2and 2.5.1.2.1, thatis, ifn = 2r,theney fr+1(—i) = frt1,
where f, 1 is an (r 4+ 1)-isotropic vector and f, ey = (—1)" (=) 7P f,4 1.

(VI) In 2.5.1.4 determine the connected components of (S;).. Hints: Use the method
and results given in 2.4.2.5 and also the results concerning the connected components
of the classical spinoriality groups recalled in 3.10.

(VII) Prove 2.5.1.5. Hints: Use the method given in 2.5.1.4 and the results con-
cerning the connected components of the classical spinoriality groups recalled
in 3.10.

(VIID) (1) Prove Theorem 2.8.3.2 (structure equation):
(a) If X and Y are horizontal.
(b) If X and Y are vertical.
(c) If X is horizontal and Y vertical.

183 Conformal representations of an n-dimensional Euclidean space with a nondefinite funda-
h. Proc., 40, pp. 700-705, 1937.
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Conclude by using the following lemma (prove it): If A* is the fundamental vector
field corresponding to an element A of Lie(G), and X is a horizontal vector field, then
[X, A*] is horizontal.

(2) If both X and Y are horizontal vector fields on P, show that w([X, Y]) =
—2Q(X,Y).

(3) Prove Bianchi’s identity (Theorem 2.8.3.3): DQ = 0.

(IX) cf. 2.8.7.14 Prove the following Proposition: Let E be a fiber bundle with typical
fiber F, associated with a principal bundle P with structure group G, and let H (E) be
an Ehresmann connection on E. If G acts effectively on F and if H (E) satisfies the
following condition—For any differentiable path y of the base B with origin point
bo and for any element pq in the fiber of P in by, there exists a path (p;) of P such
that rf o po = pr, where tf is the parallel displacement associated with the path
y—then there exists a unique principal connection H (P) on P such that H(E) is the

connection associated with H (P).

(X) A) Prove Proposition 2.8.8.4 using exercise IX.
B) Prove Proposition 2.8.8.5.

M : F

L |
—E Wo=0ulty) | —Zoe

(1) (z;) being horizontal, we have z, = 7,,(z0), where t,, is the parallel displace-
ment associated with the path y,. Let 1 — p; be the horizontal lift of (y;) in P with
origin . Show that r, = p; o Iﬁo_l and ¥, = p;.g:, where (g;) is a path in G, and
that the path (y,) in F satisfies Jy, = ((—g5,"-810))Yio-

(2) Show that we have Vi, = pr-81) + Pry-&rp and w(Wry) = (og (W) (V) =
& I 81,» Whence the equation of the text results. Conclude.

(3) Prove the characterization given in 2.8.8.6.

(4) Prove the result given in Proposition 2.8.8.7.

(5) Find the local expression of example 2.8.8.8.

(6) Show that there is identity between the notion of G L (F)-Ehresmann connec-
tion and that of linear connection on a vector bundle (cf. below XII).

(7) Express the curvature of a G L (F)-Ehresmann connection on a vectorial bun-
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(8) Study the example 2.8.8.9, in detail:

(a) Give the local expression of H(M).

(b) Determine the curvature 2 of the affine Ehresmann connection H (M).

(9) Study the particular case of an affine Ehresmann connection on a vectorial
fiber bundle.

(a) Prove the following result: Let i be the N-principal morphism from P into
P xGr(g) A(E) defined by i(p) = (p, e), p € P. Then (i) and (ii) are equivalent:

(i) there exists a connection with the form w on P xgr(g) A(E).

(i1) there exists a connection with the form w and a 1-form 6 with values in E,
horizontal and of type GL(E) on P.

(b) We assume now dim E = dim N = n. Let H(M) be an affine Ehresmann
connection on the vector bundle (M, 7, N, E), w the form of connection on the bun-
dle of frames P, and 6 the 1-form on P, with values in E, horizontal and of type
GL(E) induced by H(M) according to 9 (a). Let p — H,(t) C T,(P) be the field
of horizontal subspaces induced by the connection of the form w on P. Show that (a)
is equivalent to (b).

(a) For any element p in P, 0, is an injective map (or surjective map) from H, (P)
into E (and then bijective, taking account of the dimension).

(b) There exists a Cartan connection, called affine on P.

(XTI) Justify the table of infinitesimal conformal transformations given in 2.9.1.3.3.

(XTI) Study of Example 2.8.8.8. Let F be a real vector space of dimension m and
let {e;}i=1,2,....m be a fixed basis of F. Let (M, m, N, F) be a differentiable bundle
with structure group G L(F'), provided with the structure of a vector bundle by using
diffeomorphisms ¢, , associated with a G L(F)-trivializing atlas for the transfer of
the structure of a vector space F on the fibers. Let H(M) be a GL(F)-Ehresmann
connection on the vector bundle (M, &, N, F). H(M) is associated with a connec-
tion with the form w with values in the Lie algebra g/(F’) on the principal associated
bundle P, called the bundle of frames. Let (U, ¢y)aca be the previous atlas.

(1) (a) Show that the mapping oy : X — 04(x) = @q r defines a local section over
U, of the principal bundle of frames.

(b) Show that we can associate with this section a basis of local sections of the
bundle (M, m, N, F) defined by x — ¢;(x) = o4(x)e;, called the moving frame of
the bundle (M, 7, N, F).

(c) Let (wi.) be the components in the canonical basis (ei.) of gl(F) of the local

form o (w), and {x*, yi} the system of local coordinates over 7~ 1U,), and let ¢i
be the local 1-form on 7z 1 (U,,) defined by d)i = Ff\dx)‘, where Fi are the local com-
ponents of the Ehresmann connection H (M) in the system of coordinates {x*, y'}.
Show that ¢ = n*(wé.) o y/.

(2) (a) Use « defined in Section 2.11.2.2 to prove the following result: the mapping
V is a linear connection on the bundle ((M, , N, F) (cf. 2.8.7.4).
(b) Deduce that there is identity between the notion of G L(F)-Ehresmann con-
vector bundle.
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(XIII) Links between conformal connections and riemannian connections in
2.9.2.2.2.4.3.

Notation: Let G be a subgroup of G” (n). We denote by P"(M)/G the quotient
of P"(M) by the right action of G on P" (M), that is, the set of equivalence classes
for the equivalence relation defined on P" (M) by “ji(f2) = jj(f1) if and only if
there exists @ € G such that f> = f] o a.” We agree to denote by G" (n) /G the right
quotient of G" (n) by G. P"(M)/G is a bundle associated with P" (M) with typical
fiber G" (n)/ G. We will denote here by 6 the canonical form of P (M), to distinguish
it from that of PZ(M); 0 = (6',...,0") is an R"-valued 1-form such that in any
system of coordinates (x%), we have

(Zxkaxk> = X"

If R, denotes the right translation of PY(M), that is, j(} f) — j(} (f o a), where
a € GL(n,R), we have R}0 = ad(a=")0 = a~'0a.1f p : P2(M) — P'(M) de-
notes the canonical projection jg( f)— j(} (f) andif (6*, 9}) denote the components

of the canonical form of P2(M) in the canonical basis of R" @ gl(n, R), we have
p*éi = 0!, 1 <i < n.Letus recall (cf. 2.9.2.2.1.6) that a riemannian structure on M
is a reduction to O (n) of the structure group of P! (M). Then it is a subbundle O (M)
of P1(M) with structure group O (n). We know also that the datum of such a reduction
is equivalent to that of a cross section of the bundle PY(M)/O(n), (associated with
PY(M), with typical fiber GL(n, R)/ O (n)).

(1) Show that there exists a canonical bijective mapping between the subbundles of
P (M) with structure group O (n) and the subbundles of P%(M) with structure group
O (n). Now we can assume that the riemannian structure of M is defined by a subbun-
dle of P?(M) with structure group O (n), which we agree to denote simply by O (M).
By restriction to O (M) of the fundamental form 6, we obtain forms @', 9’ ) such that

9; is in the Lie algebra of O (n) and thus skew-symmetric relative to the 1nd1ces i and
Jj. The forms (Q_i, 9_;.) are the forms of the riemannian connection of M and satisfy

= 6 ndt,
k
and the curvature form S_Z’J of the riemannian connection is defined by
— Y
doi == "0 N5+ QL. 1)

The forms 5_2’] vanish on the fibers, since the restrictions to the fibers of O (M) of the
forms 6°, 9_;. can be identified with the Maurer—Cartan forms of O (M). The method
is the same as that used for the Q’] and €2;. We can now set

j-klé" INCLE
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The tensor obtained is the curvature tensor of O (M).

(2) Conformal structure associated with O (M).

(a) Verify that according to Proposition 2.9.2.2.1.2 above, any riemannian struc-
ture O (M) induces a conformal structure P(M). )

(b) Show that we have on O (M) the relations w' = 6%, w'. = 6% with wi. +w! =0
and that the restrictions of the forms w; to the fibers of O (M) vanish.

(3) Prove the following result: two riemannian structures O (M) and O (M") deter-
mine the same conformal structure if and only if the riemannian associated “metrics”
are conformal.

(4) Prove now the result given in 2.10.5.2: x'(¢) is an eigenvector of the corre-
sponding Ricci tensor.

(XIV) Study 0f 2.11.2.2.3.2,2.9.2.2.3.2,2.9.2.2.3.3,2.9.2.2.3.5. Prove the four given
propositions.

(XV) Justification of Elie Cartan’s presentation (2.10.2.1). It is enough to prove the
existenc¢ of a unique local section o of P(M) such that the forms o*0" are given
forms w', which constitute a basis of the cotangent space to M, and that with notation
of 2.10.2,

0*5 —0*0’— Za =0.

We start from any local section s such that st =wi, 1 <i <n.

(1) As in Section 2.2, let us consider the Mobius group M,,, which acts on the
Mobius space Q. Any element of M, corresponds to a couple of opposite matrices
(V, —=V)in O(q), with notation of 2.2, such that ' V¢ vyl = q (1), where g denotes,
abusively, the matrix of the form ¢.

(a) Show that (1) can be expressed explicitly by the (n 4+ 2)(n + 3)/2 relations

n n
Zzgrsvri Vsj — Voi Vat1.j — Voj Vat1.i = gijs 2
r=1s=1

with qgij = 8ij» ifi,j € {1,2,...,1’!}, qij = —1if (i, ]) = (O,I’t + 1) or (i,j) =
(n+1,0),and g;; = Oinall the other cases, thatis,i = Oorn+land j € {1,2,...,n},
j=0orn+1l,andi € {1,2,...,n},(,j)=1(0,0),G j)=m+1,n+1).

(b) Let M, (n) be the subset of M (n), the Mobius group consisting of matrices V
of the form

la - a, b°

0 b!
Si : such that fori =1,2,...,n, ©)
! :

[ P b

00 - ---01

1 non o
= Ezzgijblbj.

i=1 j=1
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Show that M (1) is a commutative and invariant subgroup of O (q) isomorphic to R”.
(c) Show that with notation of 2.2, if X = (X°,..., X"*1), with the “point
sphere” 7 (X), the transformation associated with the matrix V associates the “point
sphere” Y defined by
n+l

Y = Z Vie X
k=0

(d) Since g;; X X/ — 2X0x"*! = g, y'y/ — 2y%y"*! = 0, we can put
yi = Yi/¥%for1 <i < n and express the Cartesian coordinates y' of the cen-
ter of (Y in terms of the coordinates x* = X? /X of the center of 7 (X) by

~ Vot 2 Vikxk + 3Vinpr 35 Y xlxk
Voo + 3k Vorxk + 1V g DT

i

y

@ j,k=1,...,n).

If Voo # 0, we can put a = Vio/ Voo, ai = Voi/ Voo, a,i = Vix/ Voo and thus deter-
mine y' in terms of x', a;, a}, a'.

(e) Since all the isotropy groups are isomorphic to one another, show that M is
the group of affine similarities of R”, which correspond to matrices V of the form

Voo Vo1 -+ Vot
0 .
0 ---0 Vn+1,n+1

with Voo Vat1.n41 = 1,

n
> grVriVij=gij fori,je{l.2,....n},

rs=1

ZgrsVri Vs,n+l = Vn+1,n+1 Voo (1 <i<n),

r,s

Z 8rs Vr,n+l Vs,n+l = 2VO,n—i—l Vn+1,n+1-

r,s
(f) Show that for a matrix of type (3), the corresponding transformation is such that

x4 gb e
1+ Y agxk + $0)x )12

i

y

with [x|* =" gijx'x/.
ij

(g) Show that any Mobius transformation can be written as the composite s o ¢
of an affine similarity s and a transformation ¢ in My (n).
e identified with the homogeneous space
n) denotes the isotropy subgroup of the
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origin and Mu (n) the isotropy subgroup of the point at infinity, co, and that Mu (1)
and My (n) are of dimension ”2+2”+2.
(1) Study the case of the canonical Euclidean structure g;; = 8;

(1) Determine the Lie algebras of M (n) and Mo(n).
(2) Using the results given in 1(b), show thatif s : U — P (M) is a local given
section, there exists a unique mapping a : U — Mj(n) such that

- 1< .
o0y = - > ool =0.
i=1

A moving normal frame is a moving conformal frame A, such that the forms (wf,)

defined by
n+1

0 1
dA, =Y whA, satisfy w) = w)t] =0.
q=0

We agree to denote simply by s = (A ) the conformal moving frame associated with
a section s of P(M).

(3) Show that if (wi)lfi <n 18 a system of differential forms over an open set U
of M that constitute a moving tangent coframe, there exists a unique normal moving
frame o0 = (A)) such that o*0' = w' (1 <i <n), which is equivalent to

n
dAg = Z w'A;.
i=1

The normal frame o = (A)) is said to be associated with the tangent coframe (wh).

(4) Let o = (A)) be the normal moving frame associated with the coframe (wh)
over U and let p be a numerical nonvanishing function on U. The normal moving
frame & = (A p) associated with the coframe (w' = pw') is then given by

n

_ _ - 1

Ao = pAo, Ai = A;i + pa; Ao, Apy1 = paAp + E ajA; + ;An+1,
i=1

where the functions g; and « are respectively defined by

dp - ; 1
Dy awa= b Y
p i=1 2
o is said to be deduced from o by a dilation of the coefficient p.

(XVI) 2.10.4 Change of frames
(1) Prove the following result: if y is a path in M, there exists a normal moving

frame (B,) associated with y such that the functions ni] of the differential system
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(a) First study the case that a normal moving frame (B),) is deduced from a normal
moving frame (A ) by the relation (1) of 2.10.4, and write the relations obtained and
study the converse.

(b) Then deduce the result.

(XVII) Study of conformal normal connection. Let w be the 1-form with values in
the Lie algebra po(p + 1, g + 1) of a conformal Cartan connection on a principal
fiber bundle (P 7T, N, Gn+1) with previous notation of 2.9.2.2.3. Then w satisfies
the following relations:

A wA*) = AV A € E(G,,+1) = g,,+1 (the Lie algebra of G,,+1)

(i) Ry.w(X) = adg™".w(X),V g € Gpyl.

(iii) w(X ) = 0is equivalent to X = 0.
Since the Lie algebra po(p+1, g+1) isisomorphic to the Lie algebra R"®co(p, q)®
RMH* = (R") ® gy4y1, let (W', 11);., 111?) be the components in the canonical basis
{ei, €], '} of the Lie algebra R" @ co(p, ¢) ® (R")* of the 1-form . Notice that
the form of components (u?i 1110) takes its values in the Lie algebra Sn+1.

(1) Give the components (£, Q’ QO) in the base {e¢;, e , €'} of the 2-form € of
curvature of the Cartan connection deﬁned by Q=dw+ 3 [w, w].

1

(2) Show that there exist functions Ki Kl K ki IZ « On P such that Q' = 3
Kklwk AW, Q’ = EKlklw AW, SZO = 2Kjklli) A wl
A conformal Cartan connection on a principal bundle P with structure group
G 41 is called normal if its curvature form satisfies Q' =0,i =, 2, ..., n, Q’j =(1/2)
Kiywk A w! with Y, K =0,
(3) We recall the following classical result (cf. for example Kobayashi S., Trans-
Sformation Groups in Differential Geometry, op. cit., chapter IV):

Let P a principal bundle with base N and structure group Gn+1 and let (', ﬂ)j.) be
a system of (n + n?) differential 1-forms on P such that

i) W' (A*) = 0and 1713. (A*) = A; for any fundamental vector field A* generated
by an element (Ai-, A?) of the Lie algebra g,+1 of én+1-

(ii) R;‘(zbi, 11)3.) =adg ' (W', ﬁ)j.),for any g € Gy

(iii) Vertical vectors are those that satisfy W' (X) = 0.

(iv) db' + o' AW/ = 0.

l

Then, there exists a unique system of 1-forms {IZ}?, . 0} on P such that {0, w',

11)?} define a conformal normal Cartan connection on P.

Prove the following result: We can canonically associate with any O(p, q)-
structure O(N) on N a normal Cartan connection on the principal bundle O(N) =
O(N) X0(p.q) Gn+1-

(4) Study the case of the Cartan connection associated with a CO(p, g)-structure
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(XVIII) (1) Prove Theorem 2.10.5.3.
(2) Prove Theorem 2.10.5.5.
(3) Prove Theorem 2.11.2.1.2.
Hints.

e Use Yy : Enyo — (My)y, associated with the trivializing atlas (Uy, Yo )aeca of
¢1 to determine bijective mappings &a,x ‘M, > M,.

+  Show that the mappings (x,2) > Vg (Z) are bijective, that ¥, ! o ¥ are bi-
jective and that ¥, ! o yrg are diffeomorphisms of (U, N Ug) x M,,. Prove that
there exists a unique structure of manifold over M such that & = (M, 7, N, M,,)
is a C* differentiable bundle. Prove that the principal bundle associated with &
is isomorphic to bundle P. Use the local chart of M, defined in 2.9.1.3.1 and the
mapping u defined in 2.4.2.2.1, to define a morphism of differentiable bundles ¢ as
follows: (We recall that forany y € E, wehave ! (y) = u(y))lety € E,, € P,
and p(y) = yy. Then we putdB(yx) =i p)Wy) i(p) isidentified with an element
of the principal bundle associated with ¢, that is a diffeomorphism from M,, onto
M, — cf. footnote 154. Prove that ¢ : M — M sends a fiber into a fiber and there-
fore is an N—morphism of differentiable bundles and then a local diffeomorphism.
Conclude.

(XIX) Study of 2.11.2.3.4. Let N be a pseudo-riemannian manifold provided with a
“metric” g of type (p, ¢). Let & = (T'(N), w, N) and P be the principal bundle of
orthonormal frames of N.

(1) First, show that the normal Cartan connection associated with the O (p, q)
structure on N defines a conformal generalized connection on the tangent bundle to
N, which is called a normal conformal generalized connection.

(2) Let (e;) be a moving orthonormal frame of £. We can canonically associate a
local section S of P with (e;). Show that the local 1-forms of the normal generalized
connection are in the moving frame (e;):

(V' =5"eb'; v —S*owj,v;):S*ow?),
where the (w?) are the 1-forms on P defined by w? = if(ﬂ)?), with previous
notation.

(3) (a) Show that the {v'} constitute the dual basis of the local basis of vector
fields on N determined by the {e;}.

(b) Show that the {v'} are the local components in the moving orthonormal frame
{e;} of the Levi-Civita connection.

(c) Show that the {v?} are defined by

L R !
v; = ; i v,
I\ 2T 2w =28
where the {R};} are the local components of the Ricci tensor in the moving frame {e; }
and R is the riemannian scalar curvature and that the local curvature 2-forms (N ;.)

of the normal generalized connection satisfy N ; =(1/ 2)A§. 4 VE AVl where the Aj. Iy
ame {e; } of the Weyl tensor.
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(XX) Prove Proposition 2.11.2.2.8. For the necessary condition use formulas (10)
in 2.11.2.2.7. For the converse, use the covering (Uy) of N, where each U, is the
domain of definition of a moving frame of &, and over each U, 1-forms satisfying
the relations (12) and (14) over any U, U Ug. Conclude.

(XXI) 2.11.2.3.5.
(A) Equations of electromagnetic field in classical general relativity.

A. Lichnerowicz, in “Theories relativistes de la gravitation et 1’electromagnetisme,”
op. cit., shows that in the case of a charged particle in an electromagnetic field such
that the ratio of the charge to the mass is a constant k = e¢/m, the motion is subordinate
to the equations

d’x! ; dx’ dx' idxj

ds? Wds ds — U ds’
where l"; « are the Christoffel symbols of the riemannian connection V on the man-
ifold V4 of general relativity and where the “metric” is of type (1, 3) and where
(x")i=1,2,3,4 constitute a system of local coordinates of V4 and where F J’ are relative
to the skew-symmetric doubly covariant tensor F that defines the electromagnetic field
and satisfies Maxwell’s equations V; F¥/ = J/, where (J/) denote the components
of the electric current and $7/¥7V; Fy; = 0, where (/¥!") denote the components of
the 4-form element of volume of the orientable manifold V4. It is shown that the last
equation implies the local existence of a potential vector ¢; such that

Fij =0ip; — 3.

We introduce the conformal generalized connection on 7' (V) defined locally by
DX =dX' +w' X/ +w) (zg”Xz - XJX’> Oy,

where X = X0,i with wh = Fi.kdxk and w? = —2ijdxk.

(1) Show that D is defined intrinsically.

(2) With the previous assumptions, show that the trajectory of the considered par-
ticle is the path u — x,, of Vj that satisfies that D,/ x|, vanishes identically, ds/du =
k = e/m,where s is the length of the path, and x}, is the tangent vector to the path x (u).

(B) Let S be a conservative dynamical system with holonomic complete con-
straints, with n degrees of freedom satisfying the hypothesis of Painlevé. Let V be
the space of configuration and let (qi )i=1.2....n be a system of local coordinates of V.
Let L =T, + T1 4+ Tp + U be the Lagragian of the system.

(1) Show that in the system of coordinates (qi, q'i) of T(V) we have L =
(1/2)8ijG'q” + big' + To + U, with det((g;;)) # 0.

(2) Since we assume that Painlevé’s hypothesis are realized, L is such that
dL/ot = 0 and then 7o, — Ty — U = h, with h € R. We consider D, the gener-
alized conformal connection on T (V'), as the space of states locally defined by

o1 2 iy
<§gin —XIXJ 8qi,
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where X = X' 9, with u);. =T ;.ikqu , where F,]fk are the Christoffel symbols as-
sociated with the “metric” g’ = pg, where p = 2(Ty + U + h) (we assume that
To+ U +h > 0), and w? = r;’kqu with rj?k = 2(dh; — djh).

(a) Show that the trajectories corresponding to the energy 4 are the paths t — x;
of V that satisfy D (p~'x]) = 0.

(b) Show that the corresponding time law is given by ds/dt = ,/p, where s is
the corresponding length of the curve.

(c) Find again the classical Lagrange equations:

d (9L oL _,
dr \ 9g‘ agl

(3) Study the case that 7 vanishes identically, where D is the Levi-Civita con-
nection on V and where w? = 0, and find the classical Maupertuis principle.
(XXII) The counterexample of J. G. Maks and the counterexample of J. Cnops.

(A) Consider the Minkowski space-time E4(3, 1) and its Clifford algebra gener-
ated by ey, ea, €3, e4 satisfying (e1)> = (e2)> = (e3)? = 1, (e4)> = —1. Consider

the Vahlen matrix
W:l 1—eq —e1+es
2\e+es l4ens
with entries in C3 .

(a) Justify the isomorphism C3 | >~ M (4, R).

(b) Verify that all the entries of W are noninvertible.

(c) Verity that the matrix W is connected to the identity.

(d) Conclude that W is a Vahlen matrix where none of the entries are invertible
and all are nonzero.

(B) Consider the Minkowski space-time E4(3, 1) and its Clifford algebra isomor-
phic to M (4, R) and consider the Vahlen matrix

C =

1 I+es  (e1 +es)ens
2\ (—e1+ed)ers 1—en '

It satisfies a, b, c,d € w31, ad — b¢ = 1, and ab, bd,d¢,éa = 0 € E(3,1), but
even then ab, bd, dc, ca ¢ E(3,1). The mapping gc(x) = (ax + b)(cx +d)~ ! is
conformal. If the matrix C is multiplied on either side by

D=L(1+e1234 0 )
V2 0 1 —e34)°

thenB =CD = D_C is_su_ch that gp(x) = gc(x) for almost all x € E(3, 1). Further-
more, B satisfies ab, bd, dc, ca € E(3, 1). The matrices satisfying a, b, ¢, d € n3 1,
) do not form a group, but only a set that is
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not closed under multiplication. This set generates a group that is the Vahlen group
with norm 1 multiplied by the group consisting of the matrices

CcoS ¢ + e234 Sin @ 0
0 Ccosp —eqp348ing ) °

All these matrices are preimages of the identity Mobius transformation.
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3

Pseudounitary Conformal Spin Structures

The third chapter deals with pseudounitary spin geometry and pseudounitary con-
formal spin geometry. First we present pseudounitary conformal structures over
a 2n-dimensional almost complex paracompact manifold V and the correspond-
ing projective quadrics H p.q associated with the standard pseudo-hermitian spaces
H,, ;. Then we develop a geometrical presentation of a compactification for pseudo-
hermitian standard spaces in order to construct the pseudounitary conformal group
o~f H, , denoted by CU,(p, q). We study the topology of the projective quadrics
H), , and the “generators” of such projective quadrics. We define the conformal
symplectic group associated with a standard real symplectic space (R?", F), de-
noted by CSp(2r,R), where F is the corresponding symplectic form such that
CU,(p,q) = CSp2r,R) N Cr,(2p, 2q), with the notation of Chapter 2.

The Clifford algebra CI”*9 associated with H,, , is defined. The corresponding
spinor group Spin U (p, ¢) and covering group RU (p, g) are defined. A fundamental
commutative diagram of Lie groups associated with RU (p, ¢) is given: a character-
ization of U (p, ¢) is given that gives another covering group AU (p, g) of U(p, q).
The space S of corresponding spinors is defined and provided with a pseudo-hermitian
neutral scalar product. The embeddings of spinor groups and corresponding projective
quadrics are revealed.

Then, by using the results of Chapter 2, conformal flat pseudounitary geometry
is studied. Two fundamental diagrams associated with CU, (p, g) are given. We
introduce and give a geometrical characterization of groups called pseudounitary
conformal spinoriality groups.

The study of conformal pseudounitary spin structures over an almost complex
2n-dimensional manifold V is now presented. The part played by the groups called
pseudounitary conformal groups is emphasized.

Exercises are given.
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3.1 Pseudounitary Conformal Structures!

3.1.1 Introduction

Let V be an almost complex 2n-dimensional paracompact manifold. We know that
any tangent space at V at a point x : T inherits a pseudo-hermitian structure of type
(p.q), p+q = 2n by the datum of f, a pseudo-hermitian sesquilinear form of type
(p, @)- Such fields are differentially dependent on x € V. We say that V is endowed
with an almost pseudo-hermitian structure.

Any almost complex manifold inherits an almost pseudo-hermitian structure and
an almost symplectic one. Over an almost pseudo-hermitian manifold, the set of
normalized orthogonal bases suitable for the almost pseudo-hermitian structure con-
stitutes a principal bundle with structure group U (p, q). (So, any almost complex
manifold has its principal associated bundle of bases reducible to U (p, g).)

Conversely, as in Lichnerowicz? for the case of almost hermitian structures, one
can show that if over a 2n-dimensional manifold, there exists a real 2-form of rank
2n F,there exists an almost pseudo-hermitian structure such that F is the fundamental
2-form and V inherits an almost pseudo-hermitian structure (and then an almost
complex structure).

3.1.2 Algebraic Characterization

At any point x € V, the tangent space T is equipped with a sesquilinear hermitian
form f that determines the pseudo-hermitian scalar product of type (p, ¢q). Ty is
thus isomorphic to a standard space H, ; of type® (p,q) with p +¢q = 2n = n’
(Hpy = (", f), f sesquilinear pseudo-hermitian form of type (p, q)). Let c”,
n’ = p + g be equipped with f. We write f(x,y) = R(x,y) +il(x,y). We can
verify that sesquilinearity implies that

R(ix,iy) = R(x, y); I(ix,iy) = I(x,y),

I(-x7 )’) = R(x’ l)’) = _R(ix7 )’): R()C, }7) = I(i-x’ )’) = _I(-x9 W)

If, moreover, we assume that f is hermitian, we find that R(x, y) = R(y, x) and
I(x,y) = —I(y,x). We recall also that if f is hermitian (resp. skew-hermitian),
then if is skew-hermitian (resp. hermitian).

131 up to 3.8 have been published: cf. Pierre Angles, Advances in Applied Clifford Algebras,
14, no. 1, 1, pp. 1-33, 2004. The following sections constitute the matter of another paper:
Pierre Angles, Pseudounitary conformal spin structures, to appear in the Proceedings of
ICCA7, the seventh International Conference on Clifford Algebras and their Applications,
May 19-29, Université Paul Sabatier, Toulouse, France.

2 A. Lichnerowicz, Théorie globale des connexions et des groupes d’holonomie, Edition
Cremonese, Rome, 1962.

3 R. Deheuvels, Formes quadratiques et groupes classiques, Presses Universitaires de France,
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We know that there is identity between the datum of a complex vector space
structure and that of a real vector space equipped with a linear operator J such
that J2 = —Id. It is classical that for an n-dimensional complex space E, E is
identical (naturally isomorphic) to (RE, J), where R E is the 2n-dimensional real
space obtained by reductions of scalars of E to real numbers and J is the complex
conjugation, i.e., an R-linear operator in E such that J2> = —Id. (Cf. for example,
R. Deheuvels, Formes quadratiques et groupes classiques, op. cit., pp. 210-211.)

We will use special results of C. Ehresmann given in the following references: a)
Sur la Théorie des espaces fibrés, Coll. Int. du C.N.R.S., Top. Alg., Paris, 1947, pp.
3-35;b) Sur les variétés presque complexes, Proc. Int. Congr. Math. For a more recent
discussion cf. also the following remarkable publication: P. Liebermann and C. M.
Marle,. Geometrie Symplectique, Bases Théoriques de la Mécanique, t.1, U.E.R.
Math., Paris 7 (1986), chapter 1. The proofs are given in the Appendix 3.13.2.

Let W be an n-dimensional complex space. We recall (cf. Chapter 1) that a pseudo-
hermitian form on W is a mapping n from W x W into C such that (i) for any
fixed y € W the mapping x — n(x, y) is C-linear, (ii) for all x, y € W we have
n(x,y) = n(y, x) (the complex conjugate of n(x, y)). n is said to be nondegenerate
if for any x € W, x # 0, there exists y € W such that n(x, y) # 0. n is said to be
hermitian if for any x # 0 we have n(x, x) > 0. If n is hermitian, then, automatically,
it is nondegenerate.

Let n be a pseudo-hermitian form on W, and let G and €2 be R-bilinear, real-valued
forms on W defined by G(x, y) = Re(n(x,y)) and Q(x, y) = —Im(n(x, y)). Then
G is symmetric and 2 is skew—symmetric, any of them is nondegenerate if and only
if n is nondegenerate, and G is positive definite if and only if 5 is hermitian.

A real linear operator J on a real vector space V such that J2> = —Id is called
a complex operator on V. V admits such an operator if and only if V is even-
dimensional. In such a case V can be given a complex structure by defining mul-
tiplication by a complex number z = a + bia,b € R as (a + bi)x = ax + bJx.
If (V, Q) is a symplectic space, where V is an even-dimensional real vector space
and © a non-degenerate skew—symmetric bilinear form on V, then a complex op-
erator J on V is said to be pseudo-adapted (resp. adapted) to 2 if there exists
a pseudo-hermitian (resp. hermitian) form n on (V, J) such that Q = —Imn.
It follows immediately from the definition that J is pseudo-adapted to €2 if and
only if J is a symplectic isomorphism that is it satisfies the following condition:
Q(Jx,Jy) = Q(x,y),Vx, y € V.If such a condition is satisfied, the form 7 defined
forany x,y € V by n(x,y) = G(x,y) —iQ2(x, y), where G(x,y) = Q(x, Jy), is
pseudo-hermitian, the unique pseudo-hermitian form such that Q = —Im n. Using
these facts we can give the following result the proof of which will be given in the
Appendix 3.13.2.

3.1.2.1 Theorem. Let (V, 2) be a symplectic space and let J be a complex operator
on V that is pseudo-adapted to 2, with 2 = —Imn and G(x,y) = —Q(x, Jy) as
described above. The unitary group U (V, n) satisfies then the following relation:

Q)N Oow,G).
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In particular U (p, q) isthe setof all elements u € SO (2p, 2q) suchthatuoJ = Jou,
and also U(p, q) = SO(2p,2q) N Sp(2(p + q), R).

3.1.3 Some remarks about the Standard Group U (p, ¢)*

SU (p, q) denotes the subgroup of elements of U (p, g) with determinant equal to 1.
U(p,q)/SU(p, q) is isomorphic to U(1), the center of U(p, q),forp+q =n > 1
and the index v—as usually defined as the dimension of maximal totally isotropic
spaces such that 2v < n—such that v > 1, consists of dilatations x — Ax such that
Ax = 1 and A" = 1.5 The center of U(p, g) will be denoted by U(1). I as used in
the special case of U (r) by S. Kobayashi, Differential Geometry of Complex Vector
Bundles, p. 14, Proposition 4.21, Princeton University Press, 1987.

3.1.4 An Algebraic Recall

It is classical® that any pseudo-hermitian form 4 on a complex finite dimensional
space E satisfies the following property (known as the law of inertia):

For any basis {ey, ..., e,} that diagonalizes h, the number p of vectors e; for
which h(ej,e;) > 0, the number g of vectors e, for which h(e, er) < 0, the
number r of vectors ¢; for which k(e;, ¢;) = 0, are independent of the basis. 4 is said
to be of type (p, q).

3.1.5 Connectedness

We recall the following classical result: The groups U(p,q) and SU(p, q) are
connected.

3.1.6 General Definitions

Let V be an almost complex 2n-dimensional manifold and let us denote by 7 the
tangent space at x € V to V and H(7T) the real space of hermitian forms on 7.

3.1.6.1 Definition A pseudounitary conformal structure of type (p, g¢), p > 0, > 0,
p+q =2n =n',onV is the datum in any point x of a line C, of H(Ty) formed
by the scalar multiples of a hermitian form of type (p, ¢g) that satisfies the following
local lifting axiom: “There exists an open covering (V;);c; of V and on any V; an
analytic sectiony € V; — h’y € H(Ty) such that h’y eCyforally e V.”

4 Cf., for example, R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit., pp.
227-284, and J. Dieudonné, (a) La Géométrie des Groupes Classiques, op. cit., (b) On the
Structure of Unitary Groups, op. cit. (¢c) On the Automorphisms of the Classical Groups, op.
cit., (d) Sur les Groupes Classiques, op. cit., pp. 63—-84.

5 J. Dieudonné, Sur les Groupes Classiques, op. cit., p. 69.

upes Classiques, op. cit., p. 232, for example.
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3.1.6.2 Definition A conformal isometry from V onto V’, both equipped with a
pseudounitary structure of type (p, q), is an analytic diffeomorphism from V onto V'
such that ®(C,) = Cqy) for any x € V. We recall that any pseudo-hermitian form
can be written as the difference of two hermitian positive-definite forms.

An almost pseudo-hermitian structure on V determines an associated conformal
pseudo-hermitian structure of type (p, ¢). According to Deheuvels,’ the set of hermi-
tian positive forms over Ty is aconvex cone P of H (T ), and the set of strictly positive

forms over T isaconvexcone}(;ofH(Tx)andH(Tx) =P-P dé {a—b:a,b e P}.

3.2 Projective Quadric Associated with a Pseudo-Hermitian
Standard Space H), ,

Let E = H)p 4 be the standard pseudo-hermitian space CP*% equipped with the
classical pseudo-hermitian scalar product

14 o r+q
f(x,y)=le_l _ Z xk)—)k’
i=1 k=p+1

the unitary group of which is called pseudounitary group of type (p, ¢) and denoted
by U (p, q). The affine space associated with E inherits an almost pseudo-hermitian
manifold structure by defining the scalar product in the vector space Eyx = x + E, of
vectors with origin x, by translation of the pseudo-hermitian scalar product of E.

Let us introduce the hermitian semiquadratic form r associated with the pseudo-
hermitian sesquilinear form f. We know that r defined for any x € E by r(x) =
f(x, x) is such that r (Ax) = |A|?r(x), for all > € C. Moreover,

P p+q

12 2

re) =fex)=> KP- Y P
i=1 k=p+1

The function r takes real values. We set p +q = n'.

Let us introduce the isotropic cone Q minus its origin, which constitutes a singular
submanifold of H,, ;, = E, definedby x € O & r(x) = 0. Indeed, atany point y # 0
of a generator line Cx of Q, the affine hyperplane T, tangent at y to Q is identical to
the hyperplane 7' = y= with equation:

xl)_il 44 xPyP _xp+l§p+l . _xp-i-l)—,p-i-l =0,

which is singular with radical T+ N T = (y*)1 N T = Cy.

Any affine subspace Sy, with origin x, complementary to the line Cx in T} is :
Sy = x + S—translation of a complement S of Cx in 7. S is a regular space of
type (p — 1, — 1). The natural map u € S — umodx € T/Cx from S into the
quotient space 7'/Cx induces a natural hermitian quadratic form on 7/Cx and the

pes Classiques, op. cit., p. 230.
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vector subspace Sy of vectors with origin x is a regular subspace of Ty equipped with
a hermitian form of type (p — 1, ¢ — 1) isomorphic to 7/Cx.

Let P be the classic projection from E \ {0} into its associated projective space
P(E). We assume that x; # 0. We can take x2/x!, ..., x?*4/x! for coordinates at
F=Px).Lety=(y!,...,yPt9) ¢ H), ;. We can express d P, as

yiel = yly2 yPraxl — ylypa
ahz T (xH)? )

dP(y) = <

We observe that the tangent vectors {y at x} and {(Ly) at (Ax)} have the same image,
withkerd P, = Cx.d P establishes natural linear isomorphisms: d Py, from (T /cx),
A # 0, onto Tg, and Tk is equipped with a pseudo-hermitian form of signature

(p—1Lg—1.

3.2.1 Definition The projective quadric Q = Q(H p.q)—dim Q0 =p+qg—2—is
naturally equipped with a pseudounitary conformal structure of type (p — 1, g —1). By
definition, such a quadric is called the projective quadric naturally associated with the
hermitian space H) ,. We agree to denote by H p.q the projective quadric associated
with Hp, 4.

3.2.2 Remark Let us introduce r H, 4 = E|, the real vector space subordinate to
H), , and the isotropic cone minus its origin Czln, of E.Since r(x) =0forx € Hp 4
is equivalent to R(§, §) = 0, we can identify the isotropic cone of H), ; with that of
E1, which has equation

p . 7. p+q . 7o
DUE) +E ) = D AED +ETH =0.
Jj=1 j=p+1

Introduce the natural projective space P(E1) associated with £ and the projective
quadric Q(E 1) = P(Czlj:,) in P(Ey). Q(E 1) is naturally equipped with a pseudo-
riemannian conformal structure of type (2p—1, 2g —1). Such a quadric real realization
of Q(Hp,q) can be associated with H), 4.

3.3 Conformal Compactification of Pseudo-Hermitian Standard
Spaces Hy, 4, p+q =n

3.3.1 Introduction

Let H = Hj 1 be the complex hyperbolic space equipped with an isotropic basis (&, 1)
such that, 2 f (e, n) = 1 (f denotes the pseudo-hermitian form on H). The direct
orthogonal sum F = H), , ® H = H), 4 & H) ; is a pseudo-hermitian standard space
of type (p + 1, g + 1). Let us introduce the isotropic cone Q(F),dim Q(F) =n+1
and the projective quadric O = P(Q(F)\{0}) = M) in the projective space P(F)
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Let us recall that H), , = CP™4 is identified with R?(P*49) according to the previ-
ous process, R2(P+a) equipped with the following basis: {ey, ..., e,, Jer, ..., J e,,},8
an orthonormal basis adapted to the complex structure determined by the R-linear
map J such that J> = —Id. In the same way, we identify Hi 1 with R* of type
(2 2) with the basis {eo, Jeo, en+1, Jent1}, an orthonormal adapted basis such that
eg=1=e) e, =—1= e

The datum of z = ae +x + fn € F = Hy ;& H withaf € Cand x €
H, 4 is equivalent to that of Z = aeg + be,y1 + cJeg +dJe,11 + x with Z €
R4 2p 42,29 +2), X € R”(2p,2q) and a, b, c,d, € R. Thus z € Q(F) is
equivalent to (z) = 0, i.e., R(Z, Z) = 0,i.e., R(X,X) +a*> —b> + > —d*> = 0.
Moreover, R(X, X) = f(x,x) = r(x) = Q2p24(X), where Q3 2,4 denotes the
quadratic form naturally associated with the real symmetric bilinear form R. Thus
z € Q(F) iff Z belongs to the isotropic cone of R4 (2p 4 2,2¢ + 2), i.e., iff
r(x) = 02p,29)(X) = b* —a® +d?* — 2.

We can choose : a = ¢ = ﬁ(r(x) ~Dandb =d = ﬁi(r(x) + 1) and
introduce the map p; : X — p1(X), where

p1(X) = 5% (eo + J (¢0) + eus1 + I (€ns1)
o
+X = 515 (o + J(e0) = ent1 = J (@nt1)

o

id est we introduce the following map py from Einto F (E =H) 4, F = H), , ® Hy1):

p1(x) = r(x)8y +x — 1g,

where §; = % and p = z’f—[ such that f(8),80) = 0 = f(ug, o) and

F (8, mg) = 1 Moreover (8- 1) constitutes an isotropic basis of Hy,j = C% 1

3.3.1.1 Definition The projective quadric M| = P((Q(F))*), the image by P of
(Q(F))* = Q(F)\{0} into the corresponding projective space, is called by definition
the conformal compactification of H), 4.

We are now going to justify such a definition. Let z = a8j + x 4 B, with x €
H, ,,a,p € C.Moreover z € Q(F) iff f(z,2) =0, id estoe,B +af +2r(x) = 0.
A vector 1 = a8y + x + B belongs to the tangent hyperplane at Q(F) along the
generator line Cz() with zg = aOS +x0+ /30’70 iff © € Zo ,1.e.,iff o and B satisfy the
relation o ,30 +apB+2f (x, xo) = 0. Letus introduce V), the intersection of Q (F') and
the affine hyperplane (of F) /"0 +(E @C(S ); y belongs to Vy iff y = r(x)S +x— /,LO
The map p; : x € E - —puy+ x + r(x)(S’ is one-to-one from E onto Vj, and

81t is easy to verify that there exists such a basis that satisfies (el)2 = (J 31)2 =

L(ep)t = Uep)? = 1 (epr)? = Uepp)? = =1, (eprg)? = Jepig)? =
—1. Cf. R. Deheuvels, Formes quadratiques et groupes classiques, op. cit., pp. 184—191 and
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determines a bijective map between E and the generator lines of Q(F) that do not
belong to the hyperplane 7o = E @ C§), thus a one-to-one map from E onto
P(Vp) = V in the projective space P(F). V is an open set of the projective quadric
M, and M is topologically V (the closure of V)in P(F). W = M, \ V is the image
in P(F) of the intersection Wy of Q(F) with the hyperplane Too, = E & CS(/). Too 18
singular with radical TOJO- N T, = C§;, and so tangent to the cone Q(F) along the
isotropic line C§;. W is a degenerate quadric of dimension n — 1 in the projective

hyperplane Txo: it is the projective cone formed by the projective lines with origin
8 € T resting against the regular projective quadric O(E) of dimension n —2 lying
in the subspace P (E) of P(F).Indeed, z = x +k86, with x € E, belongsto Q(F) iff
f(z,2) =0 = f(x,x)and Wy = Q(E) + CS(’). So the conformal compactification
M of E = H) 4 can be obtained by adjunction to E of a projective cone at infinity.

Let us determine D), at x € E. First, we note that forall x,u € E, r(x +u) =
r(x)+r(u)+2R(x, u) with previous notation, since f(x, u)+ f(u,x) = f(x,u)+
fu) =2R.(f(x,u)) =2R(x, u).

So, p1(x + u) — p1(x) = u + 2R(x,u)8, + r(u)s) and then: (dP1),(u) =
u—+ 2R(x, u)(S(’). (dp1)yx 1s a linear injective map and realizes a linear isomorphism
from Ey onto S, (x) the tangent subspace at p(x) to Vj.

Spi(x) is a complementary subspace of the generator line Cp;(x) in the tangent
hyperplane at p1(x) to the cone Q(F).

Moreover, as 86 is isotropic and orthogonal to E, r((dp1)x(u)) = r(u). Thus,
(dp1)x realizes a pseudo-hermitian isometry from E onto S, (conservation of the
hermitian quadratic form). p is a pseudo-hermitian isometry from the almost pseudo-
hermitian manifold E onto its image Vy C Q(F). If we consider P o pj, where P is
the classical projection onto the projective space, P o pj is a pseudounitary conformal
isometry from E onto V.

3.4 Pseudounitary Conformal Groups of Pseudo-Hermitian
Standard Spaces H), ,

Any element u of the pseudounitary group U (F) = U(Hpy1,4+1) =U(p+1,9+1)
globally conserves the isotropic cone Q(F') interchanging the generator lines and
mapping “isometrically” the tangent hyperplane at y to QO (F') onto the tangent hyper-
plane at u(y) to Q(F). By passing to the quotient space P (F), U (F) operates on the
projective space by itsimage PU(F) = PU(p+1,q+1) =Up + 1,9+ 1)/Z, 42,
where the center Z,, 1> of U(p + 1, ¢ + 1) consists of the A/ with A € Cand A% = 1
and will be denoted by U(1)I; PU(F) = PU(p+, g + 1) globally conserves the
projective quadric M; = Q(F) and respects its pseudounitary conformal structure.

3.4.1 Definition We call by definition PU(F) = U(p+ 1,9+ 1)/(U)I) the
pseudounitary conformal group of E = H), ;.

The pseudounita U(p.q) = U(Hp ,) can be naturally identified with

that u(8))) = & and u(ug) = . Thus

—
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UEYNUMI ={}.Ifu e U(E),

pr((x)) = —pg 4+ u(x) +r @)y = u(—pg) + ux) + )
= u(—pg +x +r(x)8) = u(p1(x)),

since pj ou = u o py, u globally conserves the image p;(E) = Vo C Q(F), and the
restriction of u to Vp is an “isometry” of the almost pseudo-hermitian manifold Vj
onto itself. By passing the projective space, U (E) = U(p, q) can be identified with
a subgroup of PU (F) consisting of conformal automorphisms of M;. U (E) globally
conserves the “projective cone at infinity” W.

3.4.2 Translations of E

First, we remark that the group of isometries of the almost pseudo-hermitian manifold
E, consisting of the translations 7'(E), cannot appear as a subgroup of U (F), since
any operator of 7 (E) different from zero changes the origin. On the other hand,
when transferred by p; onto V), the translations “become” a natural subgroup 7' (V)
of U(F).

To any vector a of E corresponds an element t, of U(F) such that t,(p1(x)) =
p1(x +a) = p1ota(x).

3.4.2.1 Definition We set by definition 7, (i()) = (ta(p1(0)) = p1(a) = —py+a+
r(a)8), ta(x) = x +2R(x, a))8 forall x € E, 1,(5) = §,.
We can immediately verify that 7, respects the pseudo-hermitian scalar product
of F;thus t, € U(F). Moreover,
ta(P1(x)) = ta(—p1g +x +1r(x)8)) = —pg +a +r(@s; +x + 2R (x, a)8yr (x)8,
=—upo+a+x+ ) +r)+2R(x, a))s,
=—py+a+x+rx+a)y=pi(x+a)=p;oty(x).

1, globally conserves V). Its trace on V) is the image by p; of the translation by a in
Eandt,4p =t501p.

3.4.3 Dilatations of E and the Pseudounitary Group Sim U (p, q)

Let us consider now a dilatation k; : x — Ax of E = H) ,. We assume that A
is a strictly positive real number. Such a dilatation is a pseudounitary conformal
transformation of E. We associate with k; the following operation 4, of U (F):

3.4.3.1 Definition Let k; : x — Ax of E = H,,, with A a strictly positive real
number. Set &; (i) = (1/A) g, hy(x) = x forall x € E and h; (8) = A8,

1|%r (x) and since A is chosen to be a strictly positive real scalar, we
. (p1(x)), Le., p1 oki(x) = Ah;(p1(x)),

Sincer(Ax) =
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or equivalently, ) o p; = % p1 o ki. Vy is not transformed into itself by /,, but the
image of pi(x) by A, belongs to the generator line p;(kj(x)), and h; determines a
conformal isometry of M that conserves V and W globally.

We know that the group of affine similarities S(E1), where £y = rH),, =
R2p+2q (2p, 2q), is classically the product of its three subgroups, T(E1), H(E1)
(dilatations & — A& with A > 0), and O(2p, 2¢q), and that any element s of S(E1)
can be written uniquely as s = h) ot, ou, withA > 0, u € (2p,2q), a € E; such
that for all y € Eq, s(y) = A(a + u(y)). We introduce the following definition:

3.4.3.2 Definition We define an affine pseudounitary similarity of £ = H), , to be
any transformationof E : s = k) ot, ou, whereu € U(p, q),t, € T(E), k) adilata-
tion of E with A a strictly positive real. We define the affine pseudogroup of similarities
as the group denoted by Sim U (p, g) generated by such transformations of E.

Let us now consider s € Sim U (p, q). We associate with s the following element
ty € U(F) : ty = h) ot, ou, with previous notation. Since p; ou = u o pj and
Iq 0 p1 = p1olg,

ts o p1(x) = hy oty ou[p1(x)] = hj oty 0 prlu(x)] = hj oty 0 pilu(x) + al
1 1 . 1
= XPI[)\M(X))»Q] = XPI(S(x))’ since h) o p1 = Xpl okj.

On the hyperplane Too = E @ C&, t5(x + B8)) = u(x) + A[B + 2R(u(x), a)]é
according to previous results. Thus, #;(Tx) C Too. Conversely, we can remark that
the conditions for an element v € U (F), v(Ts) C T~ and v86 € CS() are equivalent.
Indeed, C5, = rad T, and Toy = (86)l. The subgroup of U(F) consisting of the
elements v such that v(7T) C Tw is the isotropy group of the generator line C§),.
It contains U(1)/, with previous notation. Let v be an element of this subgroup.
If v(8y) = pdy, with u < 0, then u = —v is also in the subgroup and we have
u(8;) = —rd;, with A > 0.

The conservation of the pseudo-hermitian scalar product implies that A = |A| > 0,
u(py) = —(1/Muy +a + rr(a)d, witha € E, and if x € E,u(x) = w(x) +
2AR(u(x), a)) with w € U(E). Thus, u = t; with s = k; o, o w, with A > 0.

One can easily verify that g, = t; o t;. The map s — f, is therefore an isomor-
phism from Sim U (p, ¢) onto the subgroup consisting of the elements of U (F') that
conserves the generator line C66 of Q(F).If we consider P otg,thens — P ofgisan
isomorphism from Sim U (p, ¢) onto the isotropy group S% of the “point at infinity”

56 in the group PU (F).
3.4.4 Algebraic Characterization

Moreover, the classical Witt theorem can be applied to pseudounitary geometry.’
Consequently, PU (F) is transitive on M.

oupes Classiques, op. cit.; (b) On the structure of
1952, p. 367-385; 11, Amer. J. Math., 75, 1953,
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3.4.4.1 Theorem The pseudounitary conformal compactification My of E = H) 4
is identical to the homogeneous space PU (F)/Sim U (p, q), the quotient space of
the projective unitary group of F : PU(F) by Sim U (p, q), the group of similarities
of Hp 4.

In order to describe the action of PU (F) on M, it is enough, for a particular point
m of My, to determine a transformation of PU (F') that sends m onto 8(’), the others
being obtained using the elements of the isotropy group S 5 Let us introduce vp, the
unitary symmetry of F relative to the unitary vector 8) + i, (since r(8) + 1) =
r(8y) 4+ r(y) + 2R (8. 1) = 1), v0(8y) = —fug» Vo) = —8(, while vo(x) = x
for all x € E. We determine the action of vg on a point y = p1(x) = —ug +x +
r(x)8y, vo(p1(x)) = 8y +x — r(x)ug.

elfr(x) #0,r(x) € R, then

— ! al 66
vo(p1(x)) = r(x) [_“0 o T r(X)} '

Set x’ = x/r(x) such that r(x") = 1/r(x) and

P = il + 2+ r () =l + — 4 —— ).
r00 )

We obtain
vo(p1(x)) = r(x)p1(x).

o If r(x) = 0, p1(x) is sent by vg into the hyperplane at infinity 7. The action
of vg = P(vg) € PU(F) corresponds to the classical inversion with center at the
origin and with power +1 that sends “at infinity” all the points of the isotropic cone
of E =H,,.

We notice that the inversion is not a transformation from E onto itself, on account
of the existence of singular points, while its “realization” in M is aconformal isometry
of M) without any singular point. We have just defined the inversion 7 (0, 4+1) with
center 0 and power that appears while considering x’ = +x/r(x) with r(x’) =
1/r(x).

In the same way, the inversion 7 (0, —1) with center 0 and power —1 is x —
x" = —x/r(x). Classically, for the real pseudoorthogonal case, according to a
theorem of Haantjes'? that extends to pseudo-Euclidean spaces of signature (r, s)
with r 4+ s > 3 the theorem of Liouville, the only real pseudo-Euclidean orthog-
onal conformal transformations are the products of affine similarities and inver-
sions. Since H),, is identical to (CP*%, f) and to (R*P*+9), J) provided with a
real bilinear symmetric form of type (2p, 2g), according to the study of the cor-
responding pseudoorthogonal conformal group Cz(p14)(2p, 2¢),'! there cannot be

10y, Haantjes, Conformal representations of an n-dimensional Euclidean space with a non
definite fundamental form on itself, Nederl. Akad. Wetensch. Proc. (1937), pp. 700-705.

groupe conforme d’un espace vectorial muni
stitut Henri Poincaré, Section A. vol. XXXIII
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other transformations than the previous ones in the pseudounitary conformal group
of Hp 4.
Thus, we have obtained the following statement:

3.4.4.2 Proposition The conformal pseudounitary group of H, , = E is the group
consisting of products of conformal pseudounitary similarities and inversions of E.

3.5 The Real Conformal Symplectic Group and the
Pseudounitary Conformal Group

3.5.1 Definition of the Real Conformal Symplectic Group

Let (R”, F) be a real symplectic standard space, where F is the standard sympletic
form on R?" defined as

,
F(x,y) =Y (I y/tr —xJ ¥y,
j=1

We will denote by J the standard complex structure, pseudo-adapted to F'—cf. Ap-
pendix 3.13.2. We call real conformal symplectic group and we denote by CSp(2r, R),
the group of transformations constituted by the linear symplectic automorphisms of
R% —(elements of S p(2r, R))—the translations and the dilatations of (R¥ | F).

As in the orthogonal case, we give the following definition:

3.5.1.1 Definition A continuously differentiable function f from an open set U of
(R%, F) into U is conformal in U if and only if there exists a continuous function
y1 from U into R* such that for any x € U and for any a, b € R*" we have

F((Dx f)a, (Dx f)b) = y1(x)F(a, b),

where D, f is the linear mapping tangent to f at x.

3.5.1.2 Definition Let H), ; be the standard pseudounitary space. Let f be the cor-
responding pseudo-hermitian scalar product. A continuously differentiable function
¢ from an open set U of H,, ;, into H, ; is pseudounitary in U if and only if there
exists a continuous function A from U into C* such that for almost all z € U and for
any a, b € U we have

f((D.@)a, (D,@)b) = |(2)I* f(a, b),

no 1, pp. 33-51, 1980; (b) Géométrie spinorielle conforme orthogonale triviale et groupes
de spinorialité conformes, Report HTKK Mat A 195, Helsinki University of Technology,
., 1982; (c) Real conformal spin structures, Scientiarum Mathematicarum Hungarica,
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where D, ¢ denotes the linear mapping tangent to ¢ at z. The set of such transforma-
tions of H, 4 is denoted by CU,(p, g) and constitutes a group under the usual law
of composition.

3.5.1.3 Theorem CU,(p,q) is identical to the previous group U(p + 1,q + 1)/
U(l).I.

The proof will be given below in the exercises.

3.5.1.4 Theorem CU,(p,q) is the set of u € C,(2p,2q), the real conformal
orthogonal group in dimension 2n and signature (2p,2q) such that Du, the lin-
ear tangent mapping to u, satisfies Du o J = J o Du. CU,(p, q) is the set of u €
CSp(2n, R)—the real conformal symplectic group—such that Du, the linear tangent
mapping tou, satisties Duo J = J o Du. CU,(p, q) = CSp(2n, R) N C2,(2p, 2q).

Proof. Letus put A(z) = A1(z) + iAa(z), where i = —1. Thus, [A(z)]* = A3(2) +
A%(z). Thus u belongs to CU,(p, ¢q) if and only if for almost all z € H), 4, for any
a,beH,,,

f((Dawya, (Dab) = 05(2) + 23(2) £ (a, b).

Now,

f7)=Ref(z,z2)+ilm f(z,7)=—-F(Jz,7) —iF(z,7)
=B(z,7)—iF(z,7),

where B denotes the bilinear symmetric form associated with f, and F is the corre-
sponding symplectic form (cf. 3.1.2.1). First, we want to prove that if u belongs to
CU,(p, q), thenu belongsto CSp(2nR)NC2,(2p, 2q) and that DuoJ = J o Du. Let
B(x,y)=F(x,Jy), and f(x,y)=B(x,y)—iF(x,y) (see 3.1.2.1 and 3.13.6.2.6).
Then it is immediate that if u € CU,(p, g) implies u € CSp(2nR) N C2,(2p, 2q).
We will now prove that Du commutes with J. Notice that by definition B((D;u)a,
(D;u)b) = F((Du), a, J(D;u)b). On the other hand, since u € CSp(2nR) with
the same factor A, we have that B((D.u)a, (D.u)b) = |r(z)|*?B(a,b) = |A(2)|?
F(a, Jb)=F((D;u)a, (D;)uJb). So, we find that F((D;u)a,J(D;u)b)=
F((D;u)a, (D;u)Jb) and since F is nondegenerate we get J o Du = Du o J.
The converse can be proven in much the same way.

3.6 Topology of the Projective Quadrics H P

3.6.1 Topological Properties

Let {eq, ..., epyqy) be an orthogonal normalized basis that diagnonalizes the scalar
classical pseudo-hermitian product of H), ,,n = p +¢. We denote by H the isotropic
cone of £ = H,, ,, with equation

pP+q

14
DHEN +E ) = Y {EH +E"H =0,
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where x = Y 7_, x*e, belonging to C" is identified with & = Y 7_, (€% + i&"*%)
belonging to R*", and y = Y 7_; yXey is identified with n = >}_, (n* + in"*5).
Let us introduce gH,, ;, = E1, the real space subordinate to H, ,, and the classical
quadric (hyperboloid) S the equation of which is

P ) ) p+q ) )
DAED? + E Y = Y {ED +E T =2
Jj=1 j=p+1
Thus x € SN H iff
P+q
Z{(&f)2 FET ) =1= Y {E)?+ET),
j=1 Jj=p+1

i.e., iff x belongs to the product of the unitary sphere Z of the standard hermitian
space H), by the unitary sphere Z of the standard herrnltlan space H,. Z is classi-

cally isomorphic to $?7~! and 3 g0 §%4~1 Let y be a point of H \ {0}. Necessarily
we have

P+q
Z{(n’)2+(n"+’) b= D A0+ 0" =p >0.
j=1 j=p+1

The generator line Cy is such that Cy N (3_, x >_,) = {(€“//P)y, ¢ € R}. Con-
versely, any (a,b) € > p X > 4 belongs to a generator line of H that it determines.

We have a natural mapping from » » X > q (or from $%P~! x §29~1) onto the projec-

tive quadric H p.q = P(H\{0}), where P is the standard projection from H, ; onto its
projective space, which enables us to identify H p.q With the quotient of the manifold
§2r=1 x §2q-1 by the equivalence relation (a, b) ~ €'¢(a, b) and thus realizes a
U(1) covering (Zp X Zq) = §2r—1 x 21 ofI:Ip,q.

Consequently, H p.q is homeomorphic to §2r=1 » §24=1 /51 We recall that §27~!
is a bundle over P?~!(C) with typical fiber S'. It is one of the Hopf classical fibra-
tions.!? In fact, P?~1(C) is diffeomorphic to U(p)/U(p — 1) x U(1) and home-
omorphic to $2P~1/S'. Thus I:I p.q 1s homeomorphic to PP=1(C) x %~ and
§2P=1 5 pa=1(C). Since p > 1,4 > 1, we find again, since P?~!(C) is then simply
connected13 and since $24~! is simply connected, that H p.q 18 simply connected, for
p>1,qg>14

12 N. Steenrod, The Topology of Fibre Bundles, Princeton University Press, New Jersey, pp.
106, 107, 1951; A. L. Besse, Manifolds All of Whose Geodesics Are Closed, Springer-Verlag,
New York, p. 75, 1978; D. Husemoller, Fibre Bundles, 3rd edition, McGraw Hill Book
Company, New York, 1993; I. R. Porteous, Topological Geometry, 2nd edition, Cambridge
University Press, 1981.

BA L Besse, op. cit., p. 83.

14 Nordon J., Les éléments d’homologie des quadriques et des hyperquadriques, Bulletin de
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3.6.2 Generators of the Projective Quadrics H P

As for the pseudo-Euclidean case, the maximal totally isotropic subspaces of Hj, 4
contained in the cone H have complex dimension equal to min(p, ¢). Their images
in the projective space are the projective subspaces included in the projective quadric
H,, = P(H\{0}), which we agree to call generators of H, , of complex dimen-
sion inf (p, g) — 1. Let us assume p > g. Let E; be the hermitian subspace of E
with basis {eq, ..., ep} and let E_ be the anti-hermitian subspace of E with basis
{ep+1, ... epyq} E = EL @ E_. Any maximal totally isotropic subspace V of E
determines canonically an anti-isometry ¢, from E_ into E: forall7,t’ € E_,

Flou(@®), pu(t)) = —f(t,1").

Both V and E_ are complementary subspaces in E of E;: E = E; @ E_,
E = E{®V.If p; and p_ denote the restrictions to V of the projections onto £ and
E_ of the first decomposition, p_ is a linear isomorphism from V onto E_. We take
Oy = p+p:1. Ifte E_,then p_(t) =1+ p+p:1(t) =1+ ¢, () belongs to V. For
allt,t’ € E_, f(t+@u(1), t'py(t")) = 0 and @, is an anti-isometry. We can associate
with V the orthogonal system U = ®(V) = {u1 = @y(epr1), ..., up = p(epiq)}
of ¢ vectors of E4.

Conversely, with any orthogonal system U of g vectors {uy, ua, ..., us} of E4
we associate V = W(U) generated by the vectors v = uj + epy1,v2 = uz +
€pi2, ..., Vg = Ug+epi,. Thevectorsvy, ..., v, are linearly independent, isotropic,
mutually orthogonal. V is then a maximal totally isotropic subspace. ® and W are
inverse mappings that determine a natural one-to-one mapping between the set of max-
imal totally isotropic subspaces of E, or equivalently, the set of “generators” of the
projective quadric H p.¢»and the Stiefel manifold V), , of systems of ¢ orthogonal vec-
tors of the hermitian space H),.If p > ¢, such a manifold is identical to the quotient!?

Up)/U(p—q)=SU(p)/SU(p —q)

and is connected and simply connected. If p = ¢, ® establishes a one-to-one map-
ping from the set of generators of H, ;, onto the set V,, , of orthogonal bases of H,, ,
which is identical to the unitary connected group U (p), not simply connected, with
fundamental group classically isomorphic to Z.

3.7 Clifford Algebras and Clifford Groups of Standard
Pseudo-Hermitian Spaces H), ,

3.7.1 Fundamental Algebraic Properties
We recall that U (p, q) is the set of elements u € SO(2p, 2¢g) suchthatuoJ = Jou

(J: transfer operator of the complex structure). Let us introduce C3) 24, the real Clif-
ford algebra of E(2p, 2¢q), the real pseudo-Euclidean standard space equipped with

15 Husemoller D., Fibre bundles, Third edition, McGraw Hill Book Company, New York,
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a quadratic form of signature (2p, 2¢). C2p 24 = CZD 2 ® C2_p 2 (Cz"; 24 €VEN Clif-

ford algebra and C,, p2g= = subspace of odd elements). C,  , can be seen as a C2 0.2

module. We recall that H, , is identical to (E(2p, 2¢), J )

3.7.1.1 Theorem There exists a linear mapping J from Ca,, 2, into Ca 5, such that
(a) C2 02 and C,, .2g A€ consen:ed by the action of J,
(b) J2(c) = ¢, Vc € c2+p 2g and J%(¢) = —c,Ye € C;

(c) J(c1c2) = J(c1)J (c2), forall ¢y, c2 € Cap g

2p.2q°

We consider ® E3), 24, the tensor algebra of E3) 24, and we define the linear map
Ji from ® £, 54 into ® E3p 24 by

0o JI1®---Qx) =J(x1) @ ® J(xp),
e Ji(A) = rforall A € R.

J1 is well defined. Let N(Q2p,24) be the two-sided ideal generated by the elements
X®x—Q2p24(x).1,where Q) 2, is the quadratic standard form of signature (2 p, 2g)
defined on Eppy =R H) 4:

Ji{x ® x — Q2p2g(x) - 1}
=JX)®J(x) — Q2pog(x) -1
=J(x)®J(x) = Q2p2g(J(x)) - 1, since Q2p.2¢(x) = Q2p.24(J (x))

(We recall that J is orthogonal for Q) 2,4.) J1 conserves N(Q2) 24), so Ji induces
J, alinear map from C, p.2¢ into itself that has the required properties. We can remark

that C, , is a C-space by setting, for ¢ € C,

2p.2q 2p.2q°

r=a+ifia,BeR:cla+iB) =ca+ J(c)B

(C2_p,2 q is equipped with a transfer operator J such that J? = —Id on Cz_p,z q.)

We know that to any quadratic automorphism u of E;j 24, there corresponds
canonically an automorphism ®,, of Czp 24. If u € SO(2p, 2q), then @, is an inner
automorphism of C3 ), 24, and forall x € E3p 24, u(x) = &, (x) = buxbu_l, where b,
is the product of an even number of regular vectors of E3, 24 and b, € G;rp’z q (the
even Clifford group of C3 24). More precisely, u = ¢(b,), where b, € G (E, 0.2q)
and ¢ denotes the natural homomorphism from G (2p, 2¢g) onto O (2p, 2q) associated
with the exact sequence (we recall that the Clifford group G(2p, 2¢) is the group of
all invertible elements of the Clifford algebra such that for any g in G(2p, 2¢), for
any x in Ezp 2q. p(8)x = gxg~" € Eapag)

) 4 0Q2p,2q) — 1.
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Moreover, we notice the following exact sequence:
1> R* > GT(2p,q) 5 S02p,2q) — 1.

3.7.1.2 Theorem U belongs to SO(2p, 2q) and Ju = uJ if and only if u induces an
inner automorphism ®,, of Cz, >, such that forallx € E» >, there existsb, € G;rp’z 4

such that ®,(x) = b,xb; ' = u(x) and J (b,) = b,.

e Ifu € SO2p,2q) and Ju = uJ, then there exists b, € G;p,Zq such that
Dy, (x) = buxbu_1 = u(x), b, = x1---xp5, modulo a scalar in R*, where the x;
belong to E3 24, and by definition of J, which is a similarity of (E2p 24) of ratio
p =1, and of f, f(bu) = by, since p = 1.

e Conversely, if u induces an inner automorphism of C3 >, such that ®,(x) =
buxb;' = u(x), with b, € Gj,,,, then necessarily u € SO(2p,q). Since

J(by) = by, we have J (b; ') = b !. Then
ulJ ()1 = b ()b, = T(buxb, ") = Jw(x)),

and so uJ = Ju. We notice that b, is determined up to a factor in R*.

3.7.2 Definition of the Clifford Algebra Associated with H,, ,

3.7.2.1 Definition We agree to call the Clifford algebra associated with H,, , the real
algebra denoted by

clPd — {g c C;p,zq : j(g) :g} = {Z+j(Z)aZ € C;—p,Zq}‘

+
- N 2p.2q°
z =g+ J(g)isin CI”%, because J(z) = z. Then we remark that if z € CZU,Zq and

J(z) = z, then 2/24+J(z/2) =zandz/2 € CZJ;,Zq’ whence the result follows. CIP4

is defined as a subalgebra of C2+p 20 J is an involutive automorphism of CIP4.
16

If we choose the first definition, we notice that for all g € C we have that

We recall the following lemma:

3.7.2.2 Lemma Let E be ann-dimensional vector space over a skew field K and letu
be an involution in GL, (K). If the characteristic of K is not2, E is a direct sum of two
subspaces V and W (one of which may possibly be 0) such thatu(x) = x on V and
u(x) = —x on W.V and W will be called the plus-subspace and the minus-subspace
of u. They determine u completely.

So CIP-1 appears as the plus-subspace for the automorphism J of C;;,z @ J2=1d
on CZD 24+ Thus, now dimg CI79 < dimg CZJ; 2g = 22p+2q—1
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3.7.2.3 Definition Let ¢; be the map from H), ;, into CI”*? defined by ¢;(x) =
xj(x) =xJ(x).

e ¢, defines a map from H, , into CI”*9 since xJ(x) € C2+p’2q and since
Tp () = J0)J*x) = J)(=x) = xJ(x) = ¢;(x) since J*(x) = —x,
and on the other hand, xf(x) + f(x)x = 2R(x, J(x)) = 0, since R(x, f(x) =
—I1(J(x), J(x)) = 0, where R denotes the bilinear real symmetric form associated
with O 4 and I the skew-symmetric form defining the symplectic product.

e ¢ is R-quadratic, which means that ¢; (Ax) = )\.z(p J(x) for all x € H), ; and
forall 2 € R, and 5{¢s(x +y) = ¢s(x) = 9; (M} = 3{xJ () + yJ (W)} = p(x, ),
where ¢ is an R-bilinear symmetric form from H,, x H,, ; into CI”*%. (The verifi-
cation is easy.) We remark that for all x € H,, 4, ¢(x, x) = ¢, (x), and that for all
x € Hp 4, 95(Jx) = @;(x). We have the following statement:

3.7.2.4 Theorem The algebra CI”*¢ is the real associative algebra generated by the
ps(x),x eHpg,p=1,qg=1

Proof. Let us denote by F the real algebra generated by the ¢, (x); for all x € H,
(H,, 4 is identified with (E2p 24, J), F is included into CI?*9. We are going to show
that CI” is included in F.

e We notice that for all x,y € E, ¢(x,y) € F. Then, since for all x € Hp, ,,
¢(x, Jx) = $(=x>+x?) = 0,0 € F.Moreover, (¢, (x))? = (xJ (x))*> = —[Q2p.2,
(x)]2 1 € R. Since p > 1 there exists x; € E3) 24 such that Qzp 24(x1) =1 and
for z € Ry, @7 (Hzx1)@s(Yzx1) € F, and on the other hand, (¢;(¥/zx1))? = —
Thus —z and z € F. (We can also use lemma IV.4 of Deheuvels.!7) If z is in R_,
—z=acF,andsoz=—aec F. ThusR CF.

e We introduce now C3) 24 (s), the space called the space of s-vectors and more
precisely C2)24(2s) and we want to show by a recurrent method that CI”*7 N
C;;,’Zq (2s) C F. CZD,Z q (2s) is the R-space generated by 1 and by the products
X1---Xx25, Where x; € Epp 0y, foralli, 1 <i <2s.

eCases =1

Since R is included in F, it is enough to show that for all x,y € Ezj 24,
xJ(y) + J(xJ(y)) € F.Indeed, z € CIP9 N €3, 0,(28) iff 2 = X100 + J (x132),
X1,x2 € Ejpo4. Since J2 = —Id on Ezp o4, there exists y, = f(—xz) =
—.i(xz) such that f(yg) = x2. So z is of the form xf(y) + f(xf(y)) Moreover,
I+ &I () =xJ () + J(x)J*(y) = xJ (y) — J(x)y. Since 2R(y, J (x)) =
yJ(x) + J(x)y and then — J(x)y = —2R(y, J(x) + yJ(x)) it follows that

xJ() = J(x)y = =2R(y, J(x)) + xJ () + yJ (x) = 20(x, y) — 2R(y, J (x))

with 2¢(x, y) € F and 2R(y, J(x)) € F.

upes Classiques, op. cit., lemma IV.4, p. 139.
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e Cases > 2
Let z be in C2p 2% (2s). Let us write z = u - v, with u € C2+p,2q(2k) and v €

’2q (20) with k, I < 5. By hypothesis, we can assume that C;'p’zq Q2nnciP1 c F
for all t < s. Let us write now

wo+Jw) = {3 +7(3) 0l +w—Jw {5 -7 (3)} = wiwa +22

We verify easily that J(wy) = wi, J(wz) = ws and that wjw, € CIP4. We notice
that J(z1) = —z1, J(z2) = —z2 and then J (z122) = z122. S0 2122 € CIP9. Accord-
ing to the recurrence hypothesis, wjw, and z1z»2 belong to F and uv + J (uv) € F.
We have found the formula

forallx,y e Hp 4, xJ(y) — J(x)y = 2¢(x, y) — 2R(J (x), y).

3.7.2.5 Lemma Anelemente;, - - - e, of the basis of C;p 2, belongs to CI"? if and
only ife; - - e, is of the form e;, J (e, )e;, J (e;,) - - - e, J(el-p).

The proof is straightforward by recurrence and left to the reader.
We can easily verify that J(1) = 1 and J{e1J(e1)---e,J(ep)} = erJ(eq)---

enJ(ey) and thus 1 and ey J (ey)eaJ (e3) - - - e, J (e,) belong to CIP#4 . If n = 2, among
the eight elements

L ejez, erJ(e1), erJ(e2), J(er)er, J(e1)J (e2), e2J (e1), e1J (e1)ez ] (e2)
of the basis of C; 2g° , only the following ones belong to cit:
LerJ(e1), exJ(e1), e1J (e1)exJ (e2).

More precisely, denoting by C,j,. the classical coefficients, there are 1 = Cg 0-vector,
1= C22 4-vectors, and 2 = C21 2-vectors so that the cardinality of the set of basis ele-
ments of CI! is now 1+ C2l +1 = 22. In the same way, more generally, in the case of
CI7-1 among the elements of the basis of Cg;’z @ there remains in the set of the basis

elements of CI”9 only 1 = CS 0-vector, 1; 1 = C}} n-vectors; e1J(e1) - - - e J (ep);
n = C) 2-vectors; C2 4-vectors; and C}} 2 p-vectors such that

dimg CIP9=14+C ... +Cl +...+Cr =2".

Thus, we have obtained the following theorem:

3.7.2.6 Theorem The real associative algebra CIP*4 is of dimension 2".

The study of the periodicity of such an algebra is given as an exercise. See below.
e following definition.
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3.7.3 Definition 2 of the Clifford Algebra Associated with H), ,

Let A be an R-associative finite-dimensional algebra with a unit element, and let H), 4
denote (Ezp 24, J).

3.7.3.1 Definition of a Pseudounitary Clifford Mapping

We define a pseudounitary Clifford mapping from H,, , into A to be any mapping W
from H, 4 into A such that

(a) W(ix) = A2W(x), forall A € R,
®) (1/2){¥(x+y)—¥(x)—V(y)} = @(x,y), where ¢ is an R-bilinear mapping
fromH, ; x Hp 4 into A,

(©) (W(x)* = —[Q2p,2g(x)P14, forall x € Hp 4.
(d) W(Jx) = W(x)forallx e H,,.

We notice immediately that W(x) = ¢(x, x). We also notice that if B is another
associative R algebra with a unit element and if ® is a homomorphism of algebras
with unit elements from A into B, which means that ® is R-linear, multiplicative—
(P(aa") = ®(a)P(a’)—and that (14) = 15, then ¥; = & o W from H), ; into B
is a pseudounitary Clifford mapping from H, ; into B. We can easily verify that for
all x € R,

Wy (hx) = A2V (x)

and that

1
E{\Ill(x +y) Vi) -V =e1(x, ),
where ¢ is an R-bilinear from H, ;, x H, , into B, and that for all x € H, 4,
(W1(0)? = (@ o W(x))? = (W (x)?) = D(—(Q2p24(x))*14)
= —02p24(x))*15.

Moreover, Wi (Jy) = PoWo J(x) = PoW(x) = W(x), forallx e Hp 4.

3.7.3.2 Definition 2 of the Clifford Algebra Associated with H,, ,

We define a Clifford algebra associated with H, , to be any R associative algebra,
with unit element 1¢, equipped with a pseudounitary Clifford mapping W, from H), ;
into C, which satisfies the following conditions:

(1) w.(H, ,) generates C,
(2) For any Clifford pseudounitary mapping W from H, , into A (R-associative
exists a homomorphism of algebras with
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unit elements ® from C into A such that ¥ = & o W, that is, (Vx) (x €
Hp g), (P (x)) = Y(x).

¥
H,, A
\ /
C

The second condition expresses that any pseudounitary Clifford mapping of
H, , can be obtained from the map W., which is universal. Consequently, if a
pseudo-hermitian standard space H), ; possesses a Clifford algebra C, it is unique
up to isomorphism. Indeed, let C’ be another Clifford algebra of H,,,. The

diagram
\ A @' uniquely determined with

DoWr =¥ and © oW =¥

implies that
D odPoWe = oW =W

and
Dod oWer =P oWe =Y.

Since Wc(H, 4) generates C and W¢r(H, ) generates C’, we can deduce that
@' 0o ® = Id¢ and® o &' = Ider @ and @’ are isomorphisms that are uniquely
determined, each of them the inverse of the other through interchanging W¢ in W¢r
or Wer in We. We can speak of the Clifford algebra of the pseudounitary space H,, .

3.7.3.3 Equivalence of Definition 1 and Definition 2

The algebra CI7-9 defined in 3.7.2.1 is such that (CI7+9, @), where ¢ (x) = xJ(x)
satisfies the conditions given in 3.7.2.2. ¢ is a pseudounitary Clifford mapping ac-
cording to the results given in the proof of Theorem 3.7.2.4, and satisfies the conditions
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The converse will be studied below in the exercises. The converse can be studied
by using the Lemma given in 3.7.2.5.

Subsequently, to any regular standard pseudo-hermitian space we can associate a
Clifford algebra, namely (CI7°9, ¢y).

3.7.4 Clifford Groups and Covering Groups of U (p, q)

With notation of Deheuvels,'® we introduce the covering groups RO(2p, 2¢) and
ROT(2p, q) respectively of O(2p,2q) and SO(2p, 2q), associated with the exact
sequences

1— Z, - RO@2p,2q) —> 0(2p,2q) — 1
and
1 — Z, - ROY(2p,29) — SOQ2p,2q) — 1.

We introduce Spin (2p,2q) = RO (2p,q), the connected component of the
identity in RO(2p, 2q), which is a twofold covering group of SO*(2p,q) =
01+ (2p, 2q) associated with the exact sequence

1 — Z, — Spin 2p, 2q) — SO+(2p, q) — 1.

For p > 1,qg > 1 RO(2p, 2q) has four connected components by arcs that are
twofold coverings for the corresponding components in O (2p, q).

Let G p.2q be the regular Clifford group consisting of invertible elements g of
the Clifford algebra C3 ), 4 such that for any x in Ez 24, ¥(g)x = 7(g)xg~ ' =y €
E3p 24 (7 is the principal automorphism of C3), zq) Such a group is also the group
cons1st1ng of products of nonisotropic elements in E3), 2q, in the Clifford algebra
Cap2g- G2p 5, denotes the even regular Clifford group G5 p2g = = Gapog NCy

We remark that ¢ = W on C2 0.2 where ¢ is defined, as usual, by p(g) - x = gxg

2p.2q°
-1

3.7.4.1 Theorem For any v € U(p, q) there exists an invertible element b, € CI”*9
determined up to a scalar in R* such that ®,(x) = bv)cbv_1 =v(x), forallx € H) 4.
Conversely, for any invertible b belonging to CI”% such that for all x € H, 4 :
bxb'=ye H, ,. the mapping x — bxb~! induces an element of U (p, q).

e The first part is a consequence of Theorem 3.7.1.2 and Definition 3.7.2.1
of CIP4,

e Conversely, with any invertible element b of CI”*? such that for all x € H, 4,
bxb~! = y € Hp,,, we can associate v € SO(2p,q) such that ®,(x) =
byxby, I'— y(x), forall x € H, ,. We introduce J and J defined as before. Then
for all x € Hy 4 and for all y € Hj 4, H) 4 identified with (E3p 24, J) such that
02p.2¢(y) = Q2p.24(J () # 0as bxb~! € E; 5., we can write

J(bxb™'y) = J(bxb™")J (y) = bJ ()b T (),

upes Classiques, op. cit.
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i.e.,
[T (bxb™") = bJ ()b~ () = 0,

and according to the hypothesis made for y, we can deduce that for all x € E3p 2, :
J(bxb™") = bJ(x)b7 1, ie., Jov=voJandthusv € U(p, ¢) by definition, W is a
natural homomorphism from G, 5, onto O(2p, 2q). The restriction of W to G5 0.2
onto SO(2p, 2q) leads us to a surjective homomorphism with kernel R* associated
with the following exact sequence:

1 > R* > G+

292 NC’? — U(p,q) — 1.

3.7.4.2 Definition of the Pseudounitary Clifford Group
and of the Covering Group RU (p, ¢) of U(p, q)

Definitions G;rp 2g N CI74, determined up to an isomorphism, is called the pseu-

dounitary Clifford group. RU (p, q) = RO (2p, q) N CI”4 is called the covering
group for U (p, q) associated with the exact sequence

11— Z,— RU(p,q) - U(p,q) — 1.

3.7.4.3 Definition of the Spinor Group Spin U, ,
We recall the exact following sequence of groups:
1 — Z — Spin (2p,2q) — SO (2p,2q) — 1.

3.7.4.4 Definition Spin(2p, 2q) N CI”Y is called, by definition, the spinor group
associated with H), ;, and is denoted by Spin U(p, gq). We define ¥ (Spin U, ;) =
Uo(p, q) as the reduced pseudounitary group. We have the following exact sequence:

1 — Zy — SpinUp 4 — Uo(p,q) — 1.

3.7.5 Fundamental Diagram Associated with RU (p, q)
3.7.5.1 General Definitions

Following a method initiated by Atiyah, Bott, and Shapiro,'® we introduce the fol-
lowing definition:

3.7.5.1.1 Definition Let A(Q) be one of the classical groups RO(Q) (covering group

of 0(Q)); G(Q) (Clifford group); Spin Q. Set A“(Q) = A(Q) xz, U(1), where Z,
actson A(Q) and U(1) as {£1}.

19 M. E. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology, vol. 3 Suppl. 1, pp. 3-38,
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We recall that U (1) is the classical group of complex numbers z with |z| = 1 (for
the multiplicative law). We recall the following definition and theorem:

3.7.5.1.2 Definition and Theorem

Let (E€Q°) be the complexification of (E, Q), where (E, Q) is a standard regular
quadratic space such that (CI(Q))¢ ~ CI(E., Q°). Let G°(E, Q) be the subgroup of
invertible elements g of (CI(Q))¢ that satisfy

VyeE, n(g)yg ' €E,

and let RO°(E, Q) be the kernel of the spinor norm. We have the following exact

sequence: 20

1 > U(l) > RO°(E, Q) =% 0(Q) —> 1.

3.7.5.1.3 Corollary We have a natural isomorphism
RO(E, Q) ~RO(E, Q) xz, U(1).

We recall the following exact sequences:

1 — Zy — RO(2p,2q) — OQ2p,2q) — 1,

1 - Z, > ROT(2p,2q9) — SO(2p,2q) — 1,

1= 7> RU(p.q) &> Up.q) — 1,
3.7.5.1.4 Definitions
Let us introduce

a:z— a(z) =z from U(1) into U(1)
with
o :[v,ul € RU(p,q) xz, U(1) = o/ ([v,ul) = u® € U(1),

where [v, u] denotes the class of (v, u) € RU(p,q) xz, U(1), 8 : 8[g, z] = ¥(g),
andi :i(g) =[g, 1] forallg € RU(p,q)and all z € U(1).
We have the following statement:

3.7.5.1.5 Proposition We have the following commutative diagram of Lie groups
associated with RU (p, q):

20 1 fact, in their paper, M. F. Atiyah, R. Bott, and A. Shapiro found the following exact
sequence:

1 — U()— Pin(k) - O(k) — 1,
where O (k) is the orthogonal group of R¥ provided with a negative definite quadratic form
and where U (1) is the subgroup consisting of elements 1 ® z € C; ®R C with |z] = 1, and
where Cy is the corresponding Clifford algebra of R¥. We identify here such a subgroup
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1 1 1

v=0

11— Z A RU(p.q) Ulp, g — 1

i

1—=U({l) — RU(p.qg) xz,U) Up.q) ™1

o o I

1 —= U(l) — U _ - 1

3.7.6 Characterization of U (p, q)

3.7.6.1 LetUsAssumeThat p+q=n=2r,p<n-—p
(cf. below 3.13 Appendix)

We consider the basis {eq, ..., e,, Jei, ..., Je,} of R(C™) and we introduce, as pre-
viously, Q2 24 (of signature (2p, 2¢)), the quadratic form associated with the bilinear
real symmetric form R. Let Ep, = R?" and let Eén be the complexification of Ey,,
a 2n-dimensional C-space (2n = r).

We know that there exists a special Witt decomposition of E} , E}, = F + F’,
where F, respectively F’, is a maximal totally isotropic 2r-dimensional subspace.

We write F = {x1,...,x,}, F' = {y1, ..., yx} with respective explicit bases
el + ey epten—pti iepr1+enp
X1 = ) ,...,xp=f,xp+1=f,...,
o ie, + ey i X . J(e1) +iJ(en)
r 2 ’ r+1 - 2 LRI ]
J(e1) + ](en—p-i-l) ij(ep+l) + J(en—p)
Xr+p = ) s Xr4p+1 = B s

iJ(er) + J(en—ri1)
-xn = ’

2

el —ep €p — en—ptl iept1 — en—p
1 = =7/ ey B —— 1 — =/ ey
y ) Yp 3 Yp+ )
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J(ep) — J(en—p+1) iJ(ept1) — J(en—p)
Vr4p = 3 seees Yrdpt+l = ) 3oy
iJ(en) — J(en—r+1)
Yn = 5 ,

with for 1 < j < p,)zj =Xj,)_1j = yj,forr—l—l <j < r—{—p,ij = xj,
yi =y, forp+1 < j <r,y, = —xj,andforr+p+1<j <n,
)_’j = )Ej, and with B(xi,yj) = 81y/2, B(x,-,xj) = B(y,-,yj) = 0 and thus
xiyj+yjxi =8, 1 <i, j <n.Werecall that J|F = iId and that J|F' = —i Id.

3.7.6.2 Characterizationof U(p,q) (p+q=n=2r,p <q,p <r)

Let us consider Cé 2 the complexification of Czp 24. As usual, we define exp(AX),

L e C, for X € CI'(2p,2q). We know that if XY = Y X, then exp Xexp Y =
exp(X + Y), (exp X)~! = exp(—X), where exp X = Zk>O(Xk/k!), and that
T(exp X) = exp(r (X)), where t denotes the principal antiautorr_lorphism of the Clif-
ford algebra. We recall that U (p, q) is the set of elements u of SO(2p, ¢) such thatu o

J = Jou. We want to prove the following statement. Leti € C : i> = —1,andlets €

R. We denote by W the classical projection already considered: W (g)x = m(g)xg ™.

3.7.6.2.1 Proposition W exp[i? Y k—1 (xxyi)] induces the mappings x — e'x on F
andx — e 'x on F'.
Proof.
3.7.6.2.1.1 Lemma
ey () = (xryn) (ke yi)
and
exp(it xiyk) exp(it x;y;) = exp(it (X ykX1y1))-

The result is quite straightforward.

3.7.6.2.1.2 Lemma Let

Z =¢exp (il [Z(Xkyk)]) = 1_[ explit xiyil.
k=1

k=1
Then N(z) = e = (¢!")" and [N (2)| = 1.

Let us consider now the plane generated by x| and y; such that xl2 =0,y =0,
and 2R(x, y) = 1. It is easy to verify that t(exp it x;y1) = t(z1) = exp(it y1x1)
and that N(z) = ¢'’. Thus |[N(z)| = and zl_l = e~ exp(it y1x1). Then it is easy
to verify that e exp(it yyx1)x1 exp(if yjx1) = e''x; and that e~ exp(it x1y1)y1-
obvious by recurrence.
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3.7.6.2.1.3 Corollary
n
W o exp {in (Z xkyk> } = —Id on (R™Y,
k=1
n
W o exp {Zin (Zxkyk> } =Id on (R™"),
k=1
T n
W o exp {15 (;xkyk> } =J.

3.7.6.2.2 Proposition The group U (p, q) is identical to W (AU, ), where AU, 4 is
the set of products of elements z with | N (z)| = 1 such thatz = exp(iA)- exp(i akl Xk V1)
(with summation ink and 1), a* € C, witha® = a'* and » = —(3_ a*%) /2.

Proof.

o First, it is easy to verify that U (p, ¢) is included in W (AU, 4). It is enough to
notice that x; yx commutes with Zl x;y; and to use the previous corollary to express
a condition of reality, using the fact that for z = exp(i)) exp(ia*'x;y;) = pexp(u),
with u = exp(id) andu = iaKxy;; N(z) = p? exp(u+t(u)) = p® exp(ia! (xpy+
yixx)) = p? explial§y] = exp(2in) exp(i Y-y a**).

e Then we notice that U (p, g) is connected. Let us consider W oexp(if x; yx). The
result is obtained by considering the value of the norm and the fact that the exponential
map generates the connected component of the identify of a Lie group.

3.7.6.2.3 Remark Previously, we assumed thatn = p 4+ ¢q = r.If n = 2r 4 1, then
2n = 2r 42 is even and we can consider a special Witt decomposition of £}, (2p, 2q)
that leads to the same conclusions. We notice the following exact sequence:

1-U1)— AU(p,q) = U(p,q) — 1.

So AU(p, q) is isomorphic to RU(p, q) xz, U(1), which gives an algebraic char-
acterization of RU (p, q) x z, U(1).

3.7.7 Associated Spinors

First, we recall the following classical results.2!

3.7.7.1 A Recall

Let (E, g) be a quadratic regular complex space. If dim E = 2k, the Clifford algebra
C(E, Q) isisomorphic to m(2%, C). If dim E = 2k + 1, the Clifford algebra C(E, Q)
is isomorphic to m (2%, C) & m (2%, C).

pes Classiques, op. cit., p. 331.
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3.7.7.2 Another Recall

We have introduced E, = R?" endowed with a quadratic form of signature (2p, 2¢)
and the complexification £, , a 2n-dimensional complex space with its own Clifford
algebra isomorphic to the complexification of the Clifford algebra of E,,.

Inside this Clifford algebra [C (RZ”, (o) p,zq)]’ we have considered the group
AU(p,q) =~ RU(p, q) xz, U(1), associated with the exact sequence

1-U1) - AU(p,q) = U(p,q) — 1.

According to the previous result, since dimc E}, = 2n, the Clifford associated alge-
bra A is isomorphic to m (2", C). A is identical to L (S), where S is a complex 2" =
dimensional space, a minimal module?? of such an algebra A. A is a central simple
complex algebra.

3.7.7.3 Definition S is by definition the space of spinors associated with such an
algebra: dim¢c § = 2".

3.7.7.4 Pseudo-Hermitian Structure on S

A. Weil has shown?? that for an antilinear involution « over A, a central simple com-
plex algebra, if we denote by /(a) the endomorphism x — ax of the underlying vector
space to A and if we consider the trace Trl(a), the form (x,y) € A — Tri(x%y)
is a nondegenerate hermitian form associated with the antilinear involution «.
R. Deheuvels has shown?* that o determines on S a pseudo-hermitian scalar prod-
uct for which « is precisely the operator of adjunction. Moreover, Deheuvels proved
that the signature of the corresponding quadratic hermitian form (associated with
(x,y) = Tri(x¥y))is (r> + 5%, 2rs). Let us choose now for « : 7 the principal
antiautomorphism of the Clifford algebra A, a central simple complex algebra for
which 7 is antilinear. Let us take again the proof given by Deheuvels.?* It is easy to
see that the pseudo-hermitian form is a neutral one, 2452 = 2rs,i.e.,r =s. So the
pseudo-hermitian scalar product on S is neutral of signature (27!, 2"~ 1),

The pseudounitary group of automorphisms of S that conserve such a scalar
product consists of elements u of L¢(S) >~ A >~ m (2", C) such that u'u = 1. After
embedding RU (p, g) into the complexified algebra A by the canonical injection, we
obtain that RU (p, q) is contained in U (271, 2=1). We want to show that for p > 2,
Spin U (p, q) is in fact contained in SU (2"~!, 2"~ 1).

2. Chevalley, (a) The Algebraic Theory of Spinors, Columbia University Press, New York,
1954; (b) The construction and study of certain important algebras, Math. Soc. Japan, 1955.
R. Deheuvels, Formes Quadratiques et Groupes Classiques, op. cit.

23 A Weil, Algebras with involutions and the classical groups, Collected Papers, vol. II,(1951—

1964), p. 413-447, reprinted by permission of the editors of J. Ind. Math. Soc., Springer

Verlag, New York, 1980.

res de Clifford, op. cit.
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Proof. Any element g € Spin U (p, ¢) is the product of an even number of vectors
u; such that N(u;) = 1 and of an even number of vectors u; such that N(u;) =
—1,8 = uquy - -uy. Since ujuy = uz(uz_lulug) and since y; = u2_1 uiuy € Eyy
with N(y1) = N(u1), we can assume that the u; with N (u;) = —1, if they exist, are
set before in the writing of g. Moreover, if two “u;” are linearly dependent, using pre-
vious permutations, we are led to a factor £1. So, we can assume that g = uy - - - ugi
with u; linearly independent, two by two, with N (u#;) = —1 before, if they exist.

If (u;) satisty (u?) = 1 = N(u;), u; is an involutive operator of S, and so
its determinant equals £1. Let us consider two consecutive vectors u1, u, linearly
independent, with N(#1) = N(uz) = —1, and let P be the plane that they gen-
erate. If p > 1 (in fact 2p > 2) there exists z € E», such that R(z,z) = 1,
R(z,u1) = R(z,uz) = 0, and (zup)? = 1, (zuz)> = 1, zujzup = —ujuz.
So zuy, like zus, is an involutive operator of S, with determinant equal to +1
(cf. Appendix 1.9). Thus, any g € Spin U (p, q) is the product of elements that have
determinant equal to 1. So, Spin U (p, ¢) is contained in the subgroup of the pseu-
dounitary group consisting of elements of determinant %1, but since Spin U (p, ¢q) is
connected, all these elements have 1 as determinant.

We have obtained the following theorem.

3.7.7.5 Theorem The space S of spinors associated with A inherits a natural complex
structure and a pseudounitary neutral scalar product of signature (2", 2"~1), up to
a scalar factor, which is conserved by the group Spin U (p, q). We have the following
embedding: Spin U (p, q) is contained in su@r-t on=ly,

3.8 Natural Embeddings of the Projective Quadrics H Py

The embedding can be made as previously (cf. Chapter 1). Let S be the space of
spinors previously introduced. Let [ | ] be a scalar product on S associated with the
involution 7, i.e., for a € CI”%, a and a" linear operators of S are adjuncts of each
other relative to the scalar product [ | ]. The injective mapping {isotropic line {Ax} in
H) 4} — {maximal totally isotropic subspace S(x) = Im(xy)s = ker(yx)s}, where
(xy)s and (yx)gs are the projectors of S defined by the elements xy and yx of CI?4,
determines a natural embedding of the projective quadric H p.q into the Grassmannian
of half-dimensional subspaces G (S, % dim §).

According to general results of Porteous,? we obtain that H p.q 1 homeomorphic
to U(2"~"). Then we have the following summary statement:

3.8.1 Theorem Spin U(p, q) isincluded in SU (2"~",2"~1); H, , is homeomorphic
toU@2" 1.

—
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3.9 Covering Groups of the Conformal Pseudounitary Group

3.9.1 A Review of Previous Results

In 3.7.5.2 we found a fundamental diagram, where clearly there appear two exact
sequences:

1—Z, — RU(p,q) ﬂ) U(p,q) = 1,
1 - U(1) = RU(p. @)%z, — U(p,q) — 1.

We have previously given in 3.4 a “geometrical construction” of the conformal
pseudounitary group defined as PU(F) = U(p+1,q + 1)/U(1) - I, via the study
(cf. 3.3) of an injective mapping from E,(2p + 2, 2g + 2) into the isotropic cone
Q(F), where F = H), , ® Hy | is defined explicitly by

r(x)

pi1(X) = m(eo + J(eo) +epy1 + J(eny1)) + X
1
- Z—ﬁ(eo + J(eo) — ent1 — J(en+1)),
or equivalently by
1 1
p1(X) = ﬁ(r(x) — D(eo + J(eo)) +x + 2_ﬁ(r(x) + Deny1 + J(ent1)).
Thus we put
p1ix € E— pi(x) =r(x)8)+x — 1,
where
1
8o = m(eo + J(e0) + ent1 + J(ent1)), 1y
1
= m(é’o + J(eo) — eny1 — J(eny1)),

which constitutes an isotropic base of H; | with 2 (5], ,u{)) = 1. Then, the geomet-
rical construction of PU (F) was given.

3.9.2 Algebraic Construction of Covering Groups for PU (F)
3.9.2.1 Preliminary Remark

Let us take again p; : E — Q(F). p1(x) can have any isotropic direction except
that of 8(’), unless we would assume that this direction is obtained as the limit of r (x)
tending to infinity.

Let y = Ax + a8, + B, be an isotropic vector with A # 0. According to 3.3.1
we have that a8 + @B + 2|A|?r(x) = 0. Therefore y has the same direction as p (x)
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3.9.2.2 Proposition There exists a morphism of groups ¢ with discrete kernel A;
fromRU (p + 1, g + 1) onto PU (F) : g — ¢1(g) such that for almost all x € H), 4
and forall g € RU(p, q),

1

w(g).p1(x)g~ =¥ (g).p1 = og(x)pilei(g)x],

where o4(x) is a scalar (A). ¢1(Spin U (p, q)) is called the real conformal pseudouni-
tary restricted group.

The proof is the same as previously in 2.4.3 and will be studied in the exercises
below. The only difficulty is the search and the determination of the kernel.

3.9.2.3 Determination of the Kernel A of ¢

We will use the following classical lemma.2® (Cf. exercises, below.)

3.9.2.3.1 Lemma If a quadratic n-dimensional regular space (E, q) withn > 3 has
isotropic elements and if o € O(q) fixes every isotropic line, then o = £Idg.

3.9.2.3.2 Proposition The kernel of 91 : RU(p +1,q + 1) — PU(F) is
{1, _17 EN’ _EN} = Al’

where Ey = epJ (ep)e1J(er) -+ -enJ (en)eny1J (eny1).

If g belongs to Ker ¢, then 7(g).p1(x)g~! = 0g(x)p1(x), for almost all x in

U(p, q). Thus, ¢1(g) fixes every isotropic line, taking account of the preliminary
remark 3.9.2.1. Thus, 7 (g)zg ™' = +z, forany z in H, ,. Therefore g € Ker,, if and

only if ¥ (g) =Idr or ¥ (g) = —IdF.
Since classically Ker ¢ is isomorphic to Z», if g € RU(p + 1, g + 1) satisfies

¥ (g) = —ldF, we know that ¥ (Ex) = —Idp, whence ¥ (§EN) = V(9 VY (EN) =
Idp, and then gEy = %1, thatis, g = ¢ Ey with ¢ = £1. Thus we have obtained
the following exact sequence:

I - A1 — RU(p,q) = CUn(p,q) = 1.
One can verify that if (Ex)? = 1, Ay is isomorphic to Zo x Zo, and if (Ex)? = —1,
A1 is isomorphic to Z4. An easy computation gives E2, = (—1)". Thus if n is even,
Al >7Zy) xZy,andif nisodd A| >~ Zg4.
3.9.2.4 Another Covering Group of PU (F) = CU,(p, q)
3.9.2.4.1 Another Fundamental Exact Sequence

Asin3.7.5.1 and 3.7.5.1.4, we can deduce from the above exact sequence the follow-
ing one:

1= A xz, U(l) > RU(p+1,9+1) xz, U(1) - CU,(p,q) — 1,

ars, Paris, 1972, p. 126, Theoreme 3.18.
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i.e.,
1= A xz,U(l) > AU(p+1,9g+1) = CU,(p,q) — 1.

3.9.2.4.2 Proposition We have the following commutative fundamental diagram of
Lie groups with the same notation as in 3.7.5.1.4 and 3.7.5.1.5:

11— A, RU(p+1,g+1) — CU,(p,qg —™ 1

1=A Xz, Ul)=RU(p+1,g+1)xz, U1) — CU,(pg) —™ 1

’ ’
o o ‘

11— U(1) _— UQ) —_ 1

3.9.3 Conformal Flat Geometry (n = p + q = 2r)

Let us consider again E,(p,q), the standard pseudo-Euclidean space, with
p < q, p < r. We can introduce the following Witt decompositions of E;, and
E(1, 1),%7 respectively (where the ’ indicates that we consider the complexification
of the space):

e1+e, epten—_pil iepy1+en—
xp =52 xp = 5 X =
X, = ler+32n7r+l X0 = 80+2€n+1
__ e1—e __ €p—en—p+l _lepri—enp
V=" s Yp =" o VpHl = T3 e
ie,—en_ril €0—€n+1
}’r = - 2” L ,}’0: 2n+ b

such that for any i and j we have

8i:
B(xi,yj) = % andx,-yj +yjxi = ZB(xi,yj) = 8ij, 0<i<r,0<j<r

27 c. Chevalley, The Algebraic Theory of Spinors, Columbia University Press, New York,
1954, pp. 13-15, for example, and p. 91, also cf. A. Crumeyrolle, Bilinéarité et géométrie
affine attachées aux espaces de spineurs complexes Minkowskiens ou autres, Annales de
, p- 351-372.
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i<r

3.9.3.1 Lemma Let{x;, y j}};g
and x5, = xx + yr, k = 1,2,...,r. The {x},} constitute an orthogonal basis of E,
such thatif z = x - - - x;,, 2=172

be a special Witt basis of E;,. Let x5, | = xi — yk

The proof will be recalled below in the exercises.

3.9.32Lemma Let f, = y; ---y,. Thenzf, = (=1)" f, and f,z = f,.%°

The proof is easy and will be given below in the exercises.

3.9.3.3 Lemma Let .1 = y1 - - yryo be an isotropic (r 4 1)-vector of E, . Then
enfre1 = (=) fry1, where ey = egeniier ey and frpjey = (=1
(_i)r_pfr+1-30

The proof will be given below in the exercises.

3.9.3.4 Corollary Let us consider C;}LZ 7 We recall that CIP-? is the real algebra
defined as

{g e CZp,zq J@=g={z+J@.z€ C;;’zq} (cf. 3.7.2.1 above).

Let us consider an isotropic (2r + 1)-vector fy,+1 = y1---y2ryo. Then we have
EN fors1 = (=1)7P foryy and for1 Exy = (=1 TP fo, 44,

The proof will be given below in the exercises.

3.9.3.5 Explicit Construction of an Isomorphism from PU (p+1,¢+1)
onto CU ,(p, q)

The construction is made in the same pattern as that given in Chapter 2.3! We are go-
ing to construct explicitly a surjective morphism ¢; of the Lie group U(p+1,q + 1)
onto CU,(p,q) with kernel Ay, where Ay = {1,—1, Ey,—Ey} with Ey =
egJeperJer -+ -epJeqent1Jeny such that we have the following diagrams (see Fig-
ures 3.1 and 3.2), where i is the identical mapping from U (p, ¢) into CU ,(p, q),
Jj1 is the identical mapping from U (p, q) into U(p + 1,g + 1), X1 is an isomor-
phism from PU(p + 1,q + 1) onto CU ,(p, q), constructed below, ; = (X1)~!
is an isomorphism from CU,(p, gq) onto PU(p + 1,q + 1), and n; is defined as
91 o Qj.

2. Chevalley, The Algebraic Theory of Spinors, op. cit., p. 91.

2 ¢, Chevalley, The Algebraic Theory of Spinors, op. cit., p. 91.

0p Angles, (a) Les structures spinorielles conformes réelles, Thesis, Université Paul Sabatier,
Toulouse, 1983, pp. 40-42; (b) Real conformal spin structures, Scientiarum Mathemati-
carum Hungarica, 1988, pp. 115-139, p. 118.

31 p Angles, (a) Les Structures Spinorielles Conformes Réelles, op. cit., pp. 45-50; (b) Real




238 3 Pseudounitary Conformal Spin Structures

1

|

Zln
RU(p.q)
l w
Ulp.q)
1 i l /
\ /
1=—CUn(p.q) Ulp+1l.g+ 1)=—Zp—=——1

PU(p l g+1)

™
RU(p+1,g+1)
Hp+l,q+l / *
Pq 1) A
- / 1 \
1 1 1
QF) A= {1,—1, Ey, —Eyn) where
P1(x) = r(x)3) +x — 1 Ey =egdugerdyy ... enJeneny1dens

L (w) = f1 such that £i(x) = dup(¥){w.p1 () = 2R(p1(x). o)Sp} + W
2hg () R(w.py(x), u{,) =-1

Aglx) = (Gg(x))_ forog(x) #0

Hpq b (R (2p1x ) J)

pirlx) = T(r(x) = Dieg + J(eg)) + 5= 2J- (r(x) + D (eqs1 + J(epg1)) +x
Mg = = gg(X)p1 (f1(x)) ="V (g).p1(x)

d1(8) = f1 € CUn(p.q)

f denotes the pseudo-hermitian scalar product

Fig. 3.1.

The first diagram associated with the pseudounitary conformal group CU ,(p, q)
(Figure 3.1) corresponds to the choice of RU (p, g) as a covering group for U (p, q).

The second diagram associated with the pseudounitary conformal group CU ,, (p, q)
(Figure 3.2) corresponds to the choice of AU (p, q) as a covering group for U (p, q).

3.9.3.5.1 Lemma (A) pi(x) = r(x)8; + x — pu is equivalent to x = pi(x) —
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1

I

U(l)

RU (p. q) Xz, U(l) ~ AU (p, q)

U(p,q)
\ / \/ i)
1=—CU, (p, q)\ Up+1,9+1) Zo=—11
@ PU(p +1,g+1)
m
RU(p+1,g+1)xz, Ul)= AU (p+1,g+1)
+1, g+l f
Fshe Uy A A
@ / l ™ I
Consa = Q(F) A ~ A Xz, U(1) with
A ={1,-1,Ey, —En } where
H, , ~ (R*(2p, 29),J) Ey =epdegerder ... enJenensrJens.

Ii(w) = f1 such that £1(x) = Ay (x){w.p1(x) = 2R (p1(x), n)8} + Mo
20 (XOR (w.pi(x), po) = —1

he(x) = (og(x)) ™" for o(x) # 0

pi(x) = 55(r(x) = Deo +J(e0)) + 5=(r(x) + Denn +J(ens)) +x
or, equivalently, pi(x) = r(x)d, +x — g

n(@)p1(x)g”" = o (X)p1(f1(x) =Y (g).p1(x)
Fig. 3.2.

All the calculations are made in the Clifford algebra CI7* La+1 R s the real part of the
form f that defines the pseudo-hermitian scalar product. If p;(x) =r (x)86 +x =,
then p1 (x)pg = r(x)8)ug+xmgand pgpr(x) = r(x)mod)+igx, whence p1(x) g+
mop1(x) =2R(p1(x), uj) = r(x) and then x = p1(x) — 2R(p1., )8y + 11-

We can also remark that 2R (p1, 5,

y) = —1,since p1(x)8,+8,p1(x) = 2R(p1(x),
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3.9.3.5.2 Construction of the Diagram

Since ¢ is amorphism of groups from RU (p+1, g+1) xz,U(1) =~ AU (p+1, g+1)
onto CU ,(p, q) and according to the classcal writingof g € RU(p+1, g +1),0,(x)
is a nonzero coefficient when f(x) is defined for f1 = @;(g), it follows that (A) is
equivalent to (A2):

P1(f1(x)) = A ()Y (g).p1(x), for fi = @1(g).

Let wbein U(p + 1,q + 1). We can associate f1 = ¢1(g) € CU,(p, q) with w
such that according to (Ay),

J1(x) = dg () (w - p1(x) = 2R(w - p1(x), 1o)8p) + g

with 24, (X)R(w - p1(x), &) = —1.

Thus, we define a surjective mapping /1 from U(p + 1,¢q + 1) into CU,(p, q).
Moreover, w — [l1(w) = f1 = ¢1(g) is a morphism of groups. The verification of
these two facts will be made in the exercises, below.

The determination of ker/; is immediate. f] = Ide, . with f1 = [1(w) and
w = W(g)ifandonlyif g € A = {1, -1, Ey, —Epn}, ie,ifonly if U(g) = w €
{ldn,,, ,.,» —1dH,,, ,,} = Z>. Therefore, we have constructed an explicit algebraic
isomorphism of groups X1 fromPU(p+1,9+1)=U(p+ 1,9+ 1)/U(Q) - I onto
CU,(p, g). Since the kernel of /1 is discrete, we have also obtained an isomorphism
of Lie groups. One can easily verify in the previous diagram that /1 o j; = i;. The
verification will be made below in the exercises.

3.9.4 Pseudounitary Flat Spin Structures and Pseudounitary Conformal
Flat Spin Structures

3.9.4.1 Pseudounitary Flat Spin Structures
3.9.4.1.1 A Review of Some Classical Results3?

Let (E, Q) beastandard quadratic regular space over R. We want to recall briefly some
classical results. With our previous notation, an RO (Q)-spin flat structure>? is defined

32 ¢f., for example, (I) A. Lichnerowicz, (a) Champs spinoriels et propagateurs en relativité
générale, Bull. Soc. Math. de France, 92, pp. 11-100, 1964; (b) Champ de Dirac, champ
du neutrino et transformation C.P.T. sur un espace courbe, Ann. I'L.H.P., Section A (N.S.), 1,
pp. 233-290, 1964. (II) Y. Choquet-Bruhat, Géométrie Différentielle et 9 Systémes Ex-
térieurs, chap. 111, pp. 126—135, Dunod, Paris, 1968. (III) A. Crumeyrolle, (a) Structures
spinorielles, Ann. I’ILH.P, Section A (N.S.), vol. 11, no 1, pp. 19-55, 1969; (b) Groupes de
spinorialité, Ann. I'LH.P,, Section A (N.S.), vol. 14, no 4, pp. 309-323, 1971; (c) Fibrations
spinorielles et twisteurs généralisés, Periodica Math. Hungarica, vol. 6.2, pp. 143-171,
1975.

3t A. Crumeyrolle, (a) Structures spinorielles, Ann. I’lLH.P, Section A (N.S.), vol. 11, no

1, pp. 19-55, 1969; (b) Groupes de spinorialité, Ann. I'l.H.P.,, Section A (N.S.), vol. 14, no

4, pp. 309-323, 1971; (c) Fibrations spinorielles et twisteurs généralisés, Periodica Math.
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by an equivalence class of (R, g), where R is an orthonormal real basis called abu-
sively a “frame” and g an element of RO(Q), with the following meaning: (R, g) ~
(R, ¢)ifandonly if R' = o R, ¥(y) =0 withg' = yg, g,¢’,y € RO(Q).

The choice of (R, g) in an equivalence class corresponds to fixing what will be
called an RO(Q) spinorial “frame” as origin, and isomorphic spaces of spinors can be
associated with the possible choices. If we agree to use Witt basis 2 associated by the
classical Witt process>* with the real orthonormal basis, according to Crumeyrolle,>
we can also define such an RO(Q)-spin trivial structure by an equivalence class of
(2, g) such that (22, g) ~ (', ¢') means that Q' = oQ, VY (y) = 0,¢ = yg,
y € RO(Q)and g, g’ € RO'(Q) >~ RO(Q’), where the sign’ indicates complexifica-
tion. In such a class there are always “real” Witt bases, since O (Q’) acts transitively
on the set of real or complex Witt bases of the standard space. A trivial spin structure
can thus be defined from a “nonreal” Witt basis chosen as the “origin.”

3.9.4.1.2 RU(p, q) Standard Spin Structures
Let us recall the fundamental exact sequence
11— Z,— RU(p,q) = U(p,q) = 1,
“using” the Clifford algebra CI?¢, and the other one,
1 - Ul) = RU(p,q) xz, U(1) > U(p,q) — 1,

using the Clifford algebra C},(2p, 2q) = (C (R, 02p.24))". If we agree to choose
the first covering space, spin flat pseudounitary geometry appears naturally as a partic-
ular case of structures recalled in 3.9.4.1.1 and in the second case spin flat pseudouni-
tary geometry appears naturally as a special case of RO'(2p, 2¢)-spin structures.

3.9.4.2 Pseudounitary Conformal Flat Spin Structures
The results of 2.5.2 can be immediately applied with the following changes:
n—2n,p—>2p,q—>2q,r — 2r,ey — Ey.

Thus, we can give the following definitions.

3.9.4.2.1 Definition A conformal pseudounitary spinor of H, ,, associated with a
complex representation p of RU (p+1, g+1) inaspace of spinors for the Clifford alge-
bra (CI? +1.a+1y s by definition an equivalence class ((Ran42)1, &, X2n42), where
(Ran42) is a projective “pseudounitary frame” of P(H,41,4+41), § € RU(p + 1,
g+ 1), Xopio€ C2"*" and where ((7%/2”+2)1,g/,X§n+2) is equivalent to ((Rau42)1,
8. Xaut2) ifandonly if wehave R, ) = 0(Rant2),0 = m(y) € PU(p+1,q+1)
with y = g'¢™" and X5, ., =" (p(¥)) ' Xau42. where (p(y)) ! is identified with

. 2r+1
an endomorphism of C> .

34 Cf., for example, C. Chevalley, The Al gebraic Theory of Spinors, op. cit., chapter 1, pp. 8—19.
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3.9.4.2.2 Definition Wfi define an equivalence class ((7%2,,+2)1, g), where g is in
RU (p+1, g+1) and ((R2,+2)1) is a projective orthogonal frame of PU (p+1, g+1),
to be a “conformal pseudounitary frame” of H, , associated with the ‘“real”
orthonormal base (B1), of H), . ((7@2,,+2)1, g) is equivalent to ((R,+2)1, g') if and
only if (Ran12)1 = (Rant2)10 and o = n1(y), where g, ¢’ € RU(p+1, ¢ +1) and
y=¢4g".

We remark that

(Rant2)1, &) ~ (Rans2)1, —8) ~ (Rant2)1, Eng) ~ (Rant2)1, —Eng).

If we suppose g, g’ in RO'2n +2)and y = g'g~' € RU(p + 1,q + 1), we can
consider the action of RU(p + 1,¢ + 1) on every pseudounitary spinor frame of
Clpn fors1-

3.9.4.2.3 Definition With obvious notation, (fzzn+2)1 and (Q/zn 42)1 being projective
orthogonal Witt frames of PU(p 4+ 1,q + 1), ((an+2)1 ,g) and ((S~2’2n+2)1 ,g) de-
fine the same flat conformal pseudounitary spin structure if and only if ($2,42)1 =

o(Quu)1. () =0,y =gg g8 € RUp+1,g+1),y € RU(p+
1,g + 1).

Thus,

(Q2n12)1, &) ~ (Q2n+2)1, —8) ~ (Qan+2)1, Eng) ~ (Q2012)1, —Eng).

3.9.5 Study of the Casen = p+qg=2r+1

If n = 2r + 1, then 2n = 2r + 2, and we can consider a special Witt decomposition
of Ej, that leads to analogous conclusions.

3.10 Pseudounitary Spinoriality Groups and Pseudounitary
Conformal Spinoriality Groups

3.10.1 Classical Spinoriality Groups (cf. 3.13 Appendix below)

This notion is due to Albert Cmmeyrolle.36 Let (E, Q) be a standard 2r-dimensional
quadratic regular space over R. A. Crumeyrolle introduces the Clifford regular group
G and the groups Pin Q and Spin Q defined respectively as the multiplicative group
of elements g in G such that [N (g)] = 1, where N is the graduate norm of g and
Spin Q = Pin Q N C*(Q). Let {x;, y j}if’]i'r be a “real” Witt base of C" associated
with an orthonormal base of R”. Let f = y; - - - y, be an r-isotropic vector associated
with a maximal totally isotropic subspace.

ations over manifolds and generalized twistors,
tics, vol. 27, pp. 53-67, 1975.
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3.10.1.1 Definition H is the subgroup consisting of elements y € Spin Q such that
yf = xf. v (H) = G is the spinoriality group associated with f.

3.10.1.2 Proposition In elliptic signature, G can be identified with SU (r, C); G is
the set of elements with determinant 1 in the stabilizer of a maximal totally isotropic
subspace, diim G = r> — 1. G is connected and simply connected.

3.10.1.3 Proposition In signature (k,n — k), k < n — k, k positive terms andr > 2,
G is isomorphic to the subgroup of determinant 1 with matrix

o0 —iL A M
08 v O
00 pO
00 —bg

witha € Mi(R), deta = +1, 8 € M, _4(C), B/ =1d, det B = +deta, o' p = Id,
re MyR), u € CKU=h_ e CO=hk = _Blup, 'pir + Ap = "vi 4+ Dy,
G has four connected components and can be identified with the set of elements

with determinant 1 in the stabilizer of a maximal totally isotropic subspace dim G =
r2 =24 k(k—1)/2.

3.10.1.4 Proposition If Q is a neutral form (k = r), G is isomorphic to the subgroup
of elements in SL(n, R) with the matrix ({) 2) such that o € M,(R), deta = 1,
alp = 1d, "pr +' Ap = 0. G is connected and can be identified with the set of
elements with determinant 1 in the stabilizer of a maximal totally isotropic subspace;
dimG = (r — )(3r +2)/2.

3.10.1.5 Definition Let H, = {y € SpinQ : yf = X' f, X € R*}. We call
v (H,) = G, the enlarged spinoriality group associated with f. G, is the stabilizer
of a maximal totally isotropic subspace for the action of SO(Q). In elliptic signa-
ture X = 1 and ¥ (H,) = Go =~ U(r, C). In general, X # 1. Such subgroups of
SO(Q) : G, satisfy dim G, = 4+ k(k —1)/2forany k : 0 <k <r.If k # 0, such
a group G, is not a generalized unitary group. G, is connected if k¥ = 0 and has 2
connected components if k 7 0. G is an invariant subgroup of G.. Both G and G, are
associated with the same isotropic r-vector (cf. exercises below).

3.10.2 Pseudounitary Spinoriality Groups

3.10.2.1 Definition Let H, respectively H,, be the subgroup of elements y €
Spin Q(2p, 2¢) such that y fa, = =+ f,, respectively y for = Xe'? fo,, with X € R*.
We call (H) = G, respectively ¥ (H,) = G, the pseudounitary group, respectively
the enlarged spinoriality group, associated with f>,.

3.10.2.2 Characterization

Characterizations of these groups are immediate following 3.10.1. For example, G,
tally isotropic subspace associated with
vector (cf. exercises below).
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3.10.3 Pseudounitary Conformal Spinoriality Groups
3.10.3.1 Review

Let us recall that we consider SO(2p, 2¢) and the exact sequence
11— Z,— RU(p,q) > U(p,q) — 1,

and that (8}, u()) constitutes an isotropic basis of H(1, 1). As previously, we can
consider an isotropic (2r 4 1) vector in (R**(2p, 2¢)’ & Hi ;1 of the form fo,41 =
MIREE y2r,u,6. The mapping p; from H,, , into F' = H, ; ® H;j 1 such that p;(x) =
r(x)B(’) +x — ,uE) has previously been introduced (cf. 3.3.1).

3.10.3.2 Definition Let A; = {1, —1, Ey, —Ey}.Let(Hyc)e = {y, ¥ € RU(p+1,
g+ 1) : vfas1 = wfarr1, where u € C*}. By definition, we call any subgroup
(Suc)e = ¢1(Hyc)e an enlarged pseudounitary conformal spinoriality group associ-
ated with fo, 41 . Let (Hyc) = {y,y € RU(p+1,q9+1) : ¥ for+1 = €1 f2r+1, Where
&1 € Ay}. By definition, we call any subgroup Syc = ¢1(Hyc) of CU ,(p, g) a pseu-
dounitary conformal spinoriality group in a strict sense. According to 3.9.3.4 such a
definition is equivalent to the following: Hc isthe setofelementy € RU(p+1, g+1)
such that y fo,+1 = % for+1.

3.10.3.3 Characterizations of Enlarged Pseudounitary Conformal
Spinoriality Groups

Since pi(x) = ri(x)8;, + x — pg, for any i,1 < i < 2r, we remark that
p1(i) = yi — pg and p1(0) = —pg.

Up to this light change of notations, the demonstration given in 2.5.1.4 can be
applied.

If fi = LH(w) withw € U(p+ 1,9 + 1), as, in 2.5.1.4, we can verify that
fiy) ... fi2r) = uyt ... y2r, where € C*.

Thus we have obtained the following proposition.

3.10.3.4 Proposition The enlarged pseudounitary conformal spinoriality group is the
stabilizer of the maximal totally isotropic subspace F' associated with the 2r -isotropic
vector yy - - - yar.

3.10.3.5 Characterization of Pseudounitary Conformal Spinoriality
Groups in a Strict Sense

Normalization conditions appear: u is equal to 1. A more precise study will be given
below in the exercises.
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3.11 Pseudounitary Spin Structures on a Complex Vector Bundle

3.11.1 Review of Complex Pseudo-Hermitian Vector Bundles

A general theory of real or complex vector bundles is given for example in the fol-
lowing bibliography.3’

3.11.1.1 Definition A pseudo-hermitian complex vector bundle, denoted by (&, n) or
simply &, is a differentiable complex vector bundle over a differentiable manifold
M (that can be paracompact, real or complex, or almost complex or almost pseudo-
hermitian), with typical fiber the standard pseudo-hermitian space H), ; equipped
with the pseudo-hermitian sesquilinear nondegenerate form 1 on its fibers, that varies
differentiably from fiber to fiber.

3.11.1.2 Definition Let us assume that the manifold M is an almost complex man-
ifold. If R¢ denotes the principal bundle of “linear frames of £,” the structure group
GL(n, C) canbe reduced to U (p, q), p+¢q = n. We agree to denote by U the princi-
pal bundle of orthogonal normalized bases suitable for the almost pseudo-hermitian
structure. The associated bundle Ug Xy (p,4) Hp 4 is isomorphic to &. We agree to de-
note the isomorphic class of U or of (£, 77) by [Ug]. For an almost pseudo-hermitian
manifold (M, 77) one can define the tangent bundle £ = 7 (M) and the cotangent
bundle & = T*(M). Ry is then the “bundle of linear frames” and Uy, the bundle
of normalized orthogonal bases suitable for the pseudo-hermitian structure, which is
called the almost pseudo-hermitian bundle.

3.11.2 Pseudounitary Spin Structures on a Complex Vector Bundle
3.11.2.1 General Definition of a Spin Classical Structure

The notion of spin structure on a manifold V has been introduced by A. Haefliger,
who made specific an idea from Ehresmann.>® Many authors such as J. Milnor,
A. Lichnerowicz, R. Deheuvels, I. Popovici, W. Greub, B. Kostant, M. L. Michelson,
R. Coquereaux, A. Jadczyk, have taken an interest in the study of those structures.

3.11.2.1.1 Definition (General Definitions) Let& be a pseudo-Euclidean real vector
bundle (¢, Q) or respectively a complex vector bundle (&1, Q). By definition a spin
structure defined on such a bundle is any lifting of the corresponding principal bundle

37 Cf., for example, D. Husemoller, Fibre Bundles, op. cit.; N. Steenrod, The Topology of Fibre
Bundles, op. cit.; S. Kobayashi, Differential Geometry of Complex Vector Bundles, op. cit.;
A. L. Besse, Manifolds All of Whose Geodesics Are Closed, op. cit.

BA. Haefliger, Sur I’extension du groupe structural d’un espace fibré, C.R. Acad. Sci., Paris,

243, pp. 558-560, 1956.



246 3 Pseudounitary Conformal Spin Structures

O¢g, respectively Og,, for the corresponding covering morphisms associated with the
group O(Q), respectively O(Q1).

3.11.2.1.2 Example A spin structure on a pseudo-Euclidean real vector bundle
(E, Q), i.e., by definition an RO(Q)-structure, is a principal bundle morphism from
RO¢ into O¢, where RO denotes the lifting of the bundle O¢ associated with the mor-
phism ¢ of groups RO(Q) — O(Q). The complex case can be defined in the same
pattern. Such a definition can be naturally extended to the case of pseudo-riemannian
manifolds and leads to the notion of spin structures on the tangent bundle or cotangent
bundle of M.

3.11.3 Obstructions to the Existence of Spin Structures

We use the notation of Greub and Petry.*0 The obstructions to the existence of spin
structures can be viewed in the general theory of lifting structure groups.

3.11.3.1 Proposition Thus the condition that w;[§, ] = K[Og, ¢] vanishes, with
the notation of Greub and Petry™ is equivalent to the existence of an RO(Q)-spin
structure on the pseudo-Euclidean real vector bundle (¢, Q), where ¢ is the cover-
ing morphism of groups ¢ : RO(Q) — O(Q) and w;[&, ¢] is the second Stiefel—
Whitney class of (&, Q).

3.11.4 Definition of the Fundamental Pseudounitary Bundle
3.11.4.1 Definition of a Pseudounitary Spin Structure

By definition, a pseudounitary spin structure on a vector bundle (&, n)-pseudo-
hermitian complex vector bundle is a lifting of the principal bundle U relative to the

associated morphism 8 of groups RU (p, q) xz, U(1) —8> U(p,q).
Such a definition can be extended to the case of manifolds with almost pseudo-
hermitian structure via the introduction of the tangent bundle and the cotangent bundle.

3.11.4.2 Notation We denote by RU ¢ the principal bundle associated with the prin-
cipal bundle U for the corresponding morphism  : RU (p, q) xz, U(1) — U(p, q).

3.11.4.3 Remark We can also introduce the principal bundle R Uz, the lift of the
principal bundle Ug relative to the morphism v : RU (p, q) — U(p, q) introduced
in the fundamental diagram.

39 Cf., for example, W. H. Greub, S. Halperin, R. Vanstone, Connections, Curvature and
Cohomology, op. cit.; W. Greub and R. Petry, On the Lifting of Structure Groups, op. cit.;
A. Haefliger, op. cit.; F. Hirzebruch, Topological Methods in Algebraic Geometry, op. cit.;
M. Karoubi, Algebres de Clifford et K-Théorie, op. cit.; B. Kostant, Quantization and Unitary
Representations, op. cit.; M. L. Michelson, Clifford and spinor cohomology, Amer. J. Math.,

vol. 106, no 6, 1980, pp. 1083—1146; J. Milnor, Spin Structure on Manifolds, op. cit.

cture Groups, op. cit., pp. 219-241, see p. 242.
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3.11.4.4 Definition of the Fundamental Pseudounitary Bundle

According to 3.7.5.2, if we consider a pseudounitary spin structure § : RUg — Uk,
we agree ro call, by definition, the bundle «'(RU¢) extension of the bundle RU¢
for the morphism «’ of the diagram the fundamental pseudounitary bundle. Such a
principal bundle o’ (RU ¢ ) has for structure group U (1). Its associated complex vector
bundle is RU¢ x4 C, denoted by oz}wg.

3.11.4.5 Existence of Pseudounitary Spin Structures
3.11.4.5.1 Preliminaries

We have found two exact sequences:

1 = Zy > RU(p.q) > U(p.q) — 1

and
1—-U(l)— RU(p,q) xz, U(1) ﬁ) U(p,q) —> 1.

For the principal bundle Ug we introduce naturally two liftings of structures Ry Ug
for ¥ and RU¢ relative to §. We will use the fundamental general results of Greub
and Petry.*!

3.11.4.5.2 Definition (Theorem) Let P = (P, i, B, G) be a principal bundle, where
P and B are topological spaces and G is a topological group. Let p : ' — G be a
continuous homomorphism from a topological group I" onto G with kernel K. p will
be called central if

(i) K is discrete,
(i) K is contained in the center of I' (thus, in particular, K is abelian).

A T-structure on P is a I'-principal bundle P = (P, 7, B, T) together with a
strong bundle map 7 : P — P that is equivariant under the right actions of the struc-
ture groups; thatis n(z - y) = 7(2) - p(y) forany z € P, y € I'. We will choose an
open covering U = {U;} of B such that P is trivial over every U;. We assume also that
B is an L-space, that is, by definition, that every open covering has a simple refine-
ment, i.e., such that all the non-empty intersections U;, N ... N U;, are contractible.
(cf. below exercises).

There exists an element K (P, p), called the I"-obstruction class, of H 2(B, K),
the second Cech cohomology group of B with coefficients in K, with the following
fundamental property: P admits a I'-structure if and only if K (P, p) = e.

The demonstration will be given below in the exercises.
We recall the following statements already used, and which will be applied later.

ructure Groups, op. cit., pp. 217-246.
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3.11.4.5.3 A-Extensions

Let P = (P, m, B, G) be a principal G-bundle and let A : G — G’ be a homomor-
phism. Then A determines a principal bundle P, = (P;, m;, B, G') over the same
base in the following way: Choose a covering U; of B with a system of local sections
o; and transition functions g;;. Define maps

gl{ = Ao gij
Then the g;; satisfy the relation

81 ()8 ()8 (x) =,

and consequently, there is a principal bundle P; with a system of local sections such
that the g ; are the corresponding transition functions. Pj is called the A-extension
of P.

3.11.4.5.4 Definition Nextassumethatp:I"— Gand p’:T" — G’ are central homo-
morphisms with kernels K and K’ respectively. Let & : G — G’ be a homomorphism.
We say that p and p’ are related if there is a continuous map X (not necessarily a
homomorphism) such that

(1) the following diagram commutes and

>

G

Q) Ak e g) = A(k)A(g) forallk € K, g € .*?

X restricts to a homomorphism of K into K'. In fact, if k € K then p’ k) =
L e p(k) = A(e) = ¢, whence A(k) € K'. Next let P, be a A-extension of P and
assume that the homomorphisms p : I' — G and p’ : I’ — G’ are related. Choose
a simple covering {U;} of B and let y;; be a lifting of g;;. Set

Vi,j =Je Yij-
Then

P/Vi/j = g'i%‘j = ApVij = Ag8ij = gz{j’

and so the y;; are liftings of the g; .
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Now set

0ijk(¥) = A(ij Ak A ()Y ()™, x € Uiji.

Then we have

00k (x) = Ap (i AP (jk(x)) @ hp(yij (X)) (x) ™!
= 2(gij MGk ())A(gij (1) gik(x) "
=X [gijgik(gijgik)_l] =ie)=¢.

It follows that
bijk(x) € K', x € Ujji,

and so these functions are constant. Hence they define a 2-cochain 6 in the nerve
N (U) with values in K’. (See below appendix for the definition of the nerve.)

3.11.4.5.5 Proposition Let p and p’ denote the 2-cocycles for P and P; obtained
via the liftings y;j and yi’j. Then

PG, j, k) =00, j, ipl, j, k).
Proof. Applying A to the equation
Yik = Pi;iyij)/jk

and using (2), we obtain

Vi = MpgOrijvin) = Mpij) T Aivie)-
On the other hand,

ro_ =1 17 by
Yik = Pijk YijVik = Pijk *Vi) M ¥ji)-
These equations yield
Pk MDA i) = Api) " Ay,

whence

P,-fkl =3 (pij) " iy ior i i
It follows that

Pijk = MDAk iy~ Mpir) = 0. j, A(Ppiji).

Since p and p’ are cocycles and since the restriction of X to K is a homomor-
phism, it follows from the lemma that 6 is a cocycle. Thus it represents an element
0 € H*(B, K'). Now we have as an immediate consequence of the proposition the
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3.11.4.5.6 Corollary The obstruction classes of P and P, are connected by the
relation

K(Py) =6 @ hpk (P),

where
i = H(B,K)— H(B,K)

denotes the homomorphism induced by the homomorphism 1K —> K.
In particular, if A is a homomorphism of I, then

K(Py) = hk (P).
3.11.4.5.7 Bundles with Structure Group O(p, q). Proposition

Let P = (P, 7w, B, O(p,q)) be an O(p, q) bundle. There exist two fundamental
classes K| (P) € H! (B, Z>) and K (P) such that P admits an RO(p, q)-spin struc-
ture if and only if K(P) = 0. K1(P) and K (P) coincide respectively with the first
and the second Stiefel-Whitney classes wi and wy of P.

This important characterization is due to Greub and Petry, On the lifting of struc-
ture groups, op. cit., pp. 240-242. See also Max Karoubi, Algebres de Clifford et
K-théorie, op. cit., Proposition 1.1.26, p. 174, and Proposition 1.1.27, pp. 175-176.

3.11.4.6 Necessary and Sufficient Condition for the Existence of a
Pseudounitary Spin Structure

Let us consider now a U (p, ¢) bundle P. The application of Theorem 3.11.4.5.2 leads
us to the following statement:

3.11.4.6.1 Theorem A U (p, q) bundle P admits a pseudounitary spin structure if
and only if the class of obstruction K (P, ) vanishes, or equivalently, the class of
obstruction K (P, §) vanishes (with previous notation).

3.12 Pseudounitary Spin Structures and Pseudounitary
Conformal Spin Structures on an Almost Complex
2n-Dimensional Manifold V

3.12.1 Pseudounitary Spin Structures

Let V be a 2n-dimensional almost complex manifold. The definitions given in Sec-
tion 3.11 lead to the following one. Let £(E, V, U(p, q), w) be the bundle of the
e pseudo-hermitian structure.
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3.12.1.1 Definition V admits a pseudounitary spin structure in a strict sense if there
exists a principal fiber bundle S = (P, V, RU(p, q), ¢') and a principal morphism
from S onto & such that the following diagram is commutative, where the horizontal
mappings represent right translations:

P x RU(p q) P

e

=1

Wz

Ex Ulp, q) E

Such a definition translates to the lifting of the bundle & corresponding to the
morphism ¢ from § onto & and to the morphism of the group ¥ from RU (p, q)
onto U(p, g). We give also the following equivalent definition associated with the
morphism of the covering group 8 : RU (p, q) xz, U(1) — U(p, q).

3.12.1.2 Definition V admits a pseudounitary spin structure in a strict sense if there
exists a principal fiber bundle S = (P, V,RU (p.q) x 7, U(1), ¢) and a principal
morphism 8 from S onto & such that the following diagram is commutative, where
the horizontal mappings represent right translations:

P XRU(p.q) X ¢, U(]) ———————= P

/
E X U(p.q) E

3.12.1.3 Definition In each case S, respectively S’, is called the principal bund1~e
of “spin frames” of V. And we associate o, respectively &, with S, respectively S,
where 0 = (P XRu(p.qg) szr, V,RU(p, q), szr), the complex vector bundle of

dimension 2%, with the typical fiber C?” is called the bundle of pseudounitary
spinors, respectively 6 = (P XRU(p.q)x7,U(1) szr, V,RU(p,q) xz, U(1), szr)
is called the bundle of pseudounitary spinors. According to 3.7.7.4 we know that the
dimension of a space of spinors is 2" = 2%")

We chose the definition given in 3.12.1.1. All the calculations are made in the
real Clifford C/”*4, which is included in C;‘p 2" We can now introduce the following

propositions,*? the proofs of which will be given in the exercises below.

43 The pattern is the same as that introduced by A. Crumeyrolle in Fibrations spinorielles et
irica, vol. 6.2, pp. 143-171, 1975.
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3.12.2 Necessary Conditions for the Existence of a Pseudounitary Spin
Structure in a Strict Sense on V

The accent ’ indicates complexification.

3.12.2.1 Proposition (i) If there exists on V a pseudounitary spin structure in a
strict sense, there exists on V, modulo a factor equal to +1, an isotropic 2r-vector
field, pseudo—cross section of the bundle CIli(V, Q/Zp 2 q) and then a subfibering of
Cli(v, Qh.*

(ii)) The complexified bundle &c admits local cross sections over the trivial-
izing open sets (Uy) with transition functions ¥ (gug), gup(x) € RU(p, q) such
that if x € Uy N Ug — fup defines locally the isotropic 2r-vector field defined
above, then fg(x) = N(gop(x)) fu(x), where fg(x) = g’o,lg(x)fo[()c)ggﬁl (x), where
8ap(¥) = wi(xi,y;), n being the linear isomorphism that leads to the identifica-

tion ofC(Q’zp’zq) with C**" and Wy, the isomorphism from C(Q/2p,2q) onto C(Q"),,

where C(Q'), is the Clifford algebra induced by C(Q') at x.*3
(iii) The structure group of the bundle & can be reduced in O (Q’) to a pseudouni-
tary group in a strict sense.

3.12.3 Sufficient Conditions for the Existence of a Pseudounitary Spin
Structure in a Strict Sense on V

3.12.3.1 Proposition Let (Uy, ¢y)aca be a trivializing atlas for the bundle Ec on
V, with transition functions Y (gap(x)) € O(Q2p24). If there exists over V an
isotropic 2r-vector pseudo-field pseudo-cross section in Cli(V, Q) o2 q) locally de-
fined by x € Uy — fy(x) such that for x € Uy, N Ug # @, we have

J5Q) = Gup far )8y (). 13 (ap (1)) = Gup fu ().

then the manifold V admits a pseudounitary spin structure in a strict sense.

3.12.3.2 Proposition Let us assume that the structure group of the bundle & reduces
in 0(Q) b2 q) to a pseudounitary spinoriality group. Then the manifold V admits a
pseudounitary spin structure in a strict sense.

4 1e (V, Q) is a real n-dimensional pseudo-riemannian manifold, the Clifford bundle
Cli(V, Q) is defined as follows: The action of the group O(Q) on R" can be extended
to C(R", Q) by an easy verification of the fact that O(Q) conserves the two-sided ideal
generated by {x ® x — Q(x) - 1}. By definition we associate a vector bundle with typical
fiber C(Q) and structure group the extension of O (Q) introduced above with the principal
bundle of orthonormal basis of V. This bundle, denoted by Cli(V, Q), is of rank 2" on R
and its fibers are real Clifford algebras.

45 Classically the Clifford algebra Cy (Q) of V is the quotient of the tensor algebra ®D! V)
of differentiable vector fields on V by the two-sided ideal J generated by the elements
XQV-0(X)1,X e D! (V). The algebra Cy (Q) induces naturally at any x € V a Clifford

¢ or Cy (Q)—2"-dimensional algebra quotient of ® T, where T is the tangent

rerated by the elements Xy ® Xy — Q(Xyx) - 1.
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3.12.4 Manifolds V With a Pseudounitary Spin Structure in a Broad Sense

Let f>, be an isotropic 2r-vector of Hy 4. In 3.10.3.2 and 3.10.3.4 we defined the
enlarged pseudounitary spinoriality group (S,). as the stabilizer of the maximal to-
tally isotropic subspace F’ associated with f>,.

3.12.4.1 Definition V admits a pseudounitary spin structure in a broad sense if and
only if the structure group U (p, ¢q) is reducible to a subgroup of O(Q/Zp,Zq) iso-
morphic to (S,)., the enlarged pseudounitary spinoriality group associated with the
2r-isotropic vector yj - - - ya,.

Such a definition is a generalization of the definitions given in 3.12.1, according
to the proposition given in 3.12.3.2.

3.12.4.2 Proposition V admits a pseudounitary spin structure in a broad sense if and
only if there exists over V a 2r-maximal totally isotropic subspace field such that
with previous notation,

For ) = &arp 0 for (D Z o5 (0, fi () = parp (0 for (), parpy (x) € C*.

The demonstration is immediate (cf. exercises below).

3.12.5 Pseudounitary Conformal Spin Structures
3.12.5.1 Notation, Review, and Definitions

Let V be an almost pseudo-hermitian 2r-dimensional manifold. £(E, V, U (p, g), 7)
denotes the principal bundle of normalized orthogonal basis suitable for the pseudo-
hermitian structure.*

We introduce naturally according to the already used Greub-extension of struc-
tures the following principal bundles: &, = &1(A, V,CU,(p,q), 1), P& =
6,0, (Ei, V,PU(p+1,q+ 1), 7). Then, we introduce a bundle A(V) with typical
fiber C? provided with a quadratic hermitian form of signature (1, 1), the Whitney sum
of two complex orthogonal line bundles, for this quadratic hermitian form A(V) =
lo® 1), and an “amplified” bundle of the tangent bundle 71 (V) = T (V) ® A(V), i.e.,
T1(V) = ey (T)x(V), where Ti (x) = T (x) @ (lp)x @ (). The union of Clif-
ford algebras (CI7*14%1) . is naturally a vector bundle with typical fiber C/P+1-4+1
a bundle “locally trivial in algebra.”

U(p 4 1,q + 1) acts as usual according to classical results*’ in the following
way: forany g € RU(p+1,q+ 1), w € CIPTHIH Ky (w) = n(g)wg ™", where
7(g)wg ™' is dependent only on ¥ (g) € U(p + 1,q + 1). CU,(p, ¢) acts naturally
on such a bundle.

46 Or more generally we can take for V an almost complex 2r-dimensional manifold, which
inherits an almost pseudo-hermitian structure according to previous remarks (3.1.1).
Theory of Spinors, op. cit.
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Ulp.q)

CU,(p.g) Up+lg+)
X] II

Ll

PU(p+lg+ 1

RU(p+lg+1)

It is known that C 2, can be obtained by linear combinations of RO(2p, 2q).
Then according to the definition of CI?*4, the same is true for CI?9 relative to
RU (p, q). The mapping K thatsends ¢1(g) € CU,(p, g)—withg € RU(p+1, g+
1)—onto the morphism of CIP T4+ w) — 7(g)wg ™! is well defined and consti-
tutes arepresentation of CU , (p, ¢) into CIPT1471 + K1,y w = 7 (g)wg™". Thus we
obtain a bundle denoted by Clif { (V) and CU ,,(p, q) isomorphicto PU(p+1,qg+1)
acts on such a bundle. This bundle is the analogous to the standard Clifford bundle.

3.12.5.2 Definition V admits a pseudounitary conformal spin structure in a strict
sense if there exists a principal bundle S; = (E1, V. RU(p + 1,q + 1), qi) and a
morphism of principal bundles 7; such that S; is a “4-fold covering,” or rather a
double two-fold covering since E12v = 1, of P& (or a 4-fold lifting of P&;) with the
following commutative diagram,

E, xRU(p+1lLg+1

E\XPU(p+1qg+1)

where the horizontal mappings correspond to right translations. Sj is called the bundle
of conformal spinor frames on V. The bundle of conformal spinors is the complex-

. . . . . 2
vector-associated bundle of dimension 2% +! with typical fiber C2 L

2r
V.RU(p+1,q+1),¢c ™.
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We can now take again the previous proofs given in Section 2.6.2. We need to take
care of the following changes: r becomes 2r, ey becomes Ey, &2 is now (—1)2’ +1
ie., e = —1 (revenorodd),e = 1ifr — piseven,and ¢ = —1 if r — p is odd.
The f,—r isotropic vector becomes f;.

We can now give the following results:

3.12.5.2.1 Proposition: Necessary and Sufficient Conditions for the Existence
of a Pseudounitary Conformal Spin Structure in a Strict Sense

There exists on 'V a pseudounitary conformal spin structure in a strict sense if and
only if:
(1) There exists on 'V modulo the factor ¢o = —1 an isotropic (2r + 1)-vector
pseudo-field pseudo—cross section in the bundle Clif'| (V).
(ii) The structure group of the principal bundle P& is reducible, in the complexifi-
cation, to a subgroup isomorphic to (S,.) the pseudounitary conformal group in
a strict sense associated with the 2r-isotropic vector yi - - - Yor.
(iii) The complexified bundle (P&1)c admits local cross section and trivializing open
sets with transition functions n1(g'p') € RU(p+1, g+1) suchthatifx € Uy N
Up — fa/ (x) defines locally the previous (2r + 1)-isotropic pseudofield, then

fp = Garp @) fr Dy, modulo ey = —1,
Ty = (ENY’N@orp () for(x),  modulo &3 = —1,

and where (Ex)? = 1 and therefore Ay >~ Z x Z,.

The obstruction class of the existence of a pseudounitary conformal spin struc-
tureon'V : K(V, L), where A =1y o j1 = i1, according to the commutative diagram
shown in Figure 3.3 (with notation of 3.9.3.5 and of 3.11.4.5.3 and 3.11.4.5.5) is

RU (p,q) RU@p+ Lg+1)

A :
G=Up.q)——=G =CU,(p,q)
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such that K(V, 1) = K (P), where Ay, : I;V(V, 7)) — I;V(V, 7, x 7) denotes the
homomorphism induced by the homomorphism ) : K — K’', and A is the natural
inclusion of RU(p, q) into RU(p +1,q + 1).

It is sufficient to consider the result of 3.11.4.5.6.

3.12.5.2.2 Definition V admits a pseudounitary conformal spin structure in a broad
sense if and only if the structure group PU (p + 1, g + 1) of the principal bundle P&
is reducible, in the complexification, to a subgroup isomorphic to (S,.)., the enlarged
pseudounitary conformal spinoriality group associated with the isotropic 2r-vector

Y1 Y2r-

Such a definition is a generalization of Definition 3.12.5.2.

3.12.5.2.3 Proposition V admits a pseudounitary conformal spin structure in a broad
sense if and only if there exists over V a (2r + 1) isotropic maximal totally isotropic
field such that with the same notation as above,

fp = ga/ﬂ/(x)fa,(x)g;}s,, modulo g; = —1,

Suwp(X) ERU(p+1,q+ 1), fr = parp (X) fur, 1harp (x) € C*.

The proof is immediate.

3.12.6 Links between Pseudounitary Spin Structures and Pseudounitary
Conformal Spin Structures

We choose the definition of the pseudounitary spin structure given in 3.12.1.1.
A parallel study not given here can be done with Definition 3.12.1.2.

As in Section 2.7, using the previous necessary and sufficient conditions, we
obtain the following results.

3.12.6.1 Proposition If there exists an RU (p, q)-spin structure on V (i.e., a pseudo-
unitary spin structure in a strict sense), then there exists an RU (p + 1, q + 1)-spin
structure on V, the bundle of frames of the amplified tangent bundle.

If there exists an RU (p + 1, g + 1)-spin structure on the bundle of frames of the
amplified tangent bundle, then there exists a pseudounitary conformal spin structure
in a strict sense over V.

If there exists a pseudounitary conformal spin structure in a strict sense over V
(briefly speaking, a CU ,(p, q)-spin structure), since n is even if r — p is odd, then
there exists a pseudounitary spin structure over V.

The proof is immediate.

For the last point, since e, = —1 (r even or r odd) and, taking into account that if
r — pisodd, then ¢ = —1, and noticing that E ,% = 1, we can deduce the existence of a
(2r)-isotropic pseudo-vector field that satisfies the required conditions using previous
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3.12.7 Concluding Remarks

The previous study show that pseudounitary spin structures and pseudounitary
conformal spin structures appear as particular cases of standard pseudoorthogonal
spin structures and conformal pseudoorthogonal ones.

What about symplectic spin structures and conformal symplectic spin structures?
There exists a natural injection from the standard real symplectic group into the spe-
cial pseudounitary group of type (n, n), i.e., p1 : Sp(2n, R) — SU (n, n) given in
Satake.*® Thus, one can develop canonically with algebraic and geometrical materials
coming from Chapter 3 the construction and the study of symplectic spin structures
and furthermore, of real conformal symplectic ones via the previous study.

3.13 Appendix

3.13.1 A Review of Algebraic Topology

The following books of reference contain all the necessary material: Séminaire Henri
Cartan, 1967, W. A. Benjamin, New York, Topologie Algebrique, Espaces fibrés et
homotopie, Cohomologie des groupes, suite spectrale, faisceaux, Roger Godement,
Theorie des faisceaux, Actualités scientifiques et industrielles, 1252, Hermann, Paris
1964, Chapiter 1, Part 2, Generalites sur les complexes.

We want to give only some complements necessary for the understanding of the
results of Greub and Petry recalled in 3.11.3. These classical results can be found, for
example in James Dugundji, Topology, Allyn and Bacon, Boston, 1968, pp. 171-173,
or in M. Zisman, Topologie Algébrique élémentaire, Librarie Armand Colin, Paris,
1972, pp. 223-227. We follow the method of Dugundji.

3.13.1.1 Classical definitions

Let E be any nonempty set. An n-simplex X, in E is any set of n + 1 distinct ele-
ments of £, namely X, = {ao, ..., an}. ao, ..., a, are called the vertices of ¥,,; any
X%, C X, is said to be a p-face of Z,.

An abstract simplicial complex K over E is a set of simplexes in E such that any
face of a ¥ € K is in K. We can associate a topological space with any simplicial
complex. Let Ao, ..., A, be (n + 1) independent points in an affine space. The open
geometric n-simplex ¥, spanned by Ao, ..., A, is the set: {Y 7 o AiAi| Y i_gri =
1,0 < %, i =0,...,n}and will be denoted by (Ag, ..., An).

Y, is the interior of the convex hull of {Ag, ..., A,} in the n-dimensional
Euclidean space that these vertices span. A classical example is (Ao, A1, A2) that
is a triangle without its boundary. The coefficients A; are called the barycentric coor-
dinates of M = )" A; A;.

48 1. Satake, Algebraic Structures of Symmetric Domains, Iwanami Shoten Publishers and
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3.13.1.2 Nerve of a covering

The mathematical process that associates with any open covering of a topological
space a complex called its nerve is powerful since it permits to relate topological
properties of a space to its algebraic ones.

3.13.1.2.1 Definition Let{U,, a € E}be any open covering of a space. Let N be the
complex over E defined by the following condition: (ag, ..., a,) is a simplex of N
if and only if Uy, N...NU,, # . N is a complex called the nerve of {U,, a € E}.

3.13.2 Complex Operators and Complex Structures Pseudo-Adapted
to a Symplectic Form

We want to develop the contents of section 3.1.2 and to review the classical results
found by C. Ehresmann in the references given there. We follow the remarkable book
of P. Liebermann and C. M. Marle.

3.13.2.1 Recalls on complex operators

Let W be a complex space of finite dimension n, and let ¥ = grW be the 2n-
dimensional real vector space obtained from W by restriction of scalars to R. When
considered as acting on F the multiplication by i, square root of —1, is a real linear
operator J such that J 2= —Idp. Conversely, let V be a real space of finite dimension
endowed with areal linear operator J such that J> = —Idy . Then, necessarily, J is bi-
jective and its inverse is —J. Since we have that (det J )2 = det(—1Idy) = (—=1)dmV,
so V is of even dimension 2n.

J is called a complex operator (or transfer operator) since it determines on V a
structure of complex space. For any A = a +ib, a,b € R and x € V we define
Ax =ax +bJx.

Briefly, we denote by (V, J) the space V endowed with a complex structure by
means of the complex operator J. The complex dimension of V is n.

A classical example is the following:

Let{e;}, i = 1,...,2n be the canonical basis of R?", and let Jy be the operator
defined by Jo(ex) = entk, Jolentx) = —ex for 1 < k < n. Then Jj is a com-
plex operator that allows us to identify R?" with C in the following way: to any
X = (xl, e, x2"), we associate z = (x] + ixnt x4 ixz”). In the same way,
for any real 2n-dimensional vector space V endowed with a basis (eq, ..., €,) we
can associate the complex operator defined by J(ex) = €p4k, J(€44k) = —é€i for
1<k<n.

Let (V, J) be a complex structure on V with the complex operator J. A subspace
F of V is said to be complex if F is conserved by J, thatisif JF = F. Thenitis a
complex subspace of (V, J). A subspace F of V is said to be real with respect to the
complex structure (V, J) if F N JF = {0}.

In particular, if dim F = n, the real subspace F is said to be the real form of
1 identified with the complexification of F'.

—
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3.13.2.2 Complements for pseudo-hermitian forms
We use the same notation and definitions as in 3.1.2.
3.13.2.2.1 Fundamental formulas

Let n be a pseudo-hermitian form on the complex finite-dimensional space W. We
put G(x,y) = Re(n(x,y)), Q(x,y) = —Im(n(x,y)), where G is a real bilinear
symmetric form and 2 a real skew—symmetric form.

For any real vector space U and for any element of its dual « € U*, we will
denote by <a, x> the value of @ on x € U. Let Q” be the classical isomorphism
from g W onto its real dual g W* defined by

Qx,y) = —<Qb(x), y>.

QF will denote the inverse of Q°. Let G” be the isomorphism from g W onto g W*
defined by < Gb(x), y >= G(x,y). We can verify the following relations, where
J denotes the complex operator of V. For any x, y € W, we have:

GUx,Jy)= G(x,y)
QUx,Jy)= Q(x,y)
G(x,Jy) = —Q(x,y)
Qx,Jy) = G(x,y)

and J = Q0 G”. (A)

As an example, the standard hermitian form ny on C" is defined by no(z,z) =
-k . . .
S ke forz, 2 inC" . If weputz = (x! +ix"*!, ..., x" +ix?"), then we have

n0(z,2') = Go(z,2') —iQo(z, 2)

with Go(z, 7)) = Zf"zl xIx'l and Qo(z, 2') = Y j_y (xkxmHh — xrknthy

3.13.2.2.2 Pseudo-adapted complex structures

Conversely we will study the following problem. Given a symplectic real space
(V, ), does there exist a complex structure on V and a pseudo-hermitian form 7 such
that 2 = —Im n? We know that we can choose a symplectic basis on V that allows
us to identify (V, Q) with (R?", Q) and that Jp is adapted to 29. Whence, we can
deduce that any symplectic real space (V, €2) admits a complex operator adapted to €2.

3.13.2.2.3 Proposition (C. Ehresmann) Let (V, 2) be a real symplectic space and let
J be a complex operatoron V. J is pseudo-adapted to 2 if and only if J is a symplec-
tic automorphism, that is the following condition holds: Q2 (Jx, Jy) = Q(x, y), for
any x, y in V. If such a condition is satisfied, then the form n defined for any x, y in
Vbynx,y) =G(x,y)—iQ(x,y) withG(x,y) = Q(x, Jy) is a pseudo-hermitian
an form such that Q = —Im 1.
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Proof. If J is pseudo-adapted, the properties stated in the proposition follow from
the properties (A) given in 3.13.2.2.1. Conversely if Q(Jx, Jy) = Q(x, y), then
the real bilinear form G defined by G(x,y) = Q(x,Jy) is symmetric since
G(y,x) = Q(y,Jx) = —Q(Jx,y) = Q(x,Jy) = G(x, y) and also nondegen-
erate. Then, the form 5 defined by n(x, y) = G(x, y) —i2(x, y) is a nondegenerate
pseudo-hermitian form on (V, J). The uniqueness of 7 is immediate.

3.13.2.2.4 Proposition Let V be a real vector space of dimension 2n endowed with
a symplectic form 2 and with a nondegenerate bilinear symmetric form G. Let K
denote the automorphism QF o G” of V, that is the automorphism K such that for
any x,y in V we have: G(x,y) = Q(x, Ky). Then the three following conditions
are equivalent to each other:

(i) K is a complex operator, i.e., K 2= _Jdy.
(i) Q(Kx,Ky)=—-(x,y), Vx,yeV.
(i) G(Kx,Ky) =G(x,y), Vx,y e V.

Proof. We have 2 (x, K2y) = G(x,Ky) = G(Ky,x) = —Q(Kx, Ky). Since the
form 2 is nondegenerate, this relation proves the equivalence between (i) and (ii).
Moreover, we notice that

G(Kx,Ky) = Q(Kx, K*y) = —Q(K?y, Kx) = —G(x, K?y)
which explains the equivalence of (i) and (iii).

3.13.2.2.5 Corollary—Definition. (C. Ehresmann) If the operator K defined in
3.13.2.2.4 satisfies one of the equivalent conditions (i)—(iii), then it is pseudo-adapted
to 2 The forms Q2 and G are called interchanging forms by C. Ehresmann.

3.13.2.2.6 Theorem With the notations of 3.13.2.2.3 let J be a complex structure
pseudo-adapted to 2. An automorphism of V. commutes with J and conserves the
form n if and only if it conserves both of the forms Q2 and G. The unitary group
U (V, n) coincides with the intersection of Sp(V, Q) and O (V, G):

UV, 1) =Sp(V,2) N O, G).

Moreover, if u is an automorphism of V.commuting with J and preserves one of the
forms Q or G, then it preserves n and the other form.

Proof. First we want to prove that if u belongs to U(V,n), then u belongs to
Sp(V,Q)N OV, G)and thatu o J = J o u. By definition we have

nux), u(y)) = Gux), u(y)) —i2ux), u(y))
=nux), u(y)) =G(x,y) —iQ(x, y).

Comparing real and imaginary parts we find that u € Sp(V, Q) N O(V, G). Con-
versely, let us now suppose that u is an automorphism of V that conserves both G and
2. We will show that # commutes with J. Forany x, y € V we have G (u(x), u(y)) =
(u(y))) by definition. On the other hand
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we have that G(x, y) = Q(x, J(y)) = Qux), J(u(y))) since u € Sp(V, Q). So
we find that Qu(x), J(u(y))) = Q@ (x),u(J(y))) for all x,y € V. Since Q is
nondegenerate it follows that J o u = u o J. It is then evident that u € U(n, V).

To prove the last statement of the theorem, let us assume that u is an automor-
phism of V commuting with J, and that u preserves, say, €2 (thatis u € Sp(V, Q)).
Thenforallx, y € V wehave G(x, y) = Q(x, Jy) = Qux), u(J(y))) = Qu(x),
Jw(y))) = Gu(x),u(y)). Thusu € O(V, n) and therefore u preserves .

3.13.3 Some Comments about Spinoriality Groups

We want to give some comments about A. Crumeyrolle’s classical spinoriality groups
(see for example Crumeyrolle A., Groupes de spinorialité, Ann. Inst. Henri Poincaré,
Sect. A, vol. XIV, n° 4, pp. 309-323, 1971, and also 3.10 above). The reader will find
all the required information concerning bilinear forms in Chapter I of Chevalley’s
book: The algebraic theory of spinors, op. cit., and in N. Bourbaki, XXIV, Formes
sesquilineares et formes quadratiques, op. cit.

3.13.3.1 Some Recalls

First, we recall the following result (see C. Chevalley, op. cit., 2.7 pp. 60-61). Let M
be a finite-dimensional vector space over a field K and let Q be a quadratic form on
M, where the associated bilinear form is nondegenerate. Let K’ be an overfield of K,
let M’ be the space over K’ obtained from M by extending to K’ the basic field and
let Q' be the quadratic form on M’ that extends Q. Then the Clifford algebra C’ of
Q’ may be identified with the algebra deduced from the algebra C of Q by extending
the basic field to K.

From now on we will assume that E is a vector space over R or C, and that B is
a nondegenerate symmetric bilinear form on E.

Two vectors x, y € E are called orthogonal to each other if B(x, y) = 0. Let
P is a subspace of E. Then P~ is the subspace consisting of all vectors orthogonal
P. Two subspace P; and P, are called orthogonal if Py C le or, equivalently, if
P, C PIL. P is called isotropic if P N P~ # {0}. A nonzero subspace P is called
totally isotropic if it is orthogonal to itself or, equivalently, if the restriction of B to P
is identically zero. A totally isotropic subspace P is called maximal if for any other
totally isotropic subspace P;, P C P; implies P = Pj.

3.13.3.2 Proposition (C. Chevalley, op. cit. 1.4.3) All maximal totally isotropic of
E have the same dimension r. This common dimension r is called the Witt index
of B and satisfies the relation 2r < dim(E). The orthogonal group of (E, B) acts
transitively on the set of maximal isotropic subspaces.

3.13.3.3 Witt Decomposition

With the assumptions and notation as above, a Witt decomposition of E is a de-
bgonal sum) of E into three subspaces
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E = F® F' & G, where F and F’ are totally isotropic, while G is nonisotropic
and orthogonal to both F and F’.

Over the field C, if the dimension of the space E is n = 2r, all maximally isotropic
subspaces have dimension r. In this case there exists Witt decomposition £ = N + P
into a sum of two totally isotropic subspaces. Moreover one can form a special basis of
E consisting of vectors x; € N, y; € P, i =1,2,...r, such that 2B(x;, y;) = §; ;.
Such abasis is called Witt basis. Notice that automatically B(x;, x;) = B(y;, y;) =0.

3.13.3.4 Special Witt Bases

Starting from the study of pure spinors introduced first by Elie Cartan and then stud-
ied algebraically by Claude Chevalley in Chapter III of his remarkable book. The
algebraic theory of spinors (op. cit) A. Crumeyrolle introduced special Witt bases
he called “real Witt bases.” In many papers such as “Groupes de spinoriality,” Ann.
Inst. H. Poincaré, vol. X1V, 4, 1971, pp. 309323, “Derivations, formes et operateurs
usuels sur les champs spinoriels des varietes differentiables de dimension paire,”
Ann. Inst. H. Poincaré, vol A 16 no 3, 1972, pp. 171-201, “Spin fibrations over man-
ifold and generalized twistors,” Proc. Symp. Pure Math., vol 27, 1975, pp. 53-67,
A. Crumeyrolle defined and studied classical spinoriality groups.

Let (E, B) be areal n = 2/-dimensional vector space E equipped with a nonde-
generate symmetric bilinear form B of signature (p, ¢), p # ¢ and let (E’, B') be its
complexification. We will denote by ~ the complex conjugation in E/ = E + i E. It
is known that the Witt index of (E, B) isr = min(p, ¢). Then E' = F + Z, where F
and Z are two maximal totally isotropic subspaces F and Z, (both of complex dimen-
sion /, and there exists a special Witt basis {x;, vy, x;, yi, | <A <r, 1 <i <[—r}
of E’ with the following properties:

(i) xp,x; € F,

(i) yr, yi € Z,
(i) Xx = x5, Yo =¥y, yi =08y;, where§ =1if p > g, and§ = —1if p < gq.
Ifwe write Q(x) = (x")2 4+ 4+ (xP)> = (xPT1)? — . — (xPT)2 0 = p+q = 2r,
p < ¢, then we can take:
Fo Vect{el +en’ €2+en—1’m’ ep""eq—i-l’ iepyl +eq"”’ ier+en—r+1}’
V2 V2 V2 V2 V2
e1—e, € —en_q ep—egrl iepyr1 — ey ie, —en—ril
Z = Vect{ , e, R e, }.
V2 V2 V2 V2 V2

3.13.3.5 Example

The use of these “real” special Witt bases is indispensable for determination of the
results found by A. Crumeyrolle, such as matrix expressions.

of the proof of Proposition 3.10.2.
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_ lej—en—j+1

We set f = yi...y with y; = 5 where the {e;} constitute an or-
thonormal basis of E. We set x; = W#”’l Classically, by using t, the main

antiautomorphism of the Clifford algebra and Witt theorem (cf. below) the condition
yf = £ f isequivalentto y fy ! = f. We set yjr = yyjy_l
and therefore x;; = A{,xj where x; = yxjy_l, with y € RO(Q). Since the Witt

and then y; = A{/yj

basis {x;, y;} is applied onto the Witt basis {x;/, y;/} we get: 3 ALA] = S I
we consider y;ys ...y, as an element of /\" F’, with previous notations, we find
immediately the results given in Proposition 3.10.2.

Finally, we recall the classical Witt theorem (see for example C. Chevalley, op.cit.,
p. 16,1.4.1). Let (E, Q) be a quadratic regular finite-dimensional space over K. Ev-
ery Q-isomorphism of a subspace N of E with a subspace M may be extended to an
operation of the group O (Q).

3.14 Exercises
(I) Proof Theorem 3.5.2.3

(1) First show that the group PU (F) of Definition 3.4.1 is included in CU ,,(p, q),
following the results of the Proposition 3.4.4.2.

(2) Prove the converse by using the construction of covering groups for CU ,,(p, q)
made in Section 3.9.2. Use results of Section 2.4.2.

amn

(1) Determine the real associative algebras Clo’l, Cl 1’0, Cl 1’1, ClZ’z, CcPP3.
(2) Using the classical periodicity of the real algebras C;_p,Z q study the periodicity
of the algebras CI7"9.

(11II)

Let R",n = 2r be endowed with a negative definite quadratic form ¢. Let
{e1,...,e,} be an orthonormal base of R"”. We assume that R" is provided with
a linear orthogonal transformation such that J 2 — _1d. Cl(n) denotes the Clifford
algebra of (R", ¢).

(1) One defines an endomorphism of R” by Jy = cos6 - I + sin6.J, where [
denotes the identity mapping of R” and 6 € R.

(a) Show that for any x € R”, x and J (x) are orthogonal.

(b) Show that from Jy one can deduce an automorphism of the algebra CI(n).

(c) We set

DO(UIUZ"'Uq) — Z(vl JU] ...vq)’
=1

a derivation of the algebra Cl(n).
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(d) Show that there exists an orthonormal basis of R" of the type (eg, Jey, e2,
Jer,...,er, Jep).

(2) We set CI'(n) = Cl(n) ®g C. We will assume that CI’ (n) is the Clifford algebra
constructed from C”" endowed with the quadratic form Q' that extends Q naturally
by complexification. We set g = %(ek —iJey), g = %(ek +iJey), k=1,2,...,r.
We will admit that we obtain, then, a basis of C".

(a) Write the multiplicative table of this basis in the Clifford algebra CI'(n).

(b) We set

r r
L(p) == exper. L(p) = — Y &xpex. forany ¢ € Cl'(n).
k=1 k=1

Show that £ and £ are well defined independently of any orthonormal basis such that
{er, Jel,...,er, Jer}.

(c) We set H = [£, L£]. Write the multiplicative table for the bracket [, ] of the
elements £, £, H.

(3) Show that H(p) = wep +ow —r¢ = wp —pw +reifw = =) gé&, w =
— Y & and that H(p) = o + go if o = % Y i ek - Jek, forany ¢ € Cl'(n).

(IV) Prove Proposition 3.9.2.2 and Lemma 3.9.2.3.1. Hints: For Proposition 3.9.2.2
follow the same method as in Section 2.4.2.2. For Lemma 3.9.2.3.1 use the fact that
the space contains a hyperbolic plane (cf. E. Artin, Algebre géometrique, op.cit.,
p. 126).

(V) Prove Lemmas (1), (2), (3) given in 3.9.3 and Corollary 3.9.3.4 (cf. also
2.5.1.2.1).

(VI) Prove 3.9.3.5.2 explicitly. Hints: Use the same method as in Section 2.5.1.2.
(VID)

(1) Prove the propositions given in 3.10.1.2, 3.10.1.3, 3.10.1.4, and 3.10.1.5 (see
Appendix 3.13.3).

(2) Study the special case of the Minkowski space with Q of signature (1, 3).

(3) Prove the results given in 3.10.2.2 concerning the enlarged spinoriality group
associated with f, by using the same method that was used in Section 2.5.1.4.

(4) Show the characterization given in 3.10.3.5 using the same method that was
used in Section 2.5.1.4 (see also Appendix 3.13).

(VIII) Prove the necessary and sufficient conditions given in 3.11.4.2.

,3.12.3.1,3.12.3.2, 3.12.4.2.
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(X) Construction of Dirac operators *°

Let CI(E) denote the Clifford algebra of (E, g), a quadratic regular standard
n-dimensional Euclidean space, and let M denotes an n-dimensional riemannian
manifold. CI(M) denotes the corresponding bundle, the fiber of which at m € M is
the Clifford algebra CI(T (M),,) of the tangent space where the quadratic form is g,
or technically the opposite form (—g;;,).

Let ¢ be the natural linear isomorphism from the exterior algebra A E onto CI(E)
suchthat (AP E) = Cl,(E) is the subspace of p skew-symmetric elements of CI(E).
The () products e; defined as {e; = e ej,---€;,,i1 < ia--- < ip} constitute a
basis of CI(E). Since we can identify, using the quadratic form ¢, £ with its dual
space E*, we are led to identify 7(M) with T*(M), AT (M) with AT*(M), and to
consider the natural linear isomorphism &, determined by ¢ from AT (M) or AT*(M)
onto CI(M).

The corresponding C*° cross sections of CI(M) are Cliffordian fields defined on
M and constitute an algebra I'CI(M) = C(M). The vector fields X € 'T (M), and
the exterior differential forms w € A(M) = I' A T*(M) can be considered, via ®,
as Cliffordian fields on M.

Let Pin E be in CI(E) the classical twofold covering of O (E) and let Spin E be
its connected component, included in Cl (E), the universal covering of the group of
rotations SO(E) of E. Cl»(E) with the usual bracket of CI(E) is the Lie algebra of
O(E) and Pin E.

The bundle CI(M) contains bundles Pin M and Spin M with respective groups
Pin E and Spin E.

(a) Show that if we set g(u) = 27" Tr(I(u"u)) with notation of Chapter 1, ¢ is a
quadratic form defined on CI(E):

(b) Show that the {e;} constitute an orthonormal Euclidean basis for (CI(E), q)
and that ¢ (1) is the component relative to the unity of u"u in the basis {e;}.

(¢) For any g in Pin(E), ¢ (g(u)) = q(u) and g (ug) = q(u).

The Clifford algebra CI(E) is a semisimple algebra and inherits a minimal faith-
ful module, unique up to isomorphism, called the space of spinors S(E), where the
groups Pin E and Spin E are represented naturally. S(E) is isomorphic to any minimal
faithful left ideal of CI(E) as a CI(E)-left module.

(2) (a) Show that the interior automorphisms u — gug™ ', with g € Spin(E),
leave E and any CI,(E) invariant globally. Thus, Spin E acts on £ and by left trans-
lation on CI(E) or S(E).

(b) Let « be multiplication from EQCI(E) into CI(E) or from EQS(E) — S(E).
Show that  is a surjective morphism of Spin £ modules.

Let P(M) be the principal bundle, with group Pin E, a twofold covering of the
principal bundle P (M) of orthonormal basis of 7' (M), and let S(M) be the corre-
sponding spinor bundle that determines on M the chosen spin structure.

49 The method is due to R. Deheuvels, Quelques applications des algebres de Clifford a la
8, pp- 55-67.
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Let V be the riemannian covariant differential
V:iT@T(M)) — I'T*(M) @ T(®T (M)).

Since the metric tensor is parallel (Vg = 0), by passing to the quotient we determine
V, the covariant derivation of Cliffordian fields:

V:TCI(M) — I'T*(M) @ TCI(M) = 'T(M) ® T'CL(M).

(3) (a) Show that the quadratic form g on CI(E) determines a scalar product
(u | v) between Cliffordian fields u, v € I'CI(M) with values in the set of functions
C®on M andthat V(u | v) = (Vu | v) + (u | Vv).

(b) Show that the curvature form R € Clo(M) ® A2T*(M) is obtained via the
lifting in the bundles of the mapping from I' A> T'(M) into the set of derivations of
the algebra I'CI(M):

R(X,Y)=VxVy —VyVx — Vix,y1 = VxVy — VyVx — [Vyyy — Vy, x1.

B (c) Show that the riemannian connection determines a connection on the bundle
P (M) and then a covariant derivation V on the bundle S (M), which acts on the spinor
fields, i.e.,

V:TS(M) — IT'T(M)®TS(M).

The Dirac operator D is defined on I'CI/(M) and on I"'S(M) as the composite of the
covariant derivative and the multiplication wu, I'(T'(M)) considered as included in
I'Cl(M):

rCli(M) —Y TT(M) ® TCl(M) —" TCl(M),
rs(M) —Y I'T(M)®TS(M) —" T'S(M).

(4) Locally a vector field X can be written X = ) ¢; X i Show that in an orthonor-
mal basis, the Dirac operator Dis equal to Y ¢;Ve;, in CI(M) and in T'S(M).

(5) Let E = E, be the standard pseudo-Euclidean space provided with an
orthonormal basis {eq, ..., e,}. We agree to identify e;, 1 < j < n, with its im-
age in the Clifford associated algebra C = C(E, ). We recall that g(x) - 1¢c =
(elx + eox? + -+ + e,x™)? and that the Dirac operator can be expressed as

=e1(0/0x") + 62(8/3x2) + -+ en(d/0x").

(a) Show that Dis 1ndependent of the choice of the orthonormal basis of E. D acts
on the spinor differentiable fields, differentiable functions of E with values in a space
of spinors S of E, by derivation and “multiplication” by elements of C, and D acts
also on the differentiable functions of E, s, with values in its Clifford algebra C. The
square D2 is a scalar operator, or “diagonal’”: D? = A, which is the Laplac1an of E, .

(6) (a) Show that on the standard Euclidean space E,, if De; = T ], then
Agjer =0,V jkand D? = 3" e;(0/0x7) - 3, (8/0x%) = Y(3%/(9x1)?) = A,

s called harmonic.
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(7) We putn = 2.
(a) Verify that C(E») = M(2,R), S(E>) = R
(b) Show that E» can be embedded into C(E>) by

(10 (01 derer— 7 — (01
e] 01 s 62 10 s aneleZ— - 10

with J2 = —1.
(c) Verify that J can be identified with i if R? is identified with the complex line
C. A spinor field is then a function s on E, with values in R?. Verify that

9 9 du v

A 9 ? AV e R
Ds:(e1—+ez—>s= Jx oy (): o oy |-

dax dy 3y 9x v %‘Fﬁ

Dis then the classical Cauchy-Riemann operator and the harmonic spinors (which
satisfy Ds = 0) are analytic functions u + iv of the complex variable x + iy.
(d) Show that D acts on a vector field of E; : X = ae| + be; by

sy (T3 ) (—ab) (T E G )
Dx = ( IN 3) ( b a) = (ﬁ o a_ax_,_ o ) = (div X)I + (rot X)J.
dy Ox ax dy ax dy

(8) We put n = 3.

(a) Verify that C(E3) = M(2, C), S(E3) = C2.

(b) Show that E3 can be embedded into C(E3) via the Pauli matrices

01 0—i 10
e1—>01=<10>, ez—)dz:(l. O), e3—>03=<0_1)

with~J =ecjepes =il.
D acts on a spinor field s, with complex components u(x, y, z), v(x, y,z) (sisa
function on E3 with values in C2) by

28 _ ;0 du  dv o

Ps — 3z oax  tay \fu\ _ (9 Tax " lay

$=la ;0 2 v) = \ou 4o _ov ]
ax T Loy 0z 0x dy 0z

The harmonic spinors of E3—which satisfy Ds = O—are generalizations of analytic
functions.

(9) We put n = 4 and we consider E| 3.

(a) Show that C(E13) = M(2, H) and that C(E;3) ® C = M(4, C). We con-
sider the complex Dirac operator that acts on the complex space S = C*.

A set of Dirac matrices is a set of four complex square matrices of order four,
Y0, Y1, V2, V3, which satisfy the following relations:

i) () =1, 1)> =0 =W’ =—1
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(b) Show that we can then define a Clifford mapping from E; 3 into M (4, C) by
the following choice:

(10N o (OO0 g (O O
=10 -1 10 Vi=\-0;0)"

where the o are the classical Pauli matrices introduced in 8(b) above.
(c) Verify that

SR I B SRV
TG0 TG TRy TS

and that 5 5 5 5
5 o 9 9 5

T TR F I AR P AR P vl

(XI) Prove the results given in Section 3.11.4.5
(1) Proof of 3.11.4.5.2. Prove the following lemmas:

LemmalA G-principal bundle admits a T structure if and only if there are continuous
maps y;j : Uij — T such that

(@) vij () yjx(x) = yik(x), x € Ujjk (with obvious notation),

(b) p-yij = gij, where g;; : U;; — G are the transition functions assoicated with
a simple covering (U;;) of B by open sets and with a system of local cross sections.

Lemma II A space is called an L-space if every open covering has a simple refine-
ment. (We recall that an open covering {U;} of a topological space is called simple
if all the nonempty intersections U;; N --- N U, are contractible.)

Let U = {U;} be an open covering of B such that P is trivial over U;. Since B is
an L-space, we may assume that the covering is simple. Then the transition mappings
gij : Uij — G lift to continuous mappings y;; : U;; — I'. Now consider a nonempty
triple intersection U; j and set for x € Ujjx : pijr(x) = yjk(x)y,-k(x)_lyij (x). Then
ppijk(x) = gjk(X)gik(x)'gij(x) = e, and s0 p;jr(x) € K, x € Ujjk. Since Ujji is
connected and K discrete, the p;jx must be constant, and then define a 2-cochain in
the nerve N (U) with values in the abelian group K. This cochain will be denoted by
P, p(, j, k) = piji(x), x € Ujjx. Show that p is a cocycle.

Lemma III Show that the cohomology class represented by the cocycle p is indepen-
dent of the choice of the local section o; and the liftings y;;.

(2) p determines an element of H Z(N(U), K). Passinvg to the direct limit (over
all simple coverings), we obtain an element K (P, p) € H 2(B, K), which is called
the I"-obstruction. Show that a principal bundle admits a I'-structure if and only if
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(3) Prove Proposition 3.11.4.5.7 (Greub and Petry, op. cit. pp. 240-242) for the
case of O(n) bundles.
Hints: Study the special case of O (1) bundles. Then proceed by induction.
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209-212, 217-219, 241

real frame, 109

transformation, 2, 79

(almost) structure, 206, 209, 246
almost bundle, 245
complex vector bundle, 245
field, 245
form, 58, 59, 206, 210, 232
isometry, 212
manifold, 206, 209, 212, 213, 245, 253
neutral scalar product, 59, 205
scalar product, 58, 206, 209, 213, 216,
232,239
sesquilinear form, 206, 209
space, 205, 209, 210, 212, 219, 225, 245,
269
structure, 48, 58, 206, 232, 245, 250, 253
vector bundle, 245, 246
pseudoorthogonal
group, 172
pseudoquaternionian
structure, 32
pseudoquaternionic
structure, 32
pseudo-riemannian
conformal structure, 29, 210
fiber bundle, 178-180
manifold, 71, 73, 105, 107
pseudounitary, 216
bundle, 246, 247
Clifford group, 227
Clifford mapping, 224
conformal frame, 242
conformal spin structure, 255
conformal spinoriality group, 244, 256
conformal compactified, 215
conformal flat spin structure, 241
conformal group, 205, 212, 216, 234, 255
conformal isometry, 212

projective group, 73, 77, 87
pseudo—cross section, 117, 118
pseudo-Euclidean

conformal similarity, 216
conformal spin-structure, 205, 253, 256
conformal spinoriality group, 205, 242,

neutral structure, 51

real vector, 246

scalar product, 48, 78

space, 19, 26, 46, 51, 61, 73, 76, 78, 132,
215, 236, 266

spin structure, 71

structure, 48, 49, 52

244

conformal structure, 205, 210, 212

conformal transformation, 213

flat, 240

frame, 241

geometry, 205, 214, 241

group, 59, 209, 212, 213, 227, 232, 233,
238,243,252



pseudounitary (continued)
neutral group, 60
real conformal group, 235
scalar product, 233
similarity, 214
space, 216, 225
special group, 257
spin geometry, 205
spin structure, 245-247, 251, 252
spinor, 241, 251
spinor frame, 242
spinoriality group, 242, 243, 252, 253
structure, 43, 209
symplectic group, 43

quadratic
form, 5, 10, 13, 14, 16, 27, 29, 40, 43, 46,
49, 50, 55, 57, 58, 60, 64, 74, 76, 78,
79, 92, 102, 106, 135, 156-158, 167,
168, 183, 184, 187, 211, 220, 229, 232,
264-266
neutral, 55, 57
quadrics
projective, 1, 30, 46, 54, 75, 78, 205,
209-212,217-219
real projective, 29, 32, 48
quaternion, 41, 62
conjugate, 61
group, 35
pure, 63
scalar product, 33, 39
unit, 10, 35, 65
quaternionic structures on right vector
spaces, 32
quotient space, 123, 143, 153, 209, 212, 215

real
matrix, 5
part, 239
structure, 48
reflection, 182
mapping, 18
representation
faithful, 54, 55
irreducible, 22, 23, 108
reversion, 182
Ricci tensor, 161, 163, 192, 196
riemannian
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right

translation, 107, 123, 153, 191, 251, 254
rotation, 75, 182, 185, 265

proper, 20, 87

scalar
curvature, 196
semispinor, 53
sesquilinear form, 7, 32, 33, 38, 57, 59
singular
submanifold, 209
skew-hermitian, 6
form, 6, 8-10, 35-38, 47, 58, 59
matrices, 5, 7
scalar product, 37
sesquilinear form, 58
skew-symmetric, 191, 265
bilinear mapping, 128
bilinear form, 206
coefficient, 149
form, 4, 222
matrices, 5
tensor, 197
space
amplified tangent, 109
anti-Euclidean, 183
cotangent, 147, 153, 192
Euclidean, 63, 65, 74-76, 143, 144, 167,
169, 184, 188, 265, 266
homogeneous, 29, 78, 125, 145, 193,
215
horizontal, 123, 154
linear, 1, 2,4, 7, 8, 15, 16, 21, 125, 183
maximal totally isotropic, 208
Minkowski, 72, 198, 264
of half-spinors, 22
of spinors, 1, 22, 23, 43, 53, 56, 58, 103,
232,233, 241, 265, 266
pseudo-Euclidean, 19, 26, 46, 49, 51,
52, 61, 73, 76, 78, 132, 215,
236, 266
pseudounitary, 216, 225
quadratic, 184
quotient, 123, 143, 153, 209, 212, 215
regular quadratic, 13, 15, 21, 228
tangent, 120, 140, 149, 152, 156, 206, 208,
265
Spin(Q), 227, 242, 243
spin group, 1, 19, 43, 48, 50, 60, 65



282 Index

spinor, 1, 21, 32, 36, 41, 42, 44, 45, 48-50,
59, 65, 103, 110, 205, 231, 267
bundle, 265
frame, 103, 104, 107
group, 1, 19, 22, 205, 227
norm, 228
pseudounitary, 241, 251
unitary, 66
spinoriality group, 73, 101, 243
classical, 242
conformal, 71, 92, 105, 111, 112, 115
pseudounitary, 242, 243, 252, 253
pseudounitary conformal, 205, 242, 244,
256
real conformal, 92, 95, 96, 118
Stiefel
manifold, 219
structure, 1, 8, 10
almost complex, 206
almost pseudo-hermitian, 206, 209, 245,
246
complex, 33, 59, 187, 211, 219, 233
conformal, 142, 144, 145, 150, 155, 192
conformal pseudo-riemannian, 29, 210
conformal pseudounitary, 205, 206, 210,
212
group, 73, 106, 108, 115-117, 119, 125,
128, 130, 132, 133, 137-139, 142, 144,
146, 151, 153, 155, 170, 189, 191, 195,
206, 245-247, 252, 253, 256
pseudo-Euclidean, 48, 49, 52
pseudo-Euclidean neutral, 51
pseudo-hermitian, 48, 58, 206, 232, 245,
250, 253
pseudoquaternionian, 32
pseudoquaternionic, 43
pseudounitary, 209
quaternionian, 35
quaternionic, 32, 41
real, 48
real conformal, 114
symplectic, 49-51
Wedderburn theorem of, 21
subalgebra, 12, 16, 24,27, 53, 56, 58, 62, 63,
221

subbundle

horizontal, 127-129, 172, 174, 175, 180

submanifold

differentiable, 29
maximal, 129
singular, 209

subspace

horizontal, 120, 121, 190

maximal totally isotropic, 9, 22, 4547, 59,
96, 116, 219, 229, 233, 242, 243, 253

tangent, 212

symmetric

bilinear complex form, 35

bilinear form, 8, 13, 40, 48, 52, 55, 54, 74,
172, 211

coefficient, 158

H-, 33

matrix, 6

space, 46, 52

symplectic

automorphism, 51, 216
fibration, 73

form, 205

group, 1, 4,9, 34, 205, 216, 217, 257
operator, 48

product, 222

pseudounitary group, 43

real product, 205

scalar product, 33, 48, 50, 54
space, 4, 205

spin structure, 257

standard product, 4

structure, 49-51
transformation, 9

unitary group, 34

vector space, 48

tangent, 120, 142, 149, 212

amplified bundle, 107, 118, 256

bundle, 106, 196, 245, 246, 253

fiber bundle, 124

hyperplane, 187, 209, 211, 212

line, 154

mapping, 120, 216, 217

moving coframe, 194

space, 120, 140, 149, 152, 156, 206, 208,
265

subspace, 212

vector, 121, 140, 141, 152, 153, 163, 210

vector bundle, 125



tensor
algebra, 14, 63, 220
curvature, 147, 149, 158, 159, 192
Ricci, 161, 163, 192, 196
tensorial or tensor product, 11, 27, 64
torsion, 157, 159
form, 146
tensor field, 146
torus, 3
transformation, 5, 76, 163, 182, 193,
214-217
affine, 132
conformal, 72, 78, 79, 135, 172, 188, 215
formula, 179
infinitesimal conformal, 134, 135, 180,
190,
linear, 7, 8, 18, 23, 25, 146
Mébius, 181-186, 193, 199
orthogonal, 9, 63, 77, 263
projective, 2, 79
pseudounitary conformal, 213
puntual, 76
special conformal, 95, 99, 180, 182
symplectic, 9
unitary, 9
transition
functions, 106, 108, 110, 112-115,
117, 121, 130, 142, 172, 248,
252,255
translation, 42, 59, 72, 83, 87, 89, 95, 97, 99,
101, 132, 135, 145, 161, 182, 185, 188,
209, 213, 216
conformal, 135
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left, 265

right, 107, 123, 153, 191, 251, 254
transversion, 87, 99, 135, 180, 182, 185
twisted projection, 90, 117

unitary
transformation, 9

Vahlen matrices, 71, 181, 183—-186, 198
vector
horizontal, 121
horizontal field, 122, 189
pseudo-Euclidean space, 29
representation, 18
space, 4, 10, 13, 16, 21, 27, 32-38, 40,
46-48, 50, 51, 56-58, 65, 128, 132,
190, 207, 209, 221
tangent, 121, 140, 141, 152, 153, 163, 210
tangent bundle, 125
vertical, 124, 147-149, 195
vertical
component, 120
vector, 124, 147-149, 195

Wedderburn theorem of structure, 21

Witt
basis, 80, 92, 102-104, 108, 109, 116,

168, 170, 237, 241-242

decomposition, 22, 102, 104, 236, 242
frames, 103-105, 109, 113, 114, 117, 242
special decomposition, 102, 229, 231
theorem, 9, 61, 113

Witt Theorem, 214

Yano theory, 158




